Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://elartu.tntu.edu.ua/handle/lib/45895
Tüm üstveri kaydı
Dublin Core AlanıDeğerDil
dc.contributor.advisorСтанько, Андрій Андрійович-
dc.contributor.authorРуснак, Вадім Михайлович-
dc.contributor.authorRusnak, Vadim Mykhailovych-
dc.date.accessioned2024-07-08T07:16:29Z-
dc.date.available2024-07-08T07:16:29Z-
dc.date.issued2024-06-30-
dc.date.submitted2024-06-17-
dc.identifier.citationРуснак В. М. Аналіз кіберфізичних систем для промислових IoT-застосунків Індустрії 4.0 : робота на здобуття кваліфікаційного ступеня бакалавра : спец. 122 - комп'ютерні науки / наук. кер. А. А. Станько. Тернопіль : Тернопільський національний технічний університет імені Івана Пулюя, 2024. 73 с.uk_UA
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/45895-
dc.description.abstractКваліфікаційна робота присвячена дослідженню кіберфізичних систем для промислових IoT-застосунків Індустрії 4.0. В першому розділі кваліфікаційної роботи описано предметну область кіберфізичних систем та Індустрії 4.0. Висвітлено стан досліджень КФС Індустрії 4.0. Розглянуто методологію дослідження. В другому розділі кваліфікаційної роботи досліджено периферійні і хмарні сервіси промислового IoT. Подано особливості моніторингу виробництва, архітектуру платформ IIoT. В третьому розділі кваліфікаційної роботи проаналізовано категоризацію кіберфізичних систем в контексті Індустрії 4.0. Проведено опис інтеграції суміжних служб, периферійних пристроїв та вимірів. В четвертому розділі кваліфікаційної роботи розглянуто забезпечення безпечної роботи з обладнанням. The qualification work is devoted to the study of cyber-physical systems for industrial IoT applications of Industry 4.0 The first chapter of the qualification work describes the subject area of cyber-physical systems and Industry 4.0. The state of research on CPS of Industry 4.0 is highlighted. The research methodology is considered. The second chapter of the qualification work investigates the peripheral and cloud services of industrial IoT. The features of production monitoring and the architecture of IIoT platforms are presented. The third chapter of the qualification work analyzes the categorization of cyber-physical systems in the context of Industry 4.0. The integration of related services, peripherals, and measurements is described. The fourth chapter of the qualification work considers ensuring safe operation of the equipment.uk_UA
dc.description.tableofcontentsВСТУП 8 РОЗДІЛ 1. АНАЛІЗ ПРЕДМЕТНОЇ ОБЛАСТІ КІБЕРФІЗИЧНИХ СИСТЕМ ТА ІНДУСТРІЇ 4.0 10 1.1 Аналіз елементів кіберфізичних систем 10 1.2 Пов’язані роботи 13 1.3 Стан досліджень КФС Індустрії 4.0 15 1.4 Методологія дослідження 15 1.5 Висновок до першого розділу 18 РОЗДІЛ 2. ПРОЕКТНА ЧАСТИНА. ПЕРИФЕРІЙНІ І ХМАРНІ СЕРВІСИ ПРОМИСЛОВОГО IOT 20 2.1 Промислові виробничі системи 20 2.2 Моніторинг виробництва 22 2.3 Короткий огляд вимог IIoT 23 2.4 Архітектура платформи IIoT 24 2.5 Висновок до другого розділу 27 РОЗДІЛ 3. ПРАКТИЧНА ЧАСТИНА. КАТЕГОРИЗАЦІЯ КІБЕРФІЗИЧНИХ СИСТЕМ В КОНТЕКСТІ ІНДУСТРІЇ 4.0 28 3.1 Кіберфізичниі системи в Індустрії 4.0 28 3.2 Результати аналізу КФС 44 3.3 Інтеграція суміжних служб 46 3.4 Граничні шлюзи та програмне забезпечення 48 3.5 Периферійні пристрої та виміри 49 3.6 Висновок до третього розділу 50 РОЗДІЛ 4. БЕЗПЕКА ЖИТТЄДІЯЛЬНОСТІ, ОСНОВИ ОХОРОНИ ПРАЦІ 51 4.1 Питання щодо безпеки життєдіяльності 51 4.2 Питання з основ охорони праці 56 4.3 Висновок до четвертого розділу 60 ВИСНОВКИ 62 ПЕРЕЛІК ДЖЕРЕЛ 64 ДОДАТКИuk_UA
dc.language.isoukuk_UA
dc.subjectкіберфізичні системиuk_UA
dc.subjectcyber-physical systemsuk_UA
dc.subjectІндустрія 4.0uk_UA
dc.subjectIndustry 4.0uk_UA
dc.subjectхмарні обчисленняuk_UA
dc.subjectcloud computinguk_UA
dc.subjectмоніторингuk_UA
dc.subjectmonitoringuk_UA
dc.subjectавтоматизаціяuk_UA
dc.subjectautomationuk_UA
dc.subjectвеликі даніuk_UA
dc.subjectbig datauk_UA
dc.subjectIIoTuk_UA
dc.titleАналіз кіберфізичних систем для промислових IoT-застосунків Індустрії 4.0uk_UA
dc.title.alternativeAnalysis of Cyber-Physical Systems for Industrial IoT Applications of Industry 4.0uk_UA
dc.typeBachelor Thesisuk_UA
dc.rights.holder© Руснак Вадім Михайлович, 2024uk_UA
dc.contributor.committeeMemberГолотенко, Олександр Сергійович-
dc.coverage.placenameТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Українаuk_UA
dc.subject.udc004.9uk_UA
dc.relation.references1 Broo, Didem Gürdür, Ulf Boman, and Martin Törngren. "Cyber–physical systems research and education in 2030: Scenarios and strategies." Journal of Industrial Information Integration 21 (2021): 100192.uk_UA
dc.relation.references2 Jahromi, Amir Abiri, and Deepa Kundur. "Fundamentals of cyber–physical systems." Cyber–Physical Systems in the Built Environment (2020): 1–13.uk_UA
dc.relation.references3 Zhou, Xugui, et al. "Hybrid knowledge and data driven synthesis of runtime monitors for cyber–physical systems." IEEE Transactions on Dependable and Secure Computing (2023).uk_UA
dc.relation.references4 Zhang, Kunwu, et al. "Advancements in industrial cyber–physical systems: An overview and perspectives." IEEE Transactions on Industrial Informatics 19.1 (2022): 716–729.uk_UA
dc.relation.references5 Samad, Tariq. "Human‐in‐the‐loop control and cyber–physical–human systems: applications and categorization." Cyber–physical–human systems: fundamentals and applications (2023): 1–23.uk_UA
dc.relation.references6 Zhang, Kunwu, et al. "Advancements in industrial cyber–physical systems: An overview and perspectives." IEEE Transactions on Industrial Informatics 19.1 (2022): 716–729.uk_UA
dc.relation.references7 Ntentos, Evangelos, et al. "Decision–Making Support for Data Integration in Cyber–Physical–System Architectures." International Conference on Service–Oriented Computing. Cham: Springer Nature Switzerland, 2023.uk_UA
dc.relation.references8 Neureiter, Christian, and Christoph Binder. "A domain–specific, model based systems engineering approach for cyber–physical systems." Systems 10.2 (2022): 42.uk_UA
dc.relation.references9 Pasandideh, Shabnam, Pedro Pereira, and Luis Gomes. "Cyber–physical–social systems: taxonomy, challenges, and opportunities." IEEE Access 10 (2022): 42404–42419.uk_UA
dc.relation.references10 Alshalalfah, Abdel–Latif, Otmane Ait Mohamed, and Samir Ouchani. "A framework for modeling and analyzing cyber–physical systems using statistical model checking." Internet of Things 22 (2023): 100732.uk_UA
dc.relation.references11 Horváth, Imre. "Designing next–generation cyber–physical systems: Why is it an issue?." Journal of Integrated Design and Process Science Preprint (2022): 1–33.uk_UA
dc.relation.references12 Queiroz, Rui, Tiago Cruz, and Paulo Simões. "Testing the limits of general–purpose hypervisors for real–time control systems." Microprocessors and Microsystems 99 (2023): 104848.uk_UA
dc.relation.references13 Heikkilä, Jussi, Julius Rissanen, and Timo Ali–Vehmas. "Coopetition, standardization and general purpose technologies: A framework and an application." Telecommunications Policy 47.4 (2023): 102488.uk_UA
dc.relation.references14 Suleiman, Zhanybek, et al. "Industry 4.0: Clustering of concepts and characteristics." Cogent Engineering 9.1 (2022): 2034264.uk_UA
dc.relation.references15 Sekaran, Ramesh, et al. "Ant colony resource optimization for Industrial IoT and CPS." International Journal of Intelligent Systems 37.12 (2022): 10513–10532.uk_UA
dc.relation.references16 Khalid, Azfar, et al. "Understanding vulnerabilities in cyber physical production systems." International Journal of Computer Integrated Manufacturing 35.6 (2022): 569–582.uk_UA
dc.relation.references17 Jiang, Yuchen, et al. "Secure data transmission and trustworthiness judgement approaches against cyber–physical attacks in an integrated data–driven framework." IEEE Transactions on Systems, Man, and Cybernetics: Systems 52.12 (2022): 7799–7809.uk_UA
dc.relation.references18 Lakhan, Abdullah, et al. "Blockchain–enabled cybersecurity efficient IIOHT cyber–physical system for medical applications." IEEE Transactions on Network Science and Engineering (2022).uk_UA
dc.relation.references19 Biesinger, Florian, et al. "A digital twin for production planning based on cyber–physical systems: A Case Study for a Cyber–Physical System–Based Creation of a Digital Twin." Procedia CiRP 79 (2019): 355–360.uk_UA
dc.relation.references20 Fang, Pengcheng, et al. "Data analytics–enable production visibility for Cyber–Physical Production Systems." Journal of manufacturing systems 57 (2020): 242–253.uk_UA
dc.relation.references21 Meesublak, Koonlachat, and Tosapol Klinsukont. "A cyber–physical system approach for predictive maintenance." 2020 ieee international conference on smart internet of things (smartiot). IEEE, 2020.uk_UA
dc.relation.references22 Ma, Shuaiyin, et al. "Energy–cyber–physical system enabled management for energy–intensive manufacturing industries." Journal of cleaner production 226 (2019): 892–903.uk_UA
dc.relation.references23 Oks, Sascha Julian, et al. "Cyber–physical systems in the context of industry 4.0: A review, categorization and outlook." Information Systems Frontiers (2022): 1–42.uk_UA
dc.relation.references24 Afrizal, A., B. Mulyanti, and I. Widiaty. "Development of Cyber–Physical System (CPS) implementation in industry 4.0." IOP Conference Series: Materials Science and Engineering. Vol. 830. No. 4. IOP Publishing, 2020.uk_UA
dc.relation.references25 Pivoto, Diego GS, et al. "Cyber–physical systems architectures for industrial internet of things applications in Industry 4.0: A literature review." Journal of manufacturing systems 58 (2021): 176–192.uk_UA
dc.relation.references26 Gürdür, Didem, and Fredrik Asplund. "A systematic review to merge discourses: Interoperability, integration and cyber–physical systems." Journal of Industrial information integration 9 (2018): 14–23.uk_UA
dc.relation.references27 Bellini, Emanuele, et al. "Resilience learning through self adaptation in digital twins of human–cyber–physical systems." 2021 IEEE International Conference on Cyber Security and Resilience (CSR). IEEE, 2021.uk_UA
dc.relation.references28 Yohanandhan, Rajaa Vikhram, et al. "Cyber–physical power system (CPPS): A review on modeling, simulation, and analysis with cyber security applications." IEEE Access 8 (2020): 151019–151064.uk_UA
dc.relation.references29 Khalid, Faiq, Semeen Rehman, and Muhammad Shafique. "Overview of security for smart cyber–physical systems." Security of Cyber–Physical Systems: Vulnerability and Impact (2020): 5–24.uk_UA
dc.relation.references30 Milne, Alexander JM, Arnold Beckmann, and Pardeep Kumar. "Cyber–physical trust systems driven by blockchain." Ieee Access 8 (2020): 66423–66437.uk_UA
dc.relation.references31 Kaur, Maninder Jeet, Sadia Riaz, and Arif Mushtaq. "Cyber–physical cloud computing systems and internet of everything." Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm (2020): 201–227.uk_UA
dc.relation.references32 Jimenez, Jaime Ibarra, Hamid Jahankhani, and Stefan Kendzierskyj. "Health care in the cyberspace: Medical cyber–physical system and digital twin challenges." Digital twin technologies and smart cities (2020): 79–92.uk_UA
dc.relation.references33 Ryalat, Mutaz, Hisham ElMoaqet, and Marwa AlFaouri. "Design of a smart factory based on cyber–physical systems and Internet of Things towards Industry 4.0." Applied Sciences 13.4 (2023): 2156.uk_UA
dc.relation.references34 Singh, Nitin, et al. "Cyber–physical systems: a bibliometric analysis of literature." Journal of Intelligent Manufacturing (2024): 1–37.uk_UA
dc.relation.references35 Branco, Dario, et al. "Agents based cyber–physical diffused museums over web interoperability standards." IEEE Access (2023).uk_UA
dc.relation.references36 Zahid, Maryam, Alessio Bucaioni, and Francesco Flammini. "Model Based Trustworthiness Evaluation of Autonomous Cyber–Physical Production Systems: A Systematic Mapping Study." ACM Computing Surveys (2024).uk_UA
dc.relation.references37 Müller, Timo, et al. "Architecture and knowledge modelling for self–organized reconfiguration management of cyber–physical production systems." International Journal of Computer Integrated Manufacturing 36.12 (2023): 1842–1863.uk_UA
dc.relation.references38 Ryalat, Mutaz, Hisham ElMoaqet, and Marwa AlFaouri. "Design of a smart factory based on cyber–physical systems and Internet of Things towards Industry 4.0." Applied Sciences 13.4 (2023): 2156.uk_UA
dc.relation.references39 Wang, Tianyue, et al. "Data Augmentation–Based Manufacturing Quality Prediction Approach in Human Cyber–Physical Systems." Journal of Manufacturing Science and Engineering 145.12 (2023).uk_UA
dc.relation.references40 Rojas, Rafael A., and Erwin Rauch. "From a literature review to a conceptual framework of enablers for smart manufacturing control." The International Journal of Advanced Manufacturing Technology 104 (2019): 517–533.uk_UA
dc.relation.references41 Lozano, Carolina Villarreal, and Kavin Kathiresh Vijayan. "Literature review on cyber physical systems design." Procedia manufacturing 45 (2020): 295–300.uk_UA
dc.relation.references42 Zeng, Jing, et al. "A survey: Cyber–physical–social systems and their system–level design methodology." Future Generation Computer Systems 105 (2020): 1028–1042.uk_UA
dc.relation.references43 Passaretti, Daniele, Max Steiger, and Thilo Pionteck. "Enabling plug–and–play in Cyber–Physical Systems using MPSoC–FPGAs." IEEE Access (2023).uk_UA
dc.relation.references44 Hästbacka, David, et al. "Dynamic edge and cloud service integration for industrial IoT and production monitoring applications of industrial cyber–physical systems." IEEE Transactions on Industrial Informatics 18.1 (2021): 498–508.uk_UA
dc.relation.references45 Ning, Huansheng, et al. "Heterogeneous edge computing open platforms and tools for internet of things." Future Generation Computer Systems 106 (2020): 67–76.uk_UA
dc.relation.references46 Lynn, Theo, et al. "The cloud–to–thing continuum: opportunities and challenges in cloud, fog and edge computing." (2020): 161.uk_UA
dc.relation.references47 Garg, Deepak, et al. "Hybrid technique for cyber–physical security in cloud–based smart industries." Sensors 22.12 (2022): 4630.uk_UA
dc.relation.references48 Gong, Chao, et al. "Intelligent cooperative edge computing in internet of things." IEEE Internet of Things Journal 7.10 (2020): 9372–9382.uk_UA
dc.relation.references49 Rafique, Wajid, et al. "Complementing IoT services through software defined networking and edge computing: A comprehensive survey." IEEE Communications Surveys & Tutorials 22.3 (2020): 1761–1804.uk_UA
dc.relation.references50 Fraile, Francisco, et al. "Reference models for digital manufacturing platforms." Applied Sciences 9.20 (2019): 4433.uk_UA
dc.relation.references51 Fadhlillah, Hafiyyan Sayyid, et al. "Towards heterogeneous multi–dimensional variability modeling in cyber–physical production systems." Proceedings of the 25th ACM International Systems and Software Product Line Conference–Volume B. 2021.uk_UA
dc.relation.references52 Marcu, Ioana, et al. "Arrowhead technology for digitalization and automation solution: Smart cities and smart agriculture." Sensors 20.5 (2020): 1464.uk_UA
dc.relation.references53 Hofer, Florian. "Architecture, technologies and challenges for cyber–physical systems in industry 4.0: A systematic mapping study." Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. 2018.uk_UA
dc.relation.references54 Pivoto, Diego GS, et al. "Cyber–physical systems architectures for industrial internet of things applications in Industry 4.0: A literature review." Journal of manufacturing systems 58 (2021): 176–192.uk_UA
dc.relation.references55 Hegedus, Csaba, Pál Varga, and Attila Frankó. "Secure and trusted inter–cloud communications in the arrowhead framework." 2018 IEEE Industrial Cyber–Physical Systems (ICPS). IEEE, 2018.uk_UA
dc.relation.references56 Стручок В.С. Безпека в надзвичайних ситуаціях. Методичний посібник для здобувачів освітнього ступеня «магістр» всіх спеціальностей денної та заочної (дистанційної) форм навчання / В.С.Стручок. — Тернопіль: ФОП Паляниця В. А., 2022. — 156 с.uk_UA
dc.relation.references57 Duda, O., Mykytyshyn, A., Mytnyk, M., & Stanko, A. (2020). The network platform cyber-physical systems application for smart buildings air pollution indicators monitoring. network, 3.uk_UA
dc.relation.references58 Станько, А. А. (2023). Мережева інформаційно-технологічна платформа супроводу об’єктів кіберфізичних систем «розумних міст» (Doctoral dissertation, Тернопільський національний технічний університет імені Івана Пулюя).uk_UA
dc.relation.references59 Kryazhych, O., Itskovych, V., Iushchenko, K., Hrytsyshyna, V., Bruvier, D., Nykytyuk, V., & Bodnarchuk, I. (2023). The use of abstract Moore automaton to control the sensors of a service-oriented alarm and emergency notification network. Вісник Тернопільського національного технічного університету, 109(1), 111-120.uk_UA
dc.contributor.affiliationТНТУ ім. І. Пулюя, Факультет комп’ютерно-інформаційних систем і програмної інженерії, Кафедра комп’ютерних наук, м. Тернопіль, Українаuk_UA
dc.coverage.countryUAuk_UA
Koleksiyonlarda Görünür:122 — Компʼютерні науки (бакалаври)

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
2024_KRB_SNs-42_Rusnak_V_M.pdf1,67 MBAdobe PDFGöster/Aç


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.

Yönetim Araçları