Använd denna länk för att citera eller länka till detta dokument: http://elartu.tntu.edu.ua/handle/lib/44677

Fullständig post
DC fältVärdeSpråk
dc.contributor.authorЛупенко, Сергій Анатолійович
dc.contributor.authorБуцій, Роман Андрійович
dc.contributor.authorLupenko, Serhii
dc.contributor.authorButsiy, Roman
dc.date.accessioned2024-04-17T10:57:25Z-
dc.date.available2024-04-17T10:57:25Z-
dc.date.created2024-03-19
dc.date.issued2024-03-19
dc.date.submitted2024-01-02
dc.identifier.citationLupenko S. Express method of biometric person authentication based on one cycle of the ecg signal / Serhii Lupenko, Roman Butsiy // Scientific Journal of TNTU. — Tern. : TNTU, 2024. — Vol 113. — No 1. — P. 100–110.
dc.identifier.issn2522-4433
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/44677-
dc.description.abstractПрисвячено експрес-методу біометричної аутентифікації особи на основі електрокардіограми (ЕКГ). Метод характеризується високою точністю (ефективністю) аутентифікації особи на основі лише одного циклу її ЕКГ. Такі характеристики, як Accuracy, Balanced Accuracy та F1-score в середньому не нижчі за 96.1% для таких бінарних класифікаторів, як k-Nearest Neighbors, Linear SVM, Decision Tree, Random Forest, Multilayer Perceptron, Adaptive Boosting, Naive Bayes і Statistical Interval Classifier. У дослідженні використано базу даних Combined Measurement of ECG, Breathing, and Seismocardiograms, яка містить дані від 20 здорових людей. Розроблено метод побудови довірчих інтервалів для циклів ЕКГ, що базується на ритмо-адаптивній статистичній оцінці математичного сподівання та стандартного відхилення сигналу ЕКГ. Метод побудови довірчих інтервалів лежить в основі функціонування Statistical Interval Classifier у системі біометричної аутентифікації особи. Statistical Interval Classifier має найнижчу часову обчислювальну складність серед восьми досліджених класифікаторів, що виправдовує його використання в портативних системах біометричної аутентифікації, які мають незначні обчислювальні ресурси
dc.description.abstractThe article is devoted to an express method of biometric authentication of a person based on an electrocardiogram (ECG). The method is characterized by high accuracy (efficiency) of authentication of a person based on only one cycle of its ECG. Such characteristics as Accuracy, Balanced Accuracy and F1-score on average are not lower than 96.1% for such binary classifiers as k-Nearest Neighbors, Linear SVM, Decision Tree, Random Forest, Multilayer Perceptron, Adaptive Boosting, Naive Bayes and Statistical Interval Classifier. The research utilized the Combined Measurement of ECG, Breathing, and Seismocardiograms database, whicfeatures data from 20 healthy people. A method of constructing confidence intervals for ECG cycles has been developed, which is based on the rhythm-adaptive statistical estimation of the mathematical expectation and the standard deviation of the ECG signal. The method of constructing confidence intervals is based on the functioning of the Statistical Interval Classifier in the system of biometric authentication of a person. The Statistical Interval Classifier has the lowest time computational complexity among the 8 studied classifiers, which justifies its use in portable biometric authentication systems that have negligible computing resources
dc.format.extent100-110
dc.language.isoen
dc.publisherТНТУ
dc.publisherTNTU
dc.relation.ispartofВісник Тернопільського національного технічного університету, 1 (113), 2024
dc.relation.ispartofScientific Journal of the Ternopil National Technical University, 1 (113), 2024
dc.relation.urihttps://doi.org/10.1109/CCECE.2001.933649
dc.relation.urihttps://doi.org/10.1007/978-3-642-29305-4_149
dc.relation.urihttps://doi.org/10.1109/BCC.2006.4341628
dc.relation.urihttps://doi.org/10.1016/j.patrec.2007.01.014
dc.relation.urihttps://doi.org/10.3390/s22062202
dc.relation.urihttps://doi.org/10.1002/tee.21970
dc.relation.urihttps://doi.org/10.14722/ndss.2017.23408
dc.relation.urihttps://doi.org/10.1007/978-3-319-23461-8_27
dc.relation.urihttps://doi.org/10.1109/TIM.2022.3199260
dc.relation.urihttps://doi.org/10.1117/12.819327
dc.relation.urihttps://doi.org/10.1016/j.bspc.2020.102226
dc.relation.urihttps://doi.org/10.1109/TIM.2007.909996
dc.relation.urihttps://doi.org/10.1109/BTAS.2010.5634478
dc.relation.urihttps://doi.org/10.13026/C2KW23
dc.relation.urihttps://doi.org/10.1161/01.CIR.101.23.e215
dc.relation.urihttps://doi.org/10.1016/j.dsp.2023.104104
dc.relation.urihttps://doi.org/10.3390/math10183406
dc.relation.urihttps://doi.org/10.32782/cmis/2864-17
dc.subjectбіометрична аутентифікація
dc.subjectелектрокардіограма
dc.subjectциклічно корельований випадковий процес
dc.subjectнормалізація сигналів
dc.subjectкласифікація сигналів
dc.subjectbiometric authentication
dc.subjectelectrocardiogram signal
dc.subjectcyclically correlated random process
dc.subjectsignals normalization
dc.subjectsignals classification
dc.titleExpress method of biometric person authentication based on one cycle of the ecg signal
dc.title.alternativeЕкспрес-метод біометричної аутентифікації особи на основі одного циклу сигналу ЕКГ
dc.type
dc.rights.holder© Тернопільський національний технічний університет імені Івана Пулюя, 2024
dc.coverage.placenameТернопіль
dc.coverage.placenameTernopil
dc.format.pages11
dc.subject.udc519.65
dc.relation.referencesen1. Park G. Bio-signal and personal authentication. Korea Internet and Security Agency, Technical Report, Aug 2014.
dc.relation.referencesen2. Park, G. Analysis of authentication technology using bio-signals and construction of bio-signal database. Korea Internet and Security Agency, Technical Report, Jan. 2016.
dc.relation.referencesen3. Kim J., Park G. Personal authentication technology using biosignals and DB construction. TTA J. 2016. 165. P. 41–46.
dc.relation.referencesen4. Paranjape R., Mahovsky J., Benedicenti L., Koles Z. The EEG as a biometric. In Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Vancouver, BC, Canada, 13–16 May 2001. Volume 2. P. 1363–1366. https://doi.org/10.1109/CCECE.2001.933649
dc.relation.referencesen5. Vural E., Simske S., Schuckers S. Verification of individuals from accelerometer measures of cardiac chest movements. In Proceedings of the 2013 International Conference of the BIOSIG, Darmstadt, Germany, 5–6 September 2013. P. 1–8. INSPEC Accession Number: 13826572.
dc.relation.referencesen6. Guo H., Cao X., Wu J., Tang J. Ballistocardiogram-based person identification using correlation analysis. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering. Beijing, China. 26–31 May 2012. Volume 39. P. 570–573. https://doi.org/10.1007/978-3-642-29305-4_149
dc.relation.referencesen7. Plataniotis K., Hatzinaks D., Lee J. ECG biometric recognition without fiducial detection. In Proceedings of the Biometrics Symposium (BSYM '06), Baltimore, MD, USA. 19–21 September 2006. P. 6–11. Doi: https://doi.org/10.1109/BCC.2006.4341628.
dc.relation.referencesen8. Wubbeler G., Stavridis M., Kreiseler D., Bousseljot R., Elster C. Verification of humans using the electrocardiogram. Pattern Recognit. Lett. 2007. 28. P. 1172–1175.. https://doi.org/10.1016/j.patrec.2007.01.014
dc.relation.referencesen9. Pereira T. M. C., Conceição R. C., Sebastião R. Initial Study Using Electrocardiogram for Authentication and Identification. Sensors 2022, 22, 2202. https://doi.org/10.3390/s22062202
dc.relation.referencesen10. Molina G., Bruekers F., Presura C., Damstra M., Veen M. Morphological synthesis of ECG signals for person authentication. In Proceedings of the 15th European Signal Processing Conference, Poznan, Poland, 3–7 September 2007. P. 738–742.
dc.relation.referencesen11. Pathoumvanh S., Airphaiboon S., Hamamoto K. Robustness study of ECG biometric identification in heart rate variability conditions. IEEE Trans. Electric. Electron. Eng. 2014, 9, 294–301. https://doi.org/10.1002/tee.21970
dc.relation.referencesen12. Eberz S., Paoletti N., Roeschlin M., Patani A., Kwiatkowska M., Martinovic I. Broken Hearted: How To Attack ECG Biometrics. In Proceedings of the NDSS, San Diego, CA, USA, 26 February – 1 March 2017. P. 1–15. https://doi.org/10.14722/ndss.2017.23408
dc.relation.referencesen13. Alves A., Carreiras C. CardioWheel: ECG Biometrics on the Steering Wheel. In Proceedings of the European Conference: Machine Learning and Knowledge Discovery in Databases, Porto, Portugal, 7–11 September 2015. P. 267–270. https://doi.org/10.1007/978-3-319-23461-8_27
dc.relation.referencesen14. Fatimah B., Singh P., Singhal A., Pachori R. B. Biometric Identification From ECG Signals Using Fourier Decomposition and Machine Learning. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. https://doi.org/10.1109/TIM.2022.3199260
dc.relation.referencesen15. Homer M., Irvine J. M., Wendelken S. A model-based approach to human identification using ECG. In Proceedings of the SPIE Conference on Optics and Photonics for Global Homeland Security V and Biometric Technology for Human Identification VI, Orlando, FL, USA, 13–17 April 2009. Volume 7306. 730625. https://doi.org/10.1117/12.819327
dc.relation.referencesen16. Benouis M., Mostefai L., Costen N., Regouid M. ECG-based biometric identification using onedimensional local difference pattern. Biomed. Signal Process. Control. 2021, 64, 102226. https://doi.org/10.1016/j.bspc.2020.102226
dc.relation.referencesen17. Irvine J. M., Wiederhold B. K., Gavshon L. W., Israel S., McGehee S. B., Meyer R., Wiederhold M. D. Heart rate variability: A new biometric for human identification. In Proceedings of the International Conference on Artificial Intelligence (IC-AI'01), Las Vegas, NV, USA, 7–9 November 2001. P. 1106–1111.
dc.relation.referencesen18. Wan Y., Yao J. A neural network to identify human subjects with electrocardiogram signals. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 22–24 October 2008. P. 1–4.
dc.relation.referencesen19. Chan A. D., Hamdy M. M., Badre A., Badee V. Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 2008. 57. P. 248–253. https://doi.org/10.1109/TIM.2007.909996
dc.relation.referencesen20. Ye C., Coimbra M. T., Kumar B. V. Investigation of human identification using two-lead electrocardiogram (ECG) signals. In Proceedings of the 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington, DC, USA, 27–29 September 2010; P. 1–8. https://doi.org/10.1109/BTAS.2010.5634478
dc.relation.referencesen21. García-González M. A., Argelagós-Palau A. Data from: combined measurement of ECG, breathing, and Seismocardiograms. PhysioNet. 2013. Doi: https://doi.org/10.13026/C2KW23.
dc.relation.referencesen22. García-González M. A., Argelagós-Palau A., Fernández-Chimeno M., Ramos-Castro J. A comparison of heartbeat detectors for the seismocardiogram. In Computing in Cardiology 2013, September 22–25, 2013. P. 461–464.
dc.relation.referencesen23. Goldberger A., Amaral L., Glass L., Hausdorff J., Ivanov P. C., Mark R. et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000. 101. e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215
dc.relation.referencesen24. Lupenko S. The rhythm-adaptive Fourier series decompositions of cyclic numerical functions and onedimensional probabilistic characteristics of cyclic random processes. Digital Signal Processing. 2023. 104104, ISSN 1051-2004. https://doi.org/10.1016/j.dsp.2023.104104
dc.relation.referencesen25. Lupenko S. The Mathematical Model of Cyclic Signals in Dynamic Systems as a Cyclically Correlated Random Process. Mathematics 2022, 10, 3406. https://doi.org/10.3390/math10183406
dc.relation.referencesen26. Lupenko S., Lytvynenko I., Sverstiuk A., Horkunenko A., Shelestovskyi B. Software for statistical processing and modeling of a set of synchronously registered cardio signals of different physical nature. CEUR Workshop Proceedings. 2021.2864. P. 194–205. https://doi.org/10.32782/cmis/2864-17
dc.identifier.citationenLupenko S., Butsiy R. (2024) Express method of biometric person authentication based on one cycle of the ecg signal. Scientific Journal of TNTU (Tern.), vol. 113, no 1, pp. 100-110.
dc.identifier.doihttps://doi.org/10.33108/visnyk_tntu2024.01.046
dc.contributor.affiliationФакультет електротехніки, автоматики та інформатики, Опольський Політехнічний Університет, Ополе, Польща
dc.contributor.affiliationІнститут телекомунікацій і глобального інформаційного простору Національної академії наук України, Київ, Україна
dc.contributor.affiliationFaculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Opole, Poland
dc.contributor.affiliationInstitute of Telecommunications and Global Information Space, National Academy of Sciences of Ukraine, Kyiv, Ukraine
dc.citation.journalTitleВісник Тернопільського національного технічного університету
dc.citation.volume113
dc.citation.issue1
dc.citation.spage100
dc.citation.epage110
Samling:Вісник ТНТУ, 2024, № 1 (113)



Materialet i DSpace är upphovsrättsligt skyddat och får ej användas i kommersiellt syfte!