Please use this identifier to cite or link to this item:
http://elartu.tntu.edu.ua/handle/lib/43667
Title: | Determination of dynamic characteristics of the centrifuge shaft |
Other Titles: | Визначення динамічних характеристик валу центрифуги |
Authors: | Лавренко, Ярослав Іванович Сидора, Тетяна Віталіївна Сущенко, Максим Сергійович Lavrenko, Iaroslav Sydora, Tetiana Sushchenko, Maksym |
Affiliation: | Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна National Technical University of Ukraine «Ihor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine |
Bibliographic description (Ukraine): | Lavrenko I. Determination of dynamic characteristics of the centrifuge shaft / Iaroslav Lavrenko, Tetiana Sydora, Maksym Sushchenko // Scientific Journal of TNTU. — Tern. : TNTU, 2023. — Vol 112. — No 4. — P. 32–40. |
Bibliographic description (International): | Lavrenko I., Sydora T., Sushchenko M. (2023) Determination of dynamic characteristics of the centrifuge shaft. Scientific Journal of TNTU (Tern.), vol. 112, no 4, pp. 32-40. |
Is part of: | Вісник Тернопільського національного технічного університету, 4 (112), 2023 Scientific Journal of the Ternopil National Technical University, 4 (112), 2023 |
Journal/Collection: | Вісник Тернопільського національного технічного університету |
Issue: | 4 |
Volume: | 112 |
Issue Date: | 19-Dec-2023 |
Submitted date: | 29-Sep-2023 |
Date of entry: | 21-Jan-2024 |
Publisher: | ТНТУ TNTU |
Place of the edition/event: | Тернопіль Ternopil |
DOI: | https://doi.org/10.33108/visnyk_tntu2023.04.032 |
UDC: | 539.3 |
Keywords: | центрифуга власні частоти власні форми діаграма Кемпбела KISSsoft centrifuge natural frequencies natural forms Campbell diagram KISSsoft |
Number of pages: | 9 |
Page range: | 32-40 |
Start page: | 32 |
End page: | 40 |
Abstract: | Наведено результати моделювання динамічних характеристик валу на прикладі реальної лабораторної центрифуги PICO21 із застосуванням програмного комплексу KISSsoft як багатомасової системи. Представлена розрахункова модель враховує вал лабораторної центрифуги, ротор у якому розміщуються мензурки з речовинами різної фракції, анкера та статора. Отримані значення порівнювали з результатами, отриманими аналітичним та експериментальним шляхом. Аналітично власні частоти коливань валу центрифуги розраховували з застосуванням рівняння Лагранжа другого роду для динамічної моделі як багатомасової системи, оскільки існуючі методи визначення динамічних характеристик спрощені, розрахунки проводили як для одномасових систем та засновані на теоремі про кінетичний момент, що, у свою чергу, не описує реальну модель центрифуги, оскільки не враховує вплив усіх тіл, які створюють вібрації в конструкції. Представлена розрахункова модель враховує також вплив гіроскопічних ефектів, які виникають у результаті роботи лабораторної центрифуги. В результаті розрахунків побудовано діаграму Кемпбелла, яка відображає залежність власних частот коливань від швидкості обертання. Також, у свою чергу, використовуючи побудовану діаграму, можна визначити резонансні частоти, що надає можливість встановити до- та післярезонансні зони стійкої роботи центрифуги. Результати показали збіжність отриманих аналітичних та експериментальних даних, у свою чергу, результати, отримані за допомогою програмного комплексу KISSsoft мають завищені значення. Для перевірки достовірності отриманих значень виконано визначення власних частот коливань методами теорії коливань шляхом застосування методу сил, методу Донкерлі та методу Релея. Проведено порівняльний аналіз отриманих результатів. У результаті аналізу встановлено, що метод Релея дає завищені значення власних частот коливань у порівнянні з іншими методами. Власні форми коливань валу лабораторної центрифуги розраховували за допомогою представлених у роботі методів теорії коливань та програмного комплексу KISSsoft. Результати розрахунків показали схожу залежність, що підтверджує адекватність результатів моделювання валу The paper presents the results of modeling the dynamic characteristics of the shaft of a laboratory centrifuge, which were compared with the results obtained analytically and experimentally. The obtained results showed the convergence of analytical and experimental data, in turn, the results obtained with the help of the KISSsoft software complex have overestimated values. The paper also provides determination of natural frequencies and forms of oscillations by the methods of the vibration theory |
URI: | http://elartu.tntu.edu.ua/handle/lib/43667 |
ISSN: | 2522-4433 |
Copyright owner: | © Тернопільський національний технічний університет імені Івана Пулюя, 2024 |
URL for reference material: | https://doi.org/10.1007/0-387-28687-X https://doi.org/10.1016/j.mechrescom.2008.05.002 https://doi.org/10.1006/jsvi.2000.3394 https://doi.org/10.1016/S0022-460X(03)00784-3 https://doi.org/10.1016/j.chaos.2004.12.014 https://doi.org/10.1016/j.jsv.2005.03.008 https://doi.org/10.1299/jsdd.2.715 https://doi.org/10.1016/j.jsv.2007.04.016 https://doi.org/10.1016/j.jsv.2008.02.047 https://doi.org/10.1007/978-94-007-0020-8_4 https://doi.org/10.1016/0022-460X(92)90708-6 https://doi.org/10.1016/S0094-114X(97)00056-6 |
References (Ukraine): | 1. Fischer J., Strackeljan J. Stability analysis of high speed lab centrifuges considering internal damping in rotor-shaft joints/ Technische mechanik, Band 26, Heft 2, 2006, p. 131–147. 2. Genta G. Dynamics of Rotating Systems/Springer New York, NY. https://doi.org/10.1007/0-387-28687-X 3. Guskov M., Sinou J.-J., Thouverez F. Multi-dimensional harmonic balance applied to rotor dynamics. Mechanics Research Communications. 35. 2008. P. 537–545. https://doi.org/10.1016/j.mechrescom.2008.05.002 4. Diken H. Non-linear vibration analysis and subharmonic whirl frequencies of the Jeffcott rotor model. Journal of Sound and Vibration. 2001. 243 (1). P. 117–125. https://doi.org/10.1006/jsvi.2000.3394 5. Бабенко A., Лавренко Я., Штракельян Є. Дослідження руху лабораторної центрифуги як багато масової системи. Вісник НТУУ «КПІ». Машинобудування. 2013. Вип. 68. С. 186–194. 6. Genta G. On the stability of rotating blade arrays. Journal of Sound and Vibration. 273. 2004. P. 805–836. https://doi.org/10.1016/S0022-460X(03)00784-3 7. Harsha S. P. Nonlinear dynamic analysis of an unbalanced rotor supported by roller bearing. Chaos, Solitons and Fractals. 26 (1). 2005. P. 47–66. https://doi.org/10.1016/j.chaos.2004.12.014 8. Strackeljan J., Babenko A., Lavrenko Ia. Necessary conditions of stability moving parts of rotor centrifuge. Journal of Mechanical Engineering of the National Technical University of Ukraine Kyiv Polytechnic Institute. 2014. No. 72. P. 18–23. 9. Harsha S. P. Nonlinear dynamic analysis of a high-speed rotor supported by rolling element bearings. Journal of Sound and Vibration. 290. 2006. P. 65–100. https://doi.org/10.1016/j.jsv.2005.03.008 10. Ishida Y., Inoue T., Kagawa T., Ueda M. Nonlinear Analysis and Experiments on Torsional Vibration of a Rotor with a Centrifugal Pendulum Vibration Absorber. Journal of System Design and Dynamics. Vol. 2. No. 3. 2008. https://doi.org/10.1299/jsdd.2.715 11. Young T.H. et al. Dynamic stability of rotor-bearing systems subjected to random axial forces. Journal of Sound and Vibration. 305. 2007. P. 467–480. https://doi.org/10.1016/j.jsv.2007.04.016 12. Бабенко A., Лавренко Я., Куренков М. Вплив гіроскопічних ефектів на коливання валу центрифуги. Вісник НТУУ «КПІ». Машинобудування. 2012. Вип. 65. С. 166–174. 13. H. F. de Castro et al. Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model. Journal of Sound and Vibration. 317. 2008. P. 273–293. https://doi.org/10.1016/j.jsv.2008.02.047 14. Lee C.-W. Evolution of Frequency-Speed Diagram in Rotating Machinery. IUTAM Symposium on Emerging Trends in Rotor Dynamics, 2009. https://doi.org/10.1007/978-94-007-0020-8_4 15. Genta G. A fast model technique for the computation of the Campbell diagram of multi-degree-of-freedom rotors. Journal of Sound and Vibration. 1992. 155 (3). P. 385–402. https://doi.org/10.1016/0022-460X(92)90708-6 16. Rao J. S., Shiau T. N., Chang J. R. Theoretical analysis of lateral response due to torsional excitation of geared rotors. Mech. mach. Theory. Vol. 33. No. 6. 1998. P. 761–783. https://doi.org/10.1016/S0094-114X(97)00056-6 17. Лавренко Я., Кравченко В., Сидора Т. Проектування механічних передач в програмному комплексі Kisssoft: навчальний посібник. Київ: КПІ ім. Ігоря Сікорського, 2023. 73 с. |
References (International): | 1. Fischer J., Strackeljan J. Stability analysis of high speed lab centrifuges considering internal damping in rotor-shaft joints/ Technische mechanik, Band 26, Heft 2, 2006, p. 131–147. 2. Genta G. Dynamics of Rotating Systems/Springer New York, NY. https://doi.org/10.1007/0-387-28687-X 3. Guskov M., Sinou J.-J., Thouverez F. Multi-dimensional harmonic balance applied to rotor dynamics. Mechanics Research Communications. 35. 2008. P. 537–545. https://doi.org/10.1016/j.mechrescom.2008.05.002 4. Diken H. Non-linear vibration analysis and subharmonic whirl frequencies of the Jeffcott rotor model. Journal of Sound and Vibration. 2001. 243 (1). P. 117–125. https://doi.org/10.1006/jsvi.2000.3394 5. Babenko A., Lavrenko Ia., Strackeljan J. Investigation of laboratory centrifuge motion as multibody system. Journal of Mechanical Engineering of the National Technical University of Ukraine Kyiv Politechnic Institute. 2013. No. 68. P. 186–194. [In Ukrainian]. 6. Genta G. On the stability of rotating blade arrays. Journal of Sound and Vibration. 273. 2004. P. 805–836. https://doi.org/10.1016/S0022-460X(03)00784-3 7. Harsha S. P. Nonlinear dynamic analysis of an unbalanced rotor supported by roller bearing. Chaos, Solitons and Fractals. 26 (1). 2005. P. 47–66. https://doi.org/10.1016/j.chaos.2004.12.014 8. Strackeljan J., Babenko A., Lavrenko Ia. Necessary conditions of stability moving parts of rotor centrifuge. Journal of Mechanical Engineering of the National Technical University of Ukraine Kyiv Polytechnic Institute. 2014. No. 72. P. 18–23. 9. Harsha S. P. Nonlinear dynamic analysis of a high-speed rotor supported by rolling element bearings. Journal of Sound and Vibration. 290. 2006. P. 65–100. https://doi.org/10.1016/j.jsv.2005.03.008 10. Ishida Y., Inoue T., Kagawa T., Ueda M. Nonlinear Analysis and Experiments on Torsional Vibration of a Rotor with a Centrifugal Pendulum Vibration Absorber. Journal of System Design and Dynamics. Vol. 2. No. 3. 2008. https://doi.org/10.1299/jsdd.2.715 11. Young T.H. et al. Dynamic stability of rotor-bearing systems subjected to random axial forces. Journal of Sound and Vibration. 305. 2007. P. 467–480. https://doi.org/10.1016/j.jsv.2007.04.016 12. Babenko A., Lavrenko Ia., Kurenkov N. Influence of gyroscopic effect on fluctuations of the centrifuge shaft/ Journal of Mechanical Engineering of the National Technical University of Ukraine Kyiv Polytechnic Institute. 2012. No. 65. P. 166–174. [In Ukrainian]. 13. H. F. de Castro et al. Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model. Journal of Sound and Vibration. 317. 2008. P. 273–293. https://doi.org/10.1016/j.jsv.2008.02.047 14. Lee C.-W. Evolution of Frequency-Speed Diagram in Rotating Machinery. IUTAM Symposium on Emerging Trends in Rotor Dynamics, 2009. https://doi.org/10.1007/978-94-007-0020-8_4 15. Genta G. A fast model technique for the computation of the Campbell diagram of multi-degree-of-freedom rotors. Journal of Sound and Vibration. 1992. 155 (3). P. 385–402. https://doi.org/10.1016/0022-460X(92)90708-6 16. Rao J. S., Shiau T. N., Chang J. R. Theoretical analysis of lateral response due to torsional excitation of geared rotors. Mech. mach. Theory. Vol. 33. No. 6. 1998. P. 761–783. https://doi.org/10.1016/S0094-114X(97)00056-6 17. Lavrenko Ia., Kravchenko V., Sydora T. Mechanical transmission design in the Kisssof software complex. Educational manual. Kyiv: Igor Sikorsky Kyiv Polytechnic Institute, 2023. 73 p. [In Ukrainian]. |
Content type: | Article |
Appears in Collections: | Вісник ТНТУ, 2023, № 4 (112) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TNTUSJ_2023v112n4_Lavrenko_I-Determination_of_dynamic_32-40.pdf | 2,39 MB | Adobe PDF | View/Open | |
TNTUSJ_2023v112n4_Lavrenko_I-Determination_of_dynamic_32-40.djvu | 410,35 kB | DjVu | View/Open | |
TNTUSJ_2023v112n4_Lavrenko_I-Determination_of_dynamic_32-40__COVER.png | 1,28 MB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.