Link lub cytat. http://elartu.tntu.edu.ua/handle/lib/42616
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorFranchevska, Halyna-
dc.contributor.authorKhvostivskyi, Mykola-
dc.contributor.authorDozorskyi, Vasyl-
dc.contributor.authorYavorska, Evheniya-
dc.contributor.authorZastavnyy, Oleg-
dc.date.accessioned2023-10-01T15:49:09Z-
dc.date.available2023-10-01T15:49:09Z-
dc.date.issued2023-
dc.date.submitted2023-
dc.identifier.citationHalyna Franchevska, Mykola Khvostivskyi, Vasyl Dozorskyi, Evheniya Yavorska, Oleg Zastavnyy. The Method and Algorithm for Detecting the Fetal ECG Signal in the Presence of Interference. Proceedings of the 1st International Workshop on Computer Information Technologies in Industry 4.0 (CITI 2023). CEUR Workshop Proceedings. Ternopil, Ukraine, June 14-16, 2023. P.263-272. ISSN 1613-0073.uk_UA
dc.identifier.issn1613-0073-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/42616-
dc.description.abstractThis article discusses the importance of timely and accurate detection of fetal distress during pregnancy to reduce the risk of adverse outcomes. One non-invasive method of fetal monitoring is through the use of fetal cardiodiagnostic systems, which record the fetal ECG signal. However, selecting a reliable fetal ECG signal can be challenging, as the signal may be weak and prone to interference. The article presents several existing methods for extracting useful fetal ECG signals from a mixture, including blind signal separation, adaptive filtering, synphase method, component method, spectral method, and bispectral processing. However, the limitations of these methods make it necessary to develop a new method that can consider time-frequency characteristics and phase-time parameters of the ECG signal simultaneously. The article proposes a new algorithm and method for extracting fetal ECG signals, which involves several steps, including registration of maternal ECG signals, synphase detection of fetal ECG signals and adaptive filtering. The proposed method was tested on a generated ECG signal and was found to be effective in extracting the fetal ECG signal from noisy and artifactcontaining signals. The method and algorithm for detecting the fetal ECG signal in the presence of obstacles is implemented in the MATLAB environment.uk_UA
dc.format.extent263-272-
dc.language.isoenuk_UA
dc.publisherТернопільський національний технічний університет імені Івана Пулюяuk_UA
dc.relation.urichrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ceur-ws.org/Vol-3468/paper13.pdfuk_UA
dc.subjectfetal cardiodiagnostic systemsuk_UA
dc.subjectfetal ECG signaluk_UA
dc.subjectmaternal ECG signalsuk_UA
dc.subjectmethod and algorithm for detectinguk_UA
dc.subjectsynphase methoduk_UA
dc.subjectadaptive filteruk_UA
dc.subjectlow-pass filteruk_UA
dc.subjecthigh-pass filteruk_UA
dc.subjectMATLABuk_UA
dc.titleThe Method and Algorithm for Detecting the Fetal ECG Signal in the Presence of Interferenceuk_UA
dc.typeConference Abstractuk_UA
dc.rights.holderЯворська Є.Б., 2023uk_UA
dc.rights.holderДозорський В.Г., 2023uk_UA
dc.rights.holderХвостівський М.О., 2023uk_UA
dc.rights.holderФранчевська Г., 2023uk_UA
dc.rights.holderЗаставний О., 2023uk_UA
dc.coverage.placenameТНТУuk_UA
dc.relation.referencesDragan Y.P., Osukhivska H.M., Khvostivskyi M.O. Justification of the mathematical model of the electroretinographic signal in the form of a periodically correlated stochastic process [Обґрунтування математичної моделі електроретинографічного сигналу у вигляді періодично корельованого випадкового процесу]. Computer technologies of printing. Lviv: Ukrainian Academy of Printing, 2007, Vol.18, pp. 129-138.uk_UA
dc.relation.referencesHvostivska L.V., Osukhivska H.M., Hvostivskyy M.O., Shadrina H.M., Dediv I.Yu. Development of methods and algorithms for a stochastic biomedical signal period calculation in medical computer diagnostic systems [Розвиток методів та алгоритмів обчислення періоду стохастичних біомедичних сигналів для медичних комп’ютерно-діагностичних систем]. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (79), pp. 78-84. doi: 10.20535/RADAP.2019.79.78-84.uk_UA
dc.relation.referencesKhvostivskyi М.О., Yavorska Ye.B. The method of detecting the fetal electrocardiosignal in the womb mixed with interference [Метод виявлення електрокардіосигналу плоду в утробі матері у суміші із завадами]. Herald of Khmelnytskyi National University. Khmelnytskyi: KhNU, 2011, vol. 1, pp.179-184.uk_UA
dc.relation.referencesHvostivska L., Hvostivskyy M. (2017) Verification synphase and component method of analysis of the pulse signal [Верифікація синфазного та компонентного методів аналізу пульсового сигналу]. Materials of ⅩⅩ Conference TNTU I. Pul'uj (Tern., 17-18 May 2017), pp. 137-138.uk_UA
dc.relation.referencesYavorskyi B., Khvostivska L., Yavorska Ye. (2013) The relevance of the use of in-phase and component methods for the analysis of the pulse signal of human vessels [Актуальність застосування синфазного та компонентного методів щодо аналізу пульсового сигналу судин людини]. Materials of ⅩⅦ Conference TNTU I. Pul'uj (Tern., 20-21 November 2013), Vol. I, pp. 45.uk_UA
dc.relation.referencesHvostivska L., Hvostivskyy M. Mathematical model electrocardiosignal fetus in the womb [Математична модель електрокардіосигналу плоду в утробі матері]. Materials of the AllUkrainian Scientific and Technical Conference «Theoretical and Applied Aspects of Radio Engineering and Instrumentation» (Tern., 5-6 June 2013). TNTU, 2013, pp. 99-102 [in Ukrainian].uk_UA
dc.relation.referencesKhvostivskyi M.O. A mathematical model of macromechanism of forming of electroretinosignal is for the increase of authenticity of the oftalmodiagnostic systems [Математична модель макромеханізму формування електроретиносигналу для підвищення достовірності офтальмодіагностичних систем]: abstract of the dissertation for obtaining the scientific degree of candidate of technical sciences: 01.05.02. Ternopil, 2010. 20 p.uk_UA
dc.relation.referencesFranchevska H., Khvostivsky M., Dozorskyy V. (2022) Applying an adaptive filtration for the fetal elecrtocardiosignal selection on the obstruction background [Застосування адаптивної фільтрації для виділення електрокардіосигналу плоду на фоні завад]. XI International scientific and practical conference of young researchers and students „Current issues in modern technologies“ (Tern., 7-8 December 2022), pp. 172-173.uk_UA
dc.relation.referencesWorld Health Organization, Birth defects, 2021. URL: https://www.who.int/news-room/factsheets/detail/birth-defects.uk_UA
dc.relation.referencesL. Biel, O. Pettersson, L. Philipson, and P. Wide, "Ecg analysis: an approach in human identification," IEEE Trans. Instrum. Meas., vol. 50, no. 3, pp. 808-812, Jun. 2008.uk_UA
dc.relation.referencesP. S. Hamilton and W. J. Tompkins, "Quantitative investigation of qrs detection rules using the mit/bih arrhythmia database," IEEE Transactions on Biomedical Engineering, BME–33(12):11571165, 2004.uk_UA
dc.relation.referencesFranchevska H., Khvostivsky M., Dozorskyy V. (2022) Applying an adaptive filtration for the fetal elecrtocardiosignal selection on the obstruction background [Застосування адаптивної фільтрації для виділення електрокардіосигналу плоду на фоні завад]. ⅩⅠ International scientific and practical conference of young researchers and students „Current issues in modern technologies“ (Tern., 7-8 December 2022), pp. 172-173.uk_UA
dc.relation.referencesFranchevska H. Computerized fetal electrocardiogram recognition system. Master’s thesis, Ternopil National Ivan Puluj Technical University, Ternopil. Ukraine, 2020. 84 p.uk_UA
dc.relation.referencesA. Khamene, A. Negahdaripour. A new method for the extraction of fetal ECG from the composite abdominal signal. IEEE Trans Biomed Eng. 2000 Apr;47(4):507-16. doi: 10.1109/10.828150.uk_UA
dc.relation.referencesDragan Y.P. Energy theory of linear models of stochastic signals. Lviv: Center for Strategic Studies of Eco-Bio-Technical Systems. 1997. XVI+333 p.uk_UA
dc.relation.referencesMartsenyuk V., Sverstiuk A., Klos-Witkowska A., Horkunenko A., Rajba S. Vector of diagnostic features in the form of decomposition coefficients of statistical estimates using a cyclic random process model of cardiosignal. Proceedings of the 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2019, Vol. 1, pp. 298–303. DOI: 10.1109/IDAACS.2019.8924398.uk_UA
dc.relation.referencesLupenko S., Lytvynenko I., Sverstiuk A., Horkunenko A., Shelestovskyi B. Software for statistical processing and modeling of a set of synchronously registered cardio signals of different physical nature. CEUR Workshop Proceedings, 2021, 2864, pp. 194-205. URL: https://ceur-ws.org/Vol2864/paper17.pdfuk_UA
dc.relation.referencesTrysnyuk V., Zozulia A., Lupenko S., Lytvynenko I., Sverstiuk A. Methods of rhythm-cardio signals processing based on a mathematical model in the form of a vector of stationary and stationary connected random sequences. CEUR Workshop Proceedings, 2021, Vol. 3021, pp. 197205.uk_UA
dc.contributor.affiliationТНТУuk_UA
dc.citation.conferenceThe 1st International Workshop on Computer Information Technologies in Industry 4.0 (CITI 2023)-
dc.coverage.countryUAuk_UA
Występuje w kolekcjach:Наукові публікації працівників кафедри біотехнічних систем

Pliki tej pozycji:
Plik Opis WielkośćFormat 
paper13.pdf1,6 MBAdobe PDFPrzeglądanie/Otwarcie


Pozycje DSpace są chronione prawami autorskimi

Narzędzia administratora