Ezzel az azonosítóval hivatkozhat erre a dokumentumra forrásmegjelölésben vagy hiperhivatkozás esetén: http://elartu.tntu.edu.ua/handle/lib/39491

Összes dokumentumadat
DC mezőÉrtékNyelv
dc.contributor.authorБатурінець, Анастасія Геннадіївна
dc.contributor.authorBaturinets, Anastasiia
dc.date.accessioned2022-12-23T08:09:23Z-
dc.date.available2022-12-23T08:09:23Z-
dc.date.created2022-04-19
dc.date.issued2022-04-19
dc.date.submitted2022-01-18
dc.identifier.citationBaturinets A. Distance measures-based information technology for identifying similar data series / Anastasiia Baturinets // Scientific Journal of TNTU. — Tern. : TNTU, 2022. — Vol 105. — No 1. — P. 128–140.
dc.identifier.issn2522-4433
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/39491-
dc.description.abstractМетою є розроблення та реалізація технології визначення схожих рядів даних, а також її апробація на рядах даних, представлених гідрологічними показниками. Предметом дослідження є методи та підходи визначення схожих рядів даних. Об'єктом дослідження є процес визначення схожих рядів даних, представлених певними показниками. Завдання: запропонувати й реалізувати міри відстані, одна з яких враховує схожість між значеннями рядів даних та їх зв’язок, а друга – заснована на зваженій евклідовій відстані, але з урахуванням необхідності актуалізації даних, які є важливішими за певних умов задачі. Реалізувати технологію визначення схожих рядів даних, представлених певними показниками. Для стійкішого розв’язку реалізувати процедуру визначення набору схожих рядів на підставі отриманих результатів за кожною окремою відстанню. Проаналізувати отримані результати та зробити висновки щодо можливості практичного використання технології. Використовуваними методами є методи статистичного аналізу, методи обчислення відстаней та схожості між рядами. Отримані результати реалізовано технологію визначення схожих рядів даних. Як складову технології реалізовано дві запропоновані й описані міри відстаней. Реалізовано процедуру визначення набору схожих рядів за отриманими значеннями відстаней. Наукова новизна: описано та застосовано евклідову зважену відстань з урахуванням актуальності даних. Описано та застосовано нову міру відстані, яка дозволяє врахувати як ступінь подібності між значеннями рядів, так і їх кореляційний зв’язок. Розроблено технологію визначення схожих рядів за множиною обраних відстаней. Практична значущість розробленої та реалізованої технології полягає в таких можливостях: застосування на рядах даних різних прикладних областей; проведення оцінювання та визначення схожих рядів, зокрема як проміжний етап аналізу. Крім того, запропоновані міри відстані дозволяють підвищити якість визначення схожих рядів або їх групування. Подальші дослідження планується спрямувати на дослідження можливостей подовження рядів даних та поповнення пропусків за значеннями показників інших рядів, визначених як схожі.
dc.description.abstractThe aim of the work is to develop and implement a technology for identifying similar series, and to test on series of data represented by hydrological samples. The subject of the study is the methods and approaches for identifying similar series. The object of the study is the process of identifying similar series, which are represented by certain indicators. The task is to propose and implement distance measures, where one of them takes into consideration the similarity between the values of the series and their relationship, and another is based on a weighted Euclidean distance taking into account the need to actualize the values that are the most important under certain conditions of the task; to implement a technology to find similar series represented by certain indicators values; to obtain a more resilient solution, to implement a procedure for determining a set of similar series based on the results obtained for each individual distance; the results should be analyzed and the conclusions have to be drawn dealing with practical application of the technology. The following methods were used: statistical analysis methods, methods for calculating distances, and similarity between data series. The following results were obtained: the technology for similar data series detection has been implemented; two distance measures were proposed and described as a part of the technology implemented; a procedure for determining a set of similar rows was implemented that was based on the obtained distances calculation. The scientific novelty of the research under discussion involves: Euclidean weighted distance was described and applied taking into account the actuality of data series values; a new measure of distance has been described and applied that allows both the degree of similarity between the values of the series and their correlation to be taken into account, as well as a technique has been developed for determining similar series from a set of selected distance measures. The practical importance of the developed and implemented technology consists in the following possibilities application to data series of different applied fields: conducting an assessment and identifying some similar series, in particular as an intermediate step in the analysis; in addition, the proposed distance measures improve the quality of identifying similar data series. In our further research, we plan to investigate the possibilities of lengthening the data series and filling in the gaps with values from other series defined as similar ones.
dc.format.extent128-140
dc.language.isoen
dc.publisherТНТУ
dc.publisherTNTU
dc.relation.ispartofВісник Тернопільського національного технічного університету, 1 (105), 2022
dc.relation.ispartofScientific Journal of the Ternopil National Technical University, 1 (105), 2022
dc.relation.urihttps://doi.org/10.1016/j.patcog.2005.01.025
dc.relation.urihttps://doi.org/10.1016/j.neucom.2017.06.053
dc.relation.urihttps://doi.org/10.1007/978-81-322-1665-0_17
dc.relation.urihttps://doi.org/10.1137/1.9781611972719.1
dc.relation.urihttps://doi.org/10.1007/s10618-018-0565-y
dc.relation.urihttps://doi.org/10.1109/VTC2020-Fall49728.2020.9348487
dc.relation.urihttps://doi.org/10.5815/ijisa.2018.07.07
dc.relation.urihttps://doi.org/10.1145/359581.359603
dc.relation.urihttps://doi.org/10.1145/322033.322044
dc.relation.urihttps://doi.org/10.1609/aaai.v24i1.7493
dc.relation.urihttps://doi.org/10.1109/ICPP.2008.79
dc.relation.urihttps://doi.org/10.1007/s10618-012-0250-5
dc.relation.urihttps://doi.org/10.23939/sisn2021.09.096
dc.relation.urihttps://doi.org/10.1007/s10618-015-0418-x
dc.subjectміри відстані
dc.subjectсхожість числових рядів
dc.subjectLCS
dc.subjectDTW
dc.subjectTSD
dc.subjectподібність рядів даних
dc.subjectгідрологія
dc.subjectdistance measures
dc.subjectsimilarity of numerical series
dc.subjectLCS
dc.subjectDTW
dc.subjectTSD
dc.subjectsimilarity of data series
dc.subjecthydrology
dc.titleDistance measures-based information technology for identifying similar data series
dc.title.alternativeІнформаційна технологія визначення схожих рядів даних із використанням мір відстаней
dc.typeArticle
dc.rights.holder© Тернопільський національний технічний університет імені Івана Пулюя, 2022
dc.coverage.placenameТернопіль
dc.coverage.placenameTernopil
dc.format.pages13
dc.subject.udc004.67
dc.subject.udc519.25
dc.relation.references1. Liao T. W. Clustering of time series data – A survey. Pattern Recognit. Vol. 38. No. 11. Nov. 2005. P. 1857–1874. DOI: https://doi.org/10.1016/j.patcog.2005.01.025
dc.relation.references2. Saxena A., Prasad M., Gupta A., Bharill N., et. al. A review of clustering techniques and developments. Neurocomputing. 267. 2017. P. 664–681. DOI: https://doi.org/10.1016/j.neucom.2017.06.053
dc.relation.references3. Zhu X., Li Y., Wang J., Zheng T., Fu J. Automatic Recommendation of a Distance Measure for Clustering Algorithms. ACM Transactions on Knowledge Discovery from Data (TKDD), 15 (1). 2020. P. 1–22. DOI: https://doi.org/10.1007/978-81-322-1665-0_17
dc.relation.references4. Савчук Т. О., Петришин С. І. Визначення евклідової відстані між надзвичайними ситуаціями на залізничному транспорті під час кластерного аналізу. Наукові праці Вінницького національного технічного університету. Серія «Інформаційні технології та комп’ютерна техніка». 2010. Випуск № 3. 2010. 8 с.
dc.relation.references5. Keogh E. J., Pazzani M. J. Derivative dynamic time warping. In Proceedings of the 2001 SIAM international conference on data mining. Society for Industrial and Applied Mathematics. April 2001. P. 1–11. DOI: https://doi.org/10.1137/1.9781611972719.1
dc.relation.references6. Dau H. A., Silva D. F., Petitjean F. et al. Optimizing dynamic time warping’s window width for time series data mining applications. Data Mining and Knowledge Discovery 32. 2018. P. 1074–1120. DOI: https://doi.org/10.1007/s10618-018-0565-y
dc.relation.references7. Raida V., Svoboda P., Rupp M. Modified dynamic time warping with a reference path for alignment of repeated drive-tests. In 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall) IEEE. 2020. P. 1–6. DOI: https://doi.org/10.1109/VTC2020-Fall49728.2020.9348487
dc.relation.references8. Senin P. Dynamic time warping algorithm review. Information and Computer Science Department University of Hawaii at Manoa Honolulu, USA, 2008, 23 p.
dc.relation.references9. Kate R. J. Using dynamic time warping distances as features for improved time series classification. Data Mining and Knowledge Discovery, 30 (2). 2016. P. 283–312. Doi:10.1007/s10618-015-0418-x.
dc.relation.references10. Hu Z., Mashtalir S. V., Tyshchenko O. K., Stolbovyi M. I. Clustering matrix sequences based on the iterative dynamic time deformation procedure. International Journal of Intelligent Systems and Applications,10 (7). 2018. P. 66–73. DOI: https://doi.org/10.5815/ijisa.2018.07.07
dc.relation.references11. Hunt J.W., Szymanski T. G. A fast algorithm for computing longest common subsequences. Communications of the ACM. Vol. 20. No. 5. 1977. P. 350–353. DOI: https://doi.org/10.1145/359581.359603
dc.relation.references12. Hirschberg, Daniel S. Algorithms for the longest common subsequence problem. Journal of the ACM (JACM) 24.4. 1977. P. 664–675. DOI: https://doi.org/10.1145/322033.322044
dc.relation.references13. Wan, Qingguo, et al. A fast heuristic search algorithm for finding the longest common subsequence of multiple strings. Twenty-Fourth AAAI Conference on Artificial Intelligence. 2010. P. 1287–1292. DOI: https://doi.org/10.1609/aaai.v24i1.7493
dc.relation.references14. Wang Q., Dmitry K., Shang Y. Efficient dominant point algorithms for the multiple longest common subsequence (MLCS) problem. Twenty-First International Joint Conference on Artificial Intelligence. 2009. P.1494–1499.
dc.relation.references15. Korkin D., Wang Q. Shang Y. An efficient parallel algorithm for the multiple longest common subsequence (MLCS) problem. 37th International Conference on Parallel Processing. IEEE, 2008. P. 354–363. DOI: https://doi.org/10.1109/ICPP.2008.79
dc.relation.references16. Wang X., Mueen A., Ding H., Trajcevski G., Scheuermann P., Keogh E. Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 26 (2). 2013. P. 275–309. DOI: https://doi.org/10.1007/s10618-012-0250-5
dc.relation.references17. Григорович В. Аналіз метрик для інтелектуальних інформаційних систем. Вісник Національного університету «Львівська політехніка». «Інформаційні системи та мережі». 2021. Вип. 9. С. 96–111. URL: https://doi.org/10.23939/sisn2021.09.096
dc.relation.references18. Батурінець А., Антоненко С. Найдовша спільна підпослідовність в задачі визначення схожості гідрологічних рядів даних. Deutsche Internationale Zeitschrift für zeitgenössische Wissenschaft. 2021. № 18. С. 62–64.
dc.relation.referencesen1. Liao T. W., Clustering of time series data – A survey, Pattern Recognit. Vol. 38. No. 11. Nov. 2005. P. 1857–1874. DOI: https://doi.org/10.1016/j.patcog.2005.01.025
dc.relation.referencesen2. Saxena A., et. al. A review of clustering techniques and developments. Neurocomputing, 267, 2017. P. 664-681. DOI: https://doi.org/10.1016/j.neucom.2017.06.053
dc.relation.referencesen3. Zhu X., Li Y., Wang J., Zheng T., Fu J. Automatic Recommendation of a Distance Measure for Clustering Algorithms. ACM Transactions on Knowledge Discovery from Data (TKDD), 15 (1). 2020. P. 1–22. DOI: https://doi.org/10.1007/978-81-322-1665-0_17
dc.relation.referencesen4. Savchuk T. O. Viznachennya evklidovoyi vidstani mizh nadzvichaynimi situatsiyami na zaliznichnomu transporti pid chas klasternogo analizu, Naukovi pratsi Vinnitskogo natsionalnogo tehnichnogo universitetu. – Seriya “Informatsiyni tehnologiyi ta komp’yuterna tehnika”. 2010. No. 3. 2010.
dc.relation.referencesen5. Keogh E. J., Pazzani M. J. Derivative dynamic time warping. In Proceedings of the 2001 SIAM international conference on data mining. Society for Industrial and Applied Mathematics. 2001. April. P. 1–11. DOI: https://doi.org/10.1137/1.9781611972719.1
dc.relation.referencesen6. Dau H. A., Silva D. F., Petitjean F. et al. Optimizing dynamic time warping’s window width for time series data mining applications. Data Mining and Knowledge Discovery 32. 2018. P. 1074–1120. DOI: https://doi.org/10.1007/s10618-018-0565-y
dc.relation.referencesen7. Raida V., Svoboda P., Rupp M. Modified dynamic time warping with a reference path for alignment of repeated drive-tests. In 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall) IEEE. 2020. P. 1–6. DOI: https://doi.org/10.1109/VTC2020-Fall49728.2020.9348487
dc.relation.referencesen8. Senin P. Dynamic time warping algorithm review. Information and Computer Science Department University of Hawaii at Manoa Honolulu, USA, 2008, 23 p.
dc.relation.referencesen9. Kate R. J. Using dynamic time warping distances as features for improved time series classification. Data Mining and Knowledge Discovery, 30 (2). 2016. P. 283–312. DOI: https://doi.org/10.1007/s10618-015-0418-x
dc.relation.referencesen10. Hu Z., Mashtalir S. V., Tyshchenko O. K., Stolbovyi M. I. Clustering matrix sequences based on the iterative dynamic time deformation procedure. International Journal of Intelligent Systems and Applications,10 (7). 2018. P. 66–73. DOI: https://doi.org/10.5815/ijisa.2018.07.07
dc.relation.referencesen11. Hunt J.W., Szymanski T. G. A fast algorithm for computing longest common subsequences. Communications of the ACM. Vol. 20. No. 5. 1977. P. 350–353. DOI: https://doi.org/10.1145/359581.359603
dc.relation.referencesen12. Hirschberg, Daniel S. Algorithms for the longest common subsequence problem. Journal of the ACM (JACM) 24.4. 1977. P. 664–675. DOI: https://doi.org/10.1145/322033.322044
dc.relation.referencesen13. Wan, Qingguo, et al. A fast heuristic search algorithm for finding the longest common subsequence of multiple strings. Twenty-Fourth AAAI Conference on Artificial Intelligence. 2010. P. 1287–1292. DOI: https://doi.org/10.1609/aaai.v24i1.7493
dc.relation.referencesen14. Wang Q., Dmitry K., Shang Y. Efficient dominant point algorithms for the multiple longest common subsequence (MLCS) problem. Twenty-First International Joint Conference on Artificial Intelligence. 2009. P.1494–1499.
dc.relation.referencesen15. Korkin D., Wang Q. Shang Y. An efficient parallel algorithm for the multiple longest common subsequence (MLCS) problem. 37th International Conference on Parallel Processing. IEEE, 2008. P. 354–363. DOI: https://doi.org/10.1109/ICPP.2008.79
dc.relation.referencesen16. Wang X., Mueen A., Ding H., Trajcevski G., Scheuermann P., Keogh E. Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 26 (2). 2013. P. 275–309. DOI: https://doi.org/10.1007/s10618-012-0250-5
dc.relation.referencesen17. Hryhorovych V. Analiz metryk dlia intelektualnykh informatsiinykh system, Visnyk Natsionalnoho universytetu “Lvivska politekhnika” “Informatsiini systemy ta merezhi”. 2021. 9. P. 96–111. URL: https:// doi.org/10.23939/sisn2021.09.096
dc.relation.referencesen18. Baturinets A., Antonenko S. Longest common subsewuence in the problem of determining the similarity of hydrological data series, Deutsche Internationale Zeitschrift für zeitgenössische Wissenschaft. 2021. No. 18. P. 62–64.
dc.identifier.citationenBaturinets A. (2022) Distance measures-based information technology for identifying similar data series. Scientific Journal of TNTU (Tern.), vol. 105, no 1, pp. 128-140.
dc.identifier.doihttps://doi.org/10.33108/visnyk_tntu2022.01.128
dc.contributor.affiliationДніпровський національний університет імені Олеся Гончара, Дніпро, Україна
dc.contributor.affiliationOles Honchar Dnipro National University, Dnipro, Ukraine
dc.citation.journalTitleВісник Тернопільського національного технічного університету
dc.citation.volume105
dc.citation.issue1
dc.citation.spage128
dc.citation.epage140
Ebben a gyűjteményben:Вісник ТНТУ, 2022, № 1 (105)



Minden dokumentum, ami a DSpace rendszerben szerepel, szerzői jogokkal védett. Minden jog fenntartva!