กรุณาใช้ตัวระบุนี้เพื่ออ้างอิงหรือเชื่อมต่อรายการนี้: http://elartu.tntu.edu.ua/handle/lib/36951

ระเบียนเมทาดาทาแบบเต็ม
ฟิลด์ DC ค่าภาษา
dc.contributor.authorLupenko, Serhii
dc.contributor.authorLytvynenko, Iaroslav
dc.contributor.authorNazarevych, Oleg
dc.contributor.authorShymchuk, Grigorii
dc.contributor.authorHotovych, Volodymyr
dc.coverage.temporal15-17 December 2021
dc.date.accessioned2021-12-28T20:03:17Z-
dc.date.available2021-12-28T20:03:17Z-
dc.date.created2021-12-15
dc.date.issued2021-12-15
dc.identifier.citationApproach to gas consumption process forecasting on the basis of a mathematical model in the form of a random cyclic process / Serhii Lupenko, Iaroslav Lytvynenko, Oleg Nazarevych, Grigorii Shymchuk, Volodymyr Hotovych // ICAAEIT 2021, 15-17 December 2021. — Tern. : TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC, 2021. — P. 213–219. — (Mathematical modeling in power engineering and information technologies).
dc.identifier.isbn978-617-8079-60-4
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/36951-
dc.description.abstractIn the article, the approach to gas consumption process prediction on the basis of a mathematical model in the form of a cyclic random process is considered. The prediction is based on statistical information for previous years of gas consumption. An additive combination of three components was used as a mathematical model of gas consumption process: a cyclic random process, a trend component and a stochastic residue. The first component of the mathematical model in the form of a cyclic random process takes into account the scale factors, information about which is considered at the stage of prediction. Based on the caterpillar decomposition, ten components of the singular decomposition are obtained. The sum of nine components of singular decomposition forms a cyclic component – a cyclic random process. This component takes into account the scale factors of the amplitude of gas consumption process in each segment-cycle. The trend component of the mathematical model is the second component of the singular decomposition, and the stochastic residue is formed on the basis of the difference between the values of the studied gas consumption process and the sum of the cyclic and trend components. Computer simulation of realization of cyclic component of gas consumption process is carried out in the work, and also the annual forecast of gas consumption is made. The prediction results are compared with the real gas consumption process (information for last yearʼs gas consumption was used). This paper does not take into account the effects of climatic conditions on the gas consumption process, but this is going to be done in further research, which will improve the accuracy of computer simulation and prediction.
dc.format.extent213-219
dc.language.isoen
dc.publisherTNTU, Zhytomyr «Publishing house „Book-Druk“» LLC
dc.relation.ispartofProceedings of the International Conference „Advanced applied energy and information technologies 2021”, 2021
dc.relation.urihttps://doi.org/10.1080/15567249.2014.893040
dc.subjectcyclic process
dc.subjectgas consumption process
dc.subjectstatistical processing
dc.subjectsegmentation
dc.subjectcyclic random process
dc.titleApproach to gas consumption process forecasting on the basis of a mathematical model in the form of a random cyclic process
dc.typeConference Abstract
dc.rights.holder© Ternopil Ivan Puluj National Technical University, Ukraine, 2021
dc.coverage.placenameTernopil
dc.format.pages7
dc.relation.referencesen1. Zagorodna, NV, Litvinenko, Ya. V., Frieze, ME (2010) Development of a method for short-term forecast of daily gas consumption during the heating period based on regression analysis. Journal of Ternopil National Technical University. Ternopil, No.4 P. 130–140.
dc.relation.referencesen2. Zagorodna, N., RKozak, R., Gancarczyk, T., Falat, P. (2016) Methods of monitoring, analysis and short-term prognosis of gas consumption taking into consideration its cyclic and non-stationary structure in heating season. 16th International Conference on Control, Automation and Systems (ICCAS). 16-19 Oct. 2016. P. 501-505. DOI:10.1109/ICCAS.2016.7832366
dc.relation.referencesen3. Mahdieh, O., Shahram, J., Reza, S-N. (2013) The Forecasting of Iran Natural Gas Consumption Based On Neural-Fuzzy System Until 2020 M. International Journal of Smart Electrical Engineering. Summer 2013, Vol. 2, No. 3; Р. 181 - 184.
dc.relation.referencesen4. Wei, Z., and Jun Y.(2015) Forecasting natural gas consumption in China by Bayesian Model Averaging, Energy Reports, ISSN 2352-4847, Elsevier, Amsterdam, Vol. 1, pp. 216-220, DOI:10.1016/j.egyr.2015.11.001
dc.relation.referencesen5. Boran, F.E. (2014). Forecasting natural gas consumption in Turkey using Grey prediction. Energy Sources Part B 10, 208–213. https://doi.org/10.1080/15567249.2014.893040
dc.relation.referencesen6. Demirel, O.F., Zaim, S., Caliskan, A., Ozuyar, P. (2012). Forecasting natural gas consumption in Istanbul using neural networks and multivariate time series methods. Turkish J. Electr. Eng. Comput. Sci. 20 (5), 695–711. DOI:10.3906/elk-1101-1029
dc.relation.referencesen7. Gil, S., Deferrari, J. (2004). Generalized model of prediction of natural gas consumption. Trans. ASME 126 (2), 90–98. DOI:10.1115/1.1739239
dc.relation.referencesen8. Li, Y., Zhang, X., Li, T. (2014) China’s Natural gas demand forecast based on the combination forecasting model. Henan Sci. 32 (10), 2138–2144. (in Chinese).
dc.relation.referencesen9. Szoplik, J. (2015) Forecasting of natural gas consumption with artificial neural networks. Energy 85, 208–220. DOI: 10.1016/j.energy.2015.03.084
dc.relation.referencesen10. Golyandina, N., Zhigljavsky, A. Singular (2020) Spectrum Analysis for Time Series / N. Golyandina, A. Zhigljavsky // SpringerBriefs in Statistics. Springer-Verlag Berlin Heidelberg. – 2020. P. 146.
dc.relation.referencesen11. Lytvynenko, I.V. (2017) The method of segmentation of stochastic cyclic signals for the problems of their processing and modeling. Journal of Hydrocarbon Power Engineering, Oil and Gas Measurement and Testing. 2017, Vol. 4, No. 2, pp. 93–103.
dc.relation.referencesen12. Lytvynenko, I.V. Lupenko, S.,Onyskiv, P. (2020). Method of Evaluation of Discrete Rhythm Structure of Cyclic Signals with the Help of Adaptive Interpolation. IEEE 15th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2020 - Proceedings, 2020, 1, pp. DOI: 10.1109/CSIT49958.2020.9321878
dc.relation.referencesen13. I. Lytvynenko, I., Horkunenko A., Kuchvara O., Palaniza Y. (2019). Methods of processing cyclic signals in automated cardiodiagnostic complexes. Proceedings of the 1st International. Workshop on Information-Communication Technologies & Embedded Systems, (ICT&ES-2019), Mykolaiv, November 13-14, 2019, Ukraine, 2019. P.116-127.
dc.identifier.citationenLupenko S., Lytvynenko I., Nazarevych O., Shymchuk G., Hotovych V. (2021) Approach to gas consumption process forecasting on the basis of a mathematical model in the form of a random cyclic process. ICAAEIT 2021 (Tern., 15-17 December 2021), pp. 213-219.
dc.contributor.affiliationDepartment of Computer Science Ternopil Ivan Puluj National Technical University Ternopil, Ukraine, Ruska, 56
dc.citation.spage213
dc.citation.epage219
ปรากฏในกลุ่มข้อมูล:International conference „Advanced Applied Energy and Information Technologies 2021“, (ICAAEIT 2021)

แฟ้มในรายการข้อมูลนี้:
แฟ้ม รายละเอียด ขนาดรูปแบบ 
ICAAEIT_2021_Lupenko_S-Approach_to_gas_consumption_213-219.pdf1,65 MBAdobe PDFดู/เปิด
ICAAEIT_2021_Lupenko_S-Approach_to_gas_consumption_213-219.djvu361,81 kBDjVuดู/เปิด
ICAAEIT_2021_Lupenko_S-Approach_to_gas_consumption_213-219__COVER.png533,84 kBimage/pngดู/เปิด


รายการทั้งหมดในระบบคิดีได้รับการคุ้มครองลิขสิทธิ์ มีการสงวนสิทธิ์เว้นแต่ที่ระบุไว้เป็นอื่น