Link lub cytat. http://elartu.tntu.edu.ua/handle/lib/36947

Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorGurin, Viktor K.
dc.contributor.authorPavlovskyi, Volodymyr O.
dc.contributor.authorYurchenko, Oleg M.
dc.contributor.authorSenko, Vitaliy I.
dc.coverage.temporal15-17 December 2021
dc.date.accessioned2021-12-28T20:03:17Z-
dc.date.available2021-12-28T20:03:17Z-
dc.date.created2021-12-15
dc.date.issued2021-12-15
dc.identifier.citationElectromagnetic interferences in transistor converters and methods of interferences mitigation / Viktor K. Gurin, Volodymyr O. Pavlovskyi, Oleg M. Yurchenko, Vitaliy I. Senko // ICAAEIT 2021, 15-17 December 2021. — Tern. : TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC, 2021. — P. 7–13. — (Electrical engineering and power electronics).
dc.identifier.isbn978-617-8079-60-4
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/36947-
dc.description.abstractThis paper describes the main types of conductive electromagnetic interference that occur in modern high-frequency transistor converters and shows methods for these interferences’ mitigation. A network interference-suppression device which makes it impossible penetration of conductive electromagnetic interference (EMI) from a consumer to a mains and back is introduced. The device also provides the complete galvanic decoupling between the power mains and the consumer. This is achieved through the introduction of an intermediate link between the consumer and the network, the link being powered by a rechargeable battery, and time separation of electrical energy between consumption and transmission cycles due to the special algorithm of charging and discharging the batteries of the consumer. It provides mutual protection of the consumer and the network from all types of conductive EMI, as well as protection of the consumer from possible electric shock.
dc.format.extent7-13
dc.language.isoen
dc.publisherTNTU, Zhytomyr «Publishing house „Book-Druk“» LLC
dc.relation.ispartofProceedings of the International Conference „Advanced applied energy and information technologies 2021”, 2021
dc.relation.urihttp://ied.org.ua/disertac/disert_Gurin.pdf
dc.relation.urihttps://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1385983252&disposition=inline
dc.relation.urihttp://power-e.ru/pdf/2006_04_58.pdf
dc.relation.urihttp://powel.ru/files/library/VicorAC_DC.pdf
dc.relation.urihttp://dspace.nbuv.gov.ua/bitstream/handle/123456789/62135/57-Gurvin.pdf?sequence=1
dc.relation.urihttp://previous.techned.org.ua/index.php?option=com_content&view=article&id=907&Itemid=77
dc.relation.urihttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8304668
dc.subjectgalvanic decoupling
dc.subjectconductive electromagnetic interference
dc.subjectrechargeable battery
dc.titleElectromagnetic interferences in transistor converters and methods of interferences mitigation
dc.typeConference Abstract
dc.rights.holder© Ternopil Ivan Puluj National Technical University, Ukraine, 2021
dc.coverage.placenameTernopil
dc.format.pages7
dc.relation.referencesen1. Ott, H. W. (2009). Electromagnetic Compatibility Engineering. New Jersey: John Wiley & Sons, Inc.
dc.relation.referencesen2. Gurin, V.K. (2019). Improving the effectiveness of noise reduction means in power supply systems with high-frequency transistor converters. (Candidate’s thesis). Institute of Electrodynamics of National Academy of Sciences of Ukraine. Kyiv: 150 p. (in Ukrainian) Available from: http://ied.org.ua/disertac/disert_Gurin.pdf
dc.relation.referencesen3. Xu, L., Wang, J., Illindala, M.S. (2013). EMI Modeling and Characterization for Ultra-Fast Switching Power Circuit Based on SiC and GaN Devices. (PhD thesis). Ohio State University. Available from: https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1385983252&disposition=inline
dc.relation.referencesen4. Lantsov, B., Eranosyan, C. (2006). Electromagnetic compatibility of switching power supplies: problems and solutions. Part I. Power electronics, 4-2006, 58-64. (in Russian). Available from: http://power-e.ru/pdf/2006_04_58.pdf
dc.relation.referencesen5. Zagorskiy, V. (2004). Electromagnetic compatibility of switching power supplies and its optimization. Part 1. Components and technologies. 2-2004, 30-35. (in Russian). doi:10.0000/cyberleninka.ru/article/n/elektromagnitnaya-sovmestimost-impulsnyh-istochnikov-pitaniya-i-ee-optimizatsiya-chast-1
dc.relation.referencesen6. Beloturov, V. (2005). Filtration and overvoltage protection modules from Vicor. Power Electronics. 2-2005, 104-107. (in Russian). Available from: http://powel.ru/files/library/VicorAC_DC.pdf
dc.relation.referencesen7. EN 55022:2014. Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement.
dc.relation.referencesen8. IEC 61000-2-4-2002. Electromagnetic compatibility (EMC) - Part 2-4: Environment - Compatibility levels in industrial plants for low-frequency conducted disturbances.
dc.relation.referencesen9. Lundmark, M. (2006) High-Frequency Noise in Power Grids, Neutral and Protective Earth. Luleå University of Technology.
dc.relation.referencesen10. DSTU GOST 12.1.038:2008 “Occupational safety standards system. Electrical safety. Maximum permissible values of pickup voltages and currents”.
dc.relation.referencesen11. Gurevich, V. (2005). Electromagnetic Terrorism: New Hazards. Electrical Engineering and Electromechanics. 4. 81-83.
dc.relation.referencesen12. Napp, A., Joosten, S., Stunder, D., Knackstedt, C., Zink, M., Bellmann, B., … Silny J. (2014) Electromagnetic interference with implantable cardioverter-defibrillators at power frequency. Circulation, 129, 441-450. doi: 10.1161/CIRCULATIONAHA.113.003081
dc.relation.referencesen13. Wang, S., Chen, R., Van Wyk, J.D. (2005). Developing Parasitic Cancellation Technologies to Improve EMI Filter Performance for Switching Mode Power Supplies. IEEE Transactions on Electromagnetic Compatibility, 47(4), 921-929.
dc.relation.referencesen14. Gurin V.K.; Pavlovskyi V.O.; Yurchenko O.M. (2012). Self-parasitic and mutual parasitic parameters in power line filters for switching mode power supplies. Tekhnichna Elektrodynamika. 2012(2), 119-120. (in Ukrainian) Available from: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/62135/57-Gurvin.pdf?sequence=1
dc.relation.referencesen15. Pavlovskyi V.A. (1990) Power line filter as a source of noise. Tekhnichna Elektrodynamika, 1990(5), 65-70. (in Russian) Available from: http://previous.techned.org.ua/index.php?option=com_content&view=article&id=907&Itemid=77
dc.relation.referencesen16. Li, C., Liang, J., Wang, S. (2018). Interlink Hybrid DC Circuit Breaker. IEEE Transactions on industrial electronics, 65(11), 8677-8686. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8304668
dc.relation.referencesen17. Basin, E.N. (1988). Network rectifier for secondary power supplies with increased conversion frequency. Radiotehnika, 1988(4). 29-31. (in Russian)
dc.identifier.citationenGurin V. K., Pavlovskyi V. O., Yurchenko O. M., Senko V. I. (2021) Electromagnetic interferences in transistor converters and methods of interferences mitigation. ICAAEIT 2021 (Tern., 15-17 December 2021), pp. 7-13.
dc.contributor.affiliationInstitute of Electrodynamics of National Academy of Science of Ukraine, Prosp. Peremogy, 56, Kyiv, 03057, Ukraine.
dc.contributor.affiliationTechnical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” , Prosp. Peremohy, 37 Kyiv, 03056
dc.citation.spage7
dc.citation.epage13
Występuje w kolekcjach:International conference „Advanced Applied Energy and Information Technologies 2021“, (ICAAEIT 2021)



Pozycje DSpace są chronione prawami autorskimi