Utilize este identificador para referenciar este registo:
http://elartu.tntu.edu.ua/handle/lib/36932
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Konovalenko, Ihor | |
dc.contributor.author | Maruschak, Pavlo | |
dc.contributor.author | Mosiy, Lyubomyr | |
dc.contributor.author | Duchon, Frantisek | |
dc.contributor.author | Kelemen, Michal | |
dc.coverage.temporal | 15-17 December 2021 | |
dc.date.accessioned | 2021-12-28T20:03:13Z | - |
dc.date.available | 2021-12-28T20:03:13Z | - |
dc.date.created | 2021-12-15 | |
dc.date.issued | 2021-12-15 | |
dc.identifier.citation | Classification of rolled metal defects using residual neural networks / Ihor Konovalenko, Pavlo Maruschak, Lyubomyr Mosiy, Frantisek Duchon, Michal Kelemen // ICAAEIT 2021, 15-17 December 2021. — Tern. : TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC, 2021. — P. 98–104. — (Electrical engineering and power electronics). | |
dc.identifier.isbn | 978-617-8079-60-4 | |
dc.identifier.uri | http://elartu.tntu.edu.ua/handle/lib/36932 | - |
dc.description.abstract | The authors investigated deep residual neural networks, which are used to detect and classify defects found on the rolled metal surface. Based on the neural network with ResNet152 architecture, a classifier for recognizing defects of three classes was built. The proposed technique allows recognizing and classifying surface damage with high accuracy in real-time based on its image. The average binary accuracy of the classification made based on the test data is 97.3%. Neuron activation fields were studied in the convolutional layers of the model. The results obtained show that areas, which correspond to those with damage in the image, are activated. False-positive and false-negative cases of classifier application are investigated. Errors were found to occur most frequently in ambiguous situations when surface artefacts of different types are similar. | |
dc.format.extent | 98-104 | |
dc.language.iso | en | |
dc.publisher | TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC | |
dc.relation.ispartof | Proceedings of the International Conference „Advanced applied energy and information technologies 2021”, 2021 | |
dc.relation.uri | https://www.kaggle.com/c/severstal-steel-defect-detection | |
dc.subject | metallurgy | |
dc.subject | steel sheet | |
dc.subject | surface defects | |
dc.subject | visual inspection technology | |
dc.subject | classification | |
dc.subject | neural network | |
dc.title | Classification of rolled metal defects using residual neural networks | |
dc.type | Conference Abstract | |
dc.rights.holder | © Ternopil Ivan Puluj National Technical University, Ukraine, 2021 | |
dc.coverage.placename | Ternopil | |
dc.format.pages | 7 | |
dc.relation.referencesen | 1.Chen, H., Hu, Q., Zhai, B. et al. (2020). A robust weakly supervised learning of deep Conv-Netsfor surface defect inspection. Neural Comput & Applic, 32, 11229–11244. doi:10.1007/s00521-020-04819-5 | |
dc.relation.referencesen | 2.Dhua, S.K. (2019). Metallurgical analyses of surface defects in cold-rolled steel sheets. J Fail.Anal. and Preven, 19, 1023–1033. doi:10.1007/s11668-019-00690-2 | |
dc.relation.referencesen | 3.Fang, X., Luo, Q., Zhou, B., Li, C., Tian, L. (2020). Research progress of automated visual surfacedefect detection for industrial metal planar materials. Sensors , 20, 5136, doi:10.3390/s20185136 | |
dc.relation.referencesen | 4.François Chollet. (2017). Deep Learning with Python. Manning Publications. | |
dc.relation.referencesen | 5.GOST 21014-88. (1989). Rolled Products of Ferrous Metals. Surface Defects. Terms andDefinitions; Izd. Stand.: Moscow, USSR; p. 61. (In Russian) | |
dc.relation.referencesen | 6.He, K., Zhang, X., Ren, S., Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv,arXiv:1512.03385v1. | |
dc.relation.referencesen | 7.Kaggle Severstal: Steel Defect Detection. Can You Detect and Classify Defects in Steel? (2019).Kaggle. Retrieved from https://www.kaggle.com/c/severstal-steel-defect-detection. | |
dc.relation.referencesen | 8.Konovalenko, I., Maruschak, P., Brezinová, J., Viňáš, J., Brezina, J. (2020). Steel Surface DefectClassification Using Deep Residual Neural Network. Metals, 10, 846. | |
dc.relation.referencesen | 9.Kostenetskiy, P., Alkapov, R., Vetoshkin, N., Chulkevich, R., Napolskikh, I., Poponin, O. (2019).Real-time system for automatic cold strip surface defect detection. FME Trans. 47, 765–774. doi:10.5937/fmet1904765K. | |
dc.relation.referencesen | 10.Lee, S.Y., Tama, B.A., Moon, S.J., Lee, S. (2019). Steel Surface Defect Diagnostics Using DeepConvolutional Neural Network and Class Activation Map. Appl. Sci. 9, 5449, doi:10.3390/app9245449. | |
dc.relation.referencesen | 11.Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P. (2017). Focal Loss for Dense ObjectDetection. arXiv, arXiv:1708.02002v2. | |
dc.relation.referencesen | 12.Luo, Q., He, Y. (2016). A cost-effective and automatic surface defect inspection system for hot-rolled flat steel, Robotics and Computer-Integrated Manufacturing, 38, 16-30. | |
dc.relation.referencesen | 13.Takahashi, R., Matsubara, T., Uehara, K. (2018). RICAP: Random Image Cropping and PatchingData Augmentation for Deep CNNs. Conference on Machine Learning, Proceedings of The 10th Asian Conference. | |
dc.relation.referencesen | 14.Tao, X., Zhang, D., Ma, W., Liu, X., Xu, D. (2018). Automatic metallic surface defect detectionand recognition with convolutional neural networks. Appl. Sci. 8, 1575, doi:10.3390/app8091575. | |
dc.relation.referencesen | 15.Zhou, S., Chen, Y., Zhang, D., Xie, J., Zhou, Y. (2017). Classification of surface defects on steelsheet using convolutional neural networks. Mater Technology, 51(1):123. | |
dc.identifier.citationen | Konovalenko I., Maruschak P., Mosiy L., Duchon F., Kelemen M. (2021) Classification of rolled metal defects using residual neural networks. ICAAEIT 2021 (Tern., 15-17 December 2021), pp. 98-104. | |
dc.contributor.affiliation | Department of Industrial Automation, Ternopil National Ivan Puluj Technical University, Rus’ka str. 56, 46001 Ternopil, Ukraine | |
dc.contributor.affiliation | Slovak University of Technology in Bratislava, Ilkovičova 3, SK-812 19, Bratislava; Slovak Republic | |
dc.contributor.affiliation | Technical University of Kosice, Letna 9, 04200, Kosice, Slovak Republic | |
dc.citation.spage | 98 | |
dc.citation.epage | 104 | |
Aparece nas colecções: | International conference „Advanced Applied Energy and Information Technologies 2021“, (ICAAEIT 2021) |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ICAAEIT_2021_Konovalenko_I-Classification_of_rolled_98-104.pdf | 1,59 MB | Adobe PDF | Ver/Abrir | |
ICAAEIT_2021_Konovalenko_I-Classification_of_rolled_98-104.djvu | 442,39 kB | DjVu | Ver/Abrir | |
ICAAEIT_2021_Konovalenko_I-Classification_of_rolled_98-104__COVER.png | 447,65 kB | image/png | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.