Please use this identifier to cite or link to this item: http://elartu.tntu.edu.ua/handle/lib/36042

Title: Investigation of object manipulation positioning accuracy by Bernoulli gripping devices in robotic cells
Other Titles: Дослідження точності позиціонування об’єктів маніпулювання захоплювальними пристроями Бернуллі в робототехнічних комірках
Authors: Савків, Володимир Богданович
Михайлишин, Роман Ігорович
Пісьціо, Вадим Петрович
Козбур, Ігор Романович
Духон, Франтішек
Хованець, Любош
Savkiv, Volodymyr
Mykhailyshyn, Roman
Piscio, Vadim
Kozbur, Ihor
Duchon, Frantisek
Chovanec, Lubos
Affiliation: Тернопільський національний технічний університет імені Івана Пулюя, Тернопіль, Україна
Словацький технологічний університет в Братиславі, Братислава, Словацька Республіка
Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
Bibliographic description (Ukraine): Investigation of object manipulation positioning accuracy by Bernoulli gripping devices in robotic cells / Volodymyr Savkiv, Roman Mykhailyshyn, Vadim Piscio, Ihor Kozbur, Frantisek Duchon, Lubos Chovanec // Scientific Journal of TNTU. — Tern. : TNTU, 2021. — Vol 102. — P. 21–36.
Bibliographic description (International): Savkiv V., Mykhailyshyn R., Piscio V., Kozbur I., Duchon F., Chovanec L. (2021) Investigation of object manipulation positioning accuracy by Bernoulli gripping devices in robotic cells. Scientific Journal of TNTU (Tern.), vol. 102, pp. 21-36.
Is part of: Вісник Тернопільського національного технічного університету (102), 2021
Scientific Journal of the Ternopil National Technical University (102), 2021
Journal/Collection: Вісник Тернопільського національного технічного університету
Volume: 102
Issue Date: 22-Jun-2021
Submitted date: 29-May-2021
Date of entry: 11-Dec-2021
Publisher: ТНТУ
TNTU
Place of the edition/event: Тернопіль
Ternopil
DOI: https://doi.org/10.33108/visnyk_tntu2021.02.021
Keywords: промисловий робот
транспортування
маніпулювання
захоплювальний пристрій Бернуллі
точність
позиціонування
industrial robot
transportation
manipulation
Bernoulli gripping device
accuracy
positioning
Number of pages: 16
Page range: 21-36
Start page: 21
End page: 36
Abstract: Забезпечення необхідної точності позиціонування об’єктів маніпулювання захоплювачами Бернуллі в робототехнічних комірках є актуальним завданням і може досягатися за рахунок вибору раціональних параметрів процесу захоплення. Проведено експериментальні дослідження процесу захоплення захоплювачами Бернуллі об’єктів маніпулювання при різних експлуатаційних параметрах та їх вазі. Для цього розроблена експериментальна установка, яка складається з промислового робота IRB 4600, контролера IRC5, мікроконтролера Raspberry Pi та двох мікрометрів годинникового типу. Представлено методику визначення сумарної похибки позиціонування системи «робот-захоплювач-об’єкт» що враховує похибки позиціювання промислового робота, похибки розміщення затискного пристрою та похибки базування об’єкта маніпулювання відносно осі симетрії захоплювального пристрою. Програмування промислового робота ABB IRB 1600 здіснювалось у середовищі ABB RobotStudio з метою циклічної імітації вантажно-розвантажувальної операції та визначення відхилення положення об’єкта маніпулювання після його захоплення з різної відстані. Перший цикл автоматичного режиму роботи використовувався для калібрування мікрометричних індикаторів. При цьому захоплення об’єкта здійснювалося з відстані, що дорівнювала 0.02 мм. Для кращої достовірності результатів досліджень проведено 20 циклів вимірювання для кожного зі змінюваних параметрів. У результаті встановлено, що максимальна похибка базування об’єктів не перевищує 0.4 мм. При захопленні об’єктів з відстані 0.5…1 мм середнє значення похибки базування становитиме 0.08…0.15 мм, при середньому квадратичному відхиленні – 0.025…0.035 мм. Проведено дослідження впливу зміщення Δ центру мас захоплюваного об’єкта відносно осі захоплювача Бернуллі на точність базування об’єктів. Встановлено, що при зміщеннях центру мас захоплюваних об’єктів відносно осі захоплювача Бернуллі до 20 мм максимальна похибка базування об’єктів зростає в 2.2 раза.
Ensuring the necessary accuracy of positioning the objects of manipulation of Bernoulliʼs grippers in robotic cells is an urgent task and can be achieved by choosing rational parameters of the gripping process. The article conducts experimental studies of the process of handling by Bernoulli grippers of objects of manipulation at different operating parameters and their weight. For this purpose, an experimental setup was developed, which consists of an industrial robot IRB 4600, an IRC5 controller, a Raspberry Pi microcontroller and two clock-type micrometers. The method of determining the total positioning error of the "robot-gripper-object" system is presented, which takes into account the positioning errors of the industrial robot, the errors of the gripping device and the errors of basing the object of manipulation relative to the axis of symmetry of the gripping device. The ABB IRB 1600 industrial robot was programmed in the ABB RobotStudio environment to cyclically simulate the handling operation and to determine the deviation of the position of the manipulation object after its gripping from different distances. The first cycle of automatic mode was used to calibrate the micrometer indicators, while gripping the object was carried out from a distance of 0.02 mm. For better reliability of research results, 20 measurement cycles were performed for each of the variable parameters. As a result, it was found that the maximum base error of objects does not exceed 0.4 mm. When capturing objects from a distance of 0.5…1 mm, the mean value of the base error will be 0.08…0.15 mm, with a standard deviation of 0.025…0.035 mm. The paper studies the effect of the displacement Δ of the center of mass of the gripped object relative to the axis of the Bernoulli gripper on the accuracy of the base of the objects. It is established that when the center of mass of the gripped objects is shifted relative to the Bernoulli gripper axis up to 20 mm, the maximum base error of the objects increases 2.2 times.
URI: http://elartu.tntu.edu.ua/handle/lib/36042
ISSN: 2522-4433
Copyright owner: © Тернопільський національний технічний університет імені Івана Пулюя, 2021
URL for reference material: https://ifr.org/
https://ifr.org/worldrobotics
https://doi.org/10.1016/S0169-8141(96)00045-5
https://doi.org/10.1016/j.cirp.2014.05.006
https://doi.org/10.1002/9783527610280
https://doi.org/10.1007/978-1-4471-4664-3
https://doi.org/10.3139/9781569907153
https://www.afag.com/en/handling/handling-systems.html
https://www.festo.com/cat/ru-uk_ua/products_010800
https://en.iprworldwide.com/category/grippers/
https://www.phdinc.com/products/category/?product=grippers
https://www.zimmer-group.com/en/technologies-components/handling-technology/grippers
https://schunk.com/de_en/gripping-systems/category/gripping-systems/schunk-grippers/
https://www.smcusa.com/products/actuators/grippers~20234
https://doi.org/10.1109/ICRA.2019.8794068
https://doi.org/10.1051/matecconf/201822401082
https://doi.org/10.1115/1.4030710
https://doi.org/10.1109/MHS.2010.5669510
https://doi.org/10.1016/j.precisioneng.2019.03.007
https://doi.org/10.1177/1687814019837401
https://doi.org/10.1016/j.rcim.2015.02.003
https://doi.org/10.1109/ICRA.2017.7989675
https://doi.org/10.1109/INTMAG.2015.7157658
https://doi.org/10.1109/AIM.2018.8452383
https://doi.org/10.1108/AA-10-2019-0171
https://doi.org/10.1016/j.vacuum.2018.11.005
https://doi.org/10.1016/j.precisioneng.2018.01.006
https://doi.org/10.1016/j.proeng.2017.04.374
https://doi.org/10.1515/jee-2017-0087
https://doi.org/10.1109/YSF.2017.8126583
https://doi.org/10.1533/9780857095763.2.354
https://doi.org/10.1109/ICRA.2015.7139505
https://doi.org/10.1016/j.procir.2017.03.370
https://doi.org/10.1177/1729881417741740
https://doi.org/10.1109/UKRCON.2019.8879957
https://doi.org/10.18178/ijmerr.8.2.220-227
https://doi.org/10.1016/j.procir.2016.01.136
https://doi.org/10.1016/j.cirp.2008.03.119
https://doi.org/10.1007/978-3-319-44087-3_2
https://doi.org/10.1109/TMECH.2016.2597168
https://doi.org/10.1145/2500423.2500451
https://doi.org/10.1109/ICRA40945.2020.9197518
https://doi.org/10.35633/INMATEH-59-20
https://doi.org/10.26552/com.C.2020.2.3-14
https://doi.org/10.1109/ROBOT.2009.5152739
https://doi.org/10.1177/1729881418762670
https://doi.org/10.1109/IEPS.2018.8559586
https://doi.org/10.1109/MSNMC50359.2020.9255521
https://doi.org/10.4018/IJMMME.2021040102
http://new.abb.com/products/robotics/
https://en.iprworldwide.com/
http://new.abb.com/products/robotics/robotstudio
References (Ukraine): 1. International Federation of Robotics. URL: https://ifr.org/.
2. World Robotics 2020 – Industrial Robots and Service Robots. URL: https://ifr.org/worldrobotics.
3. Kumar S., Narayan Y., & Chouinard K. Effort reproduction accuracy in pinching, gripping, and lifting among industrial males. International Journal of Industrial Ergonomics. 1997. № 20 (2). Р. 109–119. DOI: https://doi.org/10.1016/S0169-8141(96)00045-5
4. Fantoni G., Santochi M., Dini G., Tracht K., Scholz-Reiter B., Fleischer J., and Hansen H. N. Grasping devices and methods in automated production processes. CIRP Annals-Manufacturing Technology. 2014. № 63 (2). Р. 679–701. DOI: https://doi.org/10.1016/j.cirp.2014.05.006
5. Monkman G. J., Hesse S., Steinmann R., Schunk H. Robot grippers. Weinheim: John Wiley & Sons. KGaA, 2007. 452 p. DOI: https://doi.org/10.1002/9783527610280
6. Carbone G. Grasping in robotics, Springer-Verlag London, 2012, 468 p. DOI: https://doi.org/10.1007/978-1-4471-4664-3
7. Wolf A., Schunk H. A., Grippers in motion: the fascination of automated handling tasks. Carl Hanser Verlag GmbH Co KG. 2018. DOI: https://doi.org/10.3139/9781569907153
8. Офіційний web сайт Afag, Gripper Moduls. URL: https://www.afag.com/en/handling/handling-systems.html.
9. Офіційний web сайт Festo, Catalogs. URL: https://www.festo.com/cat/ru-uk_ua/products_010800.
10. Офіційний web сайт IPR, Intelligente Peripherien fur Roboter GmbH, Catalogs. URL: https://en.iprworldwide.com/category/grippers/.
11. Офіційний web сайт PHD Inc., Catalogs. URL: https://www.phdinc.com/products/category/?product=grippers.
12. Офіційний web сайт Zimmer Group Canada Inc., Catalogs. URL: https://www.zimmer-group.com/en/technologies-components/handling-technology/grippers.
13. Офіційний web сайт Schunk GmbH, Gripping Moduls. URL: https://schunk.com/de_en/gripping-systems/category/gripping-systems/schunk-grippers/.
14. Офіційний web сайт SMC, Catalogs. URL: https://www.smcusa.com/products/actuators/grippers~20234.
15. Li S., Stampfli J. J., Xu H. J., Malkin E., Diaz E. V., Rus D., & Wood R. J. A vacuum-driven origami «magic-ball» soft gripper. In 2019 International Conference on Robotics and Automation (ICRA). 2019. May. P. 7401–7408. DOI: https://doi.org/10.1109/ICRA.2019.8794068
16. Makarov A. M., Mushkin O. V., Lapikov M. A. Use of additive technologies to increase effectiveness of design and use of a vacuum gripping devices for flexible containers. In MATEC Web of Conferences. Vol. 224. 2018. DOI: https://doi.org/10.1051/matecconf/201822401082
17. Kim J. H., Lee S. J. Configuration of noncontact grip system for carrying large flat sheets using vacuum air heads. Journal of Tribology. 2015. Vol. 137. No. 4. 2015. DOI: https://doi.org/10.1115/1.4030710
18. Morimoto K., Tada Y., Takashima H., Minamino K., Tahara R., Konishi S. Design and characterization of high-performance contactless gripper using spiral air flows. In 2010 International Symposium on Micro-NanoMechatronics and Human Science. 2010. November. P. 423–428. DOI: https://doi.org/10.1109/MHS.2010.5669510
19. Zhao J., Wang C., Li X., Gap flow with circumferential velocity in annular skirt of vortex gripper. Precision Engineering. 2019. № 57. P. 64–72. DOI: https://doi.org/10.1016/j.precisioneng.2019.03.007
20. Wang C., Zhao J., Li X. Effect of chamber diameter of vortex gripper on maximum suction force and flow field. Advances in Mechanical Engineering. 2019. № 11 (3). DOI: https://doi.org/10.1177/1687814019837401
21. Roy D. Development of novel magnetic grippers for use in unstructured robotic workspace. Robotics and Computer-Integrated Manufacturing. 2015. № 35. P. 16–41. DOI: https://doi.org/10.1016/j.rcim.2015.02.003
22. Gawel A., Kamel M., Novkovic T., Widauer J., Schindler D., Von Altishofen B. P., Nieto J. Aerial picking and delivery of magnetic objects with mavs. In 2017 IEEE international conference on robotics and automation (ICRA). 2017. May. P. 5746–5752. DOI: https://doi.org/10.1109/ICRA.2017.7989675
23. Chen C., Chung T. A novel thermomagnetic gripper. In 2015 IEEE International Magnetics Conference (INTERMAG). 2015. May. P. 1–1. DOI: https://doi.org/10.1109/INTMAG.2015.7157658
24. Fiaz U. A., Abdelkader M., Shamma J. S. An intelligent gripper design for autonomous aerial transport with passive magnetic grasping and dual-impulsive release. In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2018, July. P. 1027–1032. DOI: https://doi.org/10.1109/AIM.2018.8452383
25. Liu D., Wang M., Fang N., Cong M., Du Y. Design and tests of a non-contact Bernoulli gripper for rough-surfaced and fragile objects gripping. Assembly Automation. 2020. DOI: https://doi.org/10.1108/AA-10-2019-0171
26. Savkiv V., Mykhailyshyn R., Duchon F. Gasdynamic analysis of the Bernoulli grippers interaction with the surface of flat objects with displacement of the center of mass. Vacuum. 2019. № 159. P. 524–533. DOI: https://doi.org/10.1016/j.vacuum.2018.11.005
27. Shi K., Li X. Experimental and theoretical study of dynamic characteristics of Bernoulli gripper. Precision Engineering. 2018. № 52. P. 323–331. DOI: https://doi.org/10.1016/j.precisioneng.2018.01.006
28. Savkiv V., Mykhailyshyn R., Fendo O., Mykhailyshyn M. Orientation Modeling of Bernoulli Gripper Device with Off-Centered Masses of the Manipulating Object. Procedia Engineering. 2017. № 187. P. 264–271. DOI: https://doi.org/10.1016/j.proeng.2017.04.374
29. Mykhailyshyn R., Savkiv V., Duchon F., Mikhalishin M. Energy efficiency analysis of the manipulation process by the industrial objects with the use of Bernoulli gripping devices. Journal of Electrical Engineering. 2017. № 68 (6). P. 496–502. DOI: https://doi.org/10.1515/jee-2017-0087
30. Mykhailyshyn R., Savkiv V., Mikhalishin M., Duchon F. Experimental Research of the Manipulatiom Process by the Objects Using Bernoulli Gripping Devices / R. Mykhailyshyn. In Young Scientists Forum on Applied Physics and Engineering, International IEEE Conference. 2017. P. 8–11. DOI: https://doi.org/10.1109/YSF.2017.8126583
31. Seliger G., Stephan J., Lange S. Non-rigid part handling by new gripping device. In Proc 8th Intl Conf Manuf Eng. ICME 2000. Sydney. Australia. 2000. P. 423–427.
32. Buljo J. O., Gjerstad T. B. Robotics and automation in seafood processing. In Robotics and Automation in the Food Industry. 2013. P. 354–384. DOI: https://doi.org/10.1533/9780857095763.2.354
33. Brecher C., Kukla C., Schares R., Emonts M., Haus M. Form-Adaptive Gripping System for Light-Weight Productions. In 20th International Conference on Composite Materials. 2015. P. 19–24.
34. Hawkes E. W., Christensen D. L., Han A. K., Jiang H., Cutkosky M. R. Grasping without squeezing: Shear adhesion gripper with fibrillar thin film. In 2015 IEEE International Conference on Robotics and Automation (ICRA). 2015. May. P. 2305–2312. DOI: https://doi.org/10.1109/ICRA.2015.7139505
35. Förster F., Ballier F., Coutandin S., Defranceski A., Fleischer J. Manufacturing of textile preforms with an intelligent draping and gripping system. Procedia CIRP. 2017. № 66. P. 39–44. DOI: https://doi.org/10.1016/j.procir.2017.03.370
36. Savkiv V., Mykhailyshyn R., Duchon F., Fendo O. Justification of Design and Parameters of Bernoulli-Vacuum Gripping Device. International Journal of Advanced Robotic Systems. 2017. DOI: https://doi.org/10.1177/1729881417741740
37. Mykhailyshyn R., Savkiv V., Diahovchenko I., Duchon F., Trembach R. Research of Energy Efficiency of Manipulation of Dimensional Objects With the Use of Pneumatic Gripping Devices. 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering UKRCON-2019 – IEEE, 2019. P. 527–532. DOI: https://doi.org/10.1109/UKRCON.2019.8879957
38. Jørgensen T. B., Krüger N., Pedersen M. M., Hansen N. W., Hansen B. R. Designing a Flexible Grasp Tool and Associated Grasping Strategies for Handling Multiple Meat Products in an Industrial Setting. International Journal of Mechanical Engineering and Robotics Research. Vol. 8. No. 2. 2019. Р. 220–227. DOI: https://doi.org/10.18178/ijmerr.8.2.220-227
39. Fleischer J., Förster F., Gebhardt J. Sustainable manufacturing through energy efficient handling processes. Procedia CIRP. 2016. № 40. P. 574–579. DOI: https://doi.org/10.1016/j.procir.2016.01.136
40. Fleischer J., Ochs A., Förster F. Gripping technology for carbon fibre material. In CIRP International conference on competitive manufacturing, Band: Green manufacturing for a blue planet. 2013. P. 65–71.
41. Lien T. K., Davis P. G. G. A novel gripper for limp materials based on lateral Coanda ejectors. CIRP annals. 2008. № 57 (1). P. 33–36. DOI: https://doi.org/10.1016/j.cirp.2008.03.119
42. Lovasz E. C., Mesaroş-Anghel V., Gruescu C. M., Moldovan C. E., Ceccarelli M. General Algorithm for Computing the Theoretical Centering Precision of the Gripping Devices. In Advances in Mechanism Design II. 2017. P. 15–21. DOI: https://doi.org/10.1007/978-3-319-44087-3_2
43. Кирилович В. А., Черепанська І. Ю., Сазонов А. Ю. Адаптивність схватів промислових роботів як напрям підвищення ефективності роботизованих механоскладальних технологій. Вісник ЖДТУ. Серія «Технічні науки». 2010. № 1 (52). С. 17–24.
44. Rong W., Liang S., Wang L., Zhang S., Zhang W. Model and control of a compact long-travel accurate-manipulation platform. IEEE/ASME Transactions on Mechatronics. 2016. № 22 (1). P. 402–411. DOI: https://doi.org/10.1109/TMECH.2016.2597168
45. Wang J., Adib F., Knepper R., Katabi D., Rus D. RF-compass: Robot object manipulation using RFIDs. In Proceedings of the 19th annual international conference on Mobile computing & networking. 2013, September. P. 3–14. DOI: https://doi.org/10.1145/2500423.2500451
46. Sajjan S., Moore M., Pan M., Nagaraja G., Lee J., Zeng A., Song S. Clear Grasp: 3D Shape Estimation of Transparent Objects for Manipulation. In 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. May. P. 3634–3642. DOI: https://doi.org/10.1109/ICRA40945.2020.9197518
47. Aulin V. V., Pankov A. O., Zamota T. M., Lyashuk O. L., Hrynkiv A. V., Tykhyi A. A., Kuzyk A. V. Development of mechatronic module for the seeding control system. INMATEH – Agricultural Engineering. 2019. № 59 (3). P. 1–8. DOI: https://doi.org/10.35633/INMATEH-59-20
48. Aulin V., Hrynkiv A., Lyashuk O., Vovk Y., Lysenko S., Holub D., Zamota T., Pankov A., Sokol M., Ratynskyi V., Lavrentieva O. Increasing the functioning efficiency of the working warehouse of the «Uvk Ukraine» company transport and logistics center. Communications – Scientific Letters of the University of Zilina. 2020. № 22 (2). P. 3–14. DOI: https://doi.org/10.26552/com.C.2020.2.3-14
49. Collet A., Berenson D., Srinivasa S. S., Ferguson D. Object recognition and full pose registration from a single image for robotic manipulation. In 2009 IEEE International Conference on Robotics and Automation. 2009. May. P. 48–55. DOI: https://doi.org/10.1109/ROBOT.2009.5152739
50. Savkiv V., Mykhailyshyn R., Duchon F., Mikhalishin M. Modeling of Bernoulli gripping device orientation when manipulating objects along the arc. International Journal of Advanced Robotic Systems. 2018. DOI: https://doi.org/10.1177/1729881418762670
51. Mykhailyshyn R., Savkiv V., Duchon F., Koloskov V., Diahovchenko I. Investigation of the energy consumption on performance of handling operations taking into account parameters of the grasping system. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). IEEE. 2018. P. 295–300. DOI: https://doi.org/10.1109/IEPS.2018.8559586
52. Mykhailyshyn R., Savkiv V., Duchon F., Maruschak P., Prentkovskis O. Substantiation of Bernoulli Grippers Parameters at Non-Contact Transportation of Objects with a Displaced Center of Mass. 22nd International Scientific Conference Transport Means 2018. Klaipeda, 2018. P. 1370–1375.
53. Mykhailyshyn R., Savkiv V., Duchon F., Chovanec L. Experimental Investigations of the Dynamics of Contactless Transportation by Bernoulli Grippers. 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). IEEE, 2020. P. 97–100. Doi: https://doi.org/10.1109/MSNMC50359.2020.9255521
54. Mykhailyshyn R., Savkiv V., Boyko I., Prada E., & Virgala I. Substantiation of Parameters of Friction Elements of Bernoulli Grippers With a Cylindrical Nozzle. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME). 2021. № 11 (2). P. 17–39. DOI: https://doi.org/10.4018/IJMMME.2021040102
55. Giesen, T., Wertz R., Fischmann C., Kreck G., Govaerts J., Vaes J., Verl A. Advanced production challenges for automated ultra-thin wafer handling. In Proc. 27th Eur. Photovoltaic Sol. Energy Conf. Exhib. 2012, September. P. 1165–1170.
56. Офіційний web сайт ABB Robotics, RobotStudio. URL: http://new.abb.com/products/robotics/ robotstudio.
References (International): 1. International Federation of Robotics. URL: https://ifr.org/.
2. World Robotics 2020 – Industrial Robots and Service Robots. URL: https://ifr.org/worldrobotics.
3. Kumar S., Narayan Y., & Chouinard K. Effort reproduction accuracy in pinching, gripping, and lifting among industrial males. International Journal of Industrial Ergonomics. Vol. 20. No. 2. 1997. Р. 109–119. DOI: https://doi.org/10.1016/S0169-8141(96)00045-5
4. Fantoni G., Santochi M., Dini G., Tracht K., Scholz-Reiter B., Fleischer J., and Hansen H.N., Grasping devices and methods in automated production processes. CIRP Annals-Manufacturing Technology. Vol. 63. No. 2. 2014. Р. 679–701. DOI: https://doi.org/10.1016/j.cirp.2014.05.006
5. Monkman G. J., Hesse S., Steinmann R., Schunk H. Robot grippers, Weinheim: John Wiley & Sons, KGaA, 2007, 452 p. DOI: https://doi.org/10.1002/9783527610280
6. Carbone G. Grasping in robotics, Springer-Verlag London, 2012, 468 p. DOI: https://doi.org/10.1007/978-1-4471-4664-3
7. Wolf A., Schunk H. A., Grippers in motion: the fascination of automated handling tasks, Carl Hanser Verlag GmbH Co KG, 2018. DOI: https://doi.org/10.3139/9781569907153
8. Afag, Gripper Moduls. URL: https://www.afag.com/en/handling/handling-systems.html.
9. Festo, Catalogs. URL: https://www.festo.com/cat/ru-uk_ua/products_010800.
10. IPR, Intelligente Peripherien fur Roboter GmbH, Catalogs. URL: https://en.iprworldwide.com/ category/grippers/.
11. PHD Inc., Catalogs. URL: https://www.phdinc.com/products/category/?product=grippers.
12. Zimmer Group Canada Inc., Catalogs. URL: https://www.zimmer-group.com/en/technologies-components/handling-technology/grippers.
13. Schunk GmbH, Gripping Moduls. URL: https://schunk.com/de_en/gripping-systems/category/gripping-systems/schunk-grippers/.
14. SMC, Catalogs. URL: https://www.smcusa.com/products/actuators/grippers~20234.
15. Li S., Stampfli J. J., Xu H. J., Malkin E., Diaz E. V., Rus D., & Wood R. J. A vacuum-driven origami “magic-ball” soft gripper, In 2019 International Conference on Robotics and Automation (ICRA). 2019. May. Р. 7401–7408. DOI: https://doi.org/10.1109/ICRA.2019.8794068
16. Makarov A. M., Mushkin O. V., & Lapikov M. A. Use of additive technologies to increase effectiveness of design and use of a vacuum gripping devices for flexible containers, In MATEC Web of Conferences. Vol. 224. 2018. DOI: https://doi.org/10.1051/matecconf/201822401082
17. Kim J. H., & Lee S. J. Configuration of noncontact grip system for carrying large flat sheets using vacuum air heads. Journal of Tribology. Vol. 137. No. 4. 2015. DOI: https://doi.org/10.1115/1.4030710
18. Morimoto K., Tada Y., Takashima H., Minamino K., Tahara R., & Konishi S. Design and characterization of high-performance contactless gripper using spiral air flows, In 2010 International Symposium on Micro-NanoMechatronics and Human Science. 2010. November. Р. 423–428. DOI: https://doi.org/10.1109/MHS.2010.5669510
19. Zhao J., Wang C., & Li X. Gap flow with circumferential velocity in annular skirt of vortex gripper, Precision Engineering. Vol. 57. 2019. Р. 64–72. DOI: https://doi.org/10.1016/j.precisioneng.2019.03.007
20. Wang C., Zhao J., & Li X. Effect of chamber diameter of vortex gripper on maximum suction force and flow field. Advances in Mechanical Engineering. Vol. 11. No. 3. 2019. DOI: https://doi.org/10.1177/1687814019837401
21. Roy D. Development of novel magnetic grippers for use in unstructured robotic workspace, Robotics and Computer-Integrated Manufacturing. Vol. 35. 2015. Р. 16–41. DOI: https://doi.org/10.1016/j.rcim.2015.02.003
22. Gawel A., Kamel M., Novkovic T., Widauer J., Schindler D., Von Altishofen B. P., & Nieto J. Aerial picking and delivery of magnetic objects with mavs, In 2017 IEEE international conference on robotics and automation (ICRA). 2017. May. Р. 5746– 5752. DOI: https://doi.org/10.1109/ICRA.2017.7989675
23. Chen C., & Chung T. A novel thermomagnetic gripper, In 2015 IEEE International Magnetics Conference (INTERMAG). 2015. May. Р. 1–11. DOI: https://doi.org/10.1109/INTMAG.2015.7157658
24. Fiaz U. A., Abdelkader M., & Shamma J. S. An intelligent gripper design for autonomous aerial transport with passive magnetic grasping and dual-impulsive release, In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2018. July. Р. 1027–1032. DOI: https://doi.org/10.1109/AIM.2018.8452383
25. Liu D., Wang M., Fang N., Cong M., & Du Y. Design and tests of a non-contact Bernoulli gripper for rough-surfaced and fragile objects gripping, Assembly Automation. 2020. DOI: https://doi.org/10.1108/AA-10-2019-0171
26. Savkiv V., Mykhailyshyn R., Duchon F. Gasdynamic analysis of the Bernoulli grippers interaction with the surface of flat objects with displacement of the center of mass. Vacuum. No. 159. 2019. Р. 524–533. DOI: https://doi.org/10.1016/j.vacuum.2018.11.005
27. Shi K., & Li X. Experimental and theoretical study of dynamic characteristics of Bernoulli gripper. Precision Engineering. Vol. 52. 2018. Р. 323–331. DOI: https://doi.org/10.1016/j.precisioneng.2018.01.006
28. Savkiv V., Mykhailyshyn R., Fendo O., Mykhailyshyn M. Orientation Modeling of Bernoulli Gripper Device with Off-Centered Masses of the Manipulating Object. Procedia Engineering. No. 187. 2017. Р. 264–271. DOI: https://doi.org/10.1016/j.proeng.2017.04.374
29. Mykhailyshyn R., Savkiv V., Duchon F., Mikhalishin M. Energy efficiency analysis of the manipulation process by the industrial objects with the use of Bernoulli gripping devices. Journal of Electrical Engineering. Vol. 68. No. 6. 2017. Р. 496–502. DOI: https://doi.org/10.1515/jee-2017-0087
30. Mykhailyshyn R., Savkiv V., Mikhalishin M., Duchon F. Experimental Research of the Manipulatiom Process by the Objects Using Bernoulli Gripping Devices, In Young Scientists Forum on Applied Physics and Engineering. International IEEE Conference. 2017. Р. 8–11. DOI: https://doi.org/10.1109/YSF.2017.8126583
31. Seliger G., Stephan J., & Lange S. Non-rigid part handling by new gripping device, In Proc 8th Intl Conf Manuf Eng, ICME2000, Sydney, Australi. 2000. Р. 423–427.
32. Buljo J. O., & Gjerstad T. B. Robotics and automation in seafood processing, In Robotics and Automation in the Food Industry. 2013. Р. 354–384. DOI: https://doi.org/10.1533/9780857095763.2.354
33. Brecher C., Kukla C., Schares R., Emonts M., Haus M. Form-Adaptive Gripping System for Light-Weight Productions, In 20th International Conference on Composite Materials. 2015. Р. 19–24.
34. Hawkes E. W., Christensen D. L., Han A. K., Jiang H., & Cutkosky M. R. Grasping without squeezing: Shear adhesion gripper with fibrillar thin film, In 2015 IEEE International Conference on Robotics and Automation (ICRA). 2015. May. Р. 2305 –2312. DOI: https://doi.org/10.1109/ICRA.2015.7139505
35. Förster F., Ballier F., Coutandin S., Defranceski A., Fleischer J. Manufacturing of textile preforms with an intelligent draping and gripping system. Procedia CIRP. No. 66. 2017. Р. 39–44. DOI: https://doi.org/10.1016/j.procir.2017.03.370
36. Savkiv V., Mykhailyshyn R., Duchon F., Fendo O. Justification of Design and Parameters of Bernoulli-Vacuum Gripping Device. International Journal of Advanced Robotic Systems. 2017. DOI: https://doi.org/10.1177/1729881417741740
37. Mykhailyshyn R., Savkiv V., Diahovchenko I., Duchon F., Trembach R. Research of Energy Efficiency of Manipulation of Dimensional Objects With the Use of Pneumatic Gripping Devices. IEEE 2nd Ukraine Conference on Electrical and Computer Engineering UKRCON-2019. 2019. Р. 527–532. DOI: https://doi.org/10.1109/UKRCON.2019.8879957
38. Jørgensen T. B., Krüger N., Pedersen M. M., Hansen N. W., Hansen B. R. Designing a Flexible Grasp Tool and Associated Grasping Strategies for Handling Multiple Meat Products in an Industrial Setting. International Journal of Mechanical Engineering and Robotics Research. Vol. 8. No. 2. 2019. Р. 220–227. DOI: https://doi.org/10.18178/ijmerr.8.2.220-227
39. Fleischer J., Förster F., & Gebhardt J. Sustainable manufacturing through energy efficient handling processes. Procedia CIRP. Vol. 40. 2016. Р. 574–579. DOI: https://doi.org/10.1016/j.procir.2016.01.136
40. Fleischer J., Ochs A., & Förster F. Gripping technology for carbon fibre material, In CIRP International conference on competitive manufacturing, Band: Green manufacturing for a blue planet. 2013. Р. 65–71.
41. Lien T. K., & Davis P. G. G. A novel gripper for limp materials based on lateral Coanda ejectors. CIRP annals. Vol. 57. No. 1. 2008. Р. 33–36. DOI: https://doi.org/10.1016/j.cirp.2008.03.119
42. Lovasz E. C., Mesaroş-Anghel V., Gruescu C. M., Moldovan C. E., & Ceccarelli M. General Algorithm for Computing the Theoretical Centering Precision of the Gripping Devices, In Advances in Mechanism Design II. 2017. Р. 15–21. DOI: https://doi.org/10.1007/978-3-319-44087-3_2
43. Kyrylovych V. A., Cherepansʹka I. Yu., & Sazonov A. Yu. 2010, Adaptyvnistʹ skhvativ promyslovykh robotiv yak napryam pidvyshchennya efektyvnosti robotyzovanykh mekhanoskladalʹnykh tekhnolohiy. Bulletin of ZhSTU. Series «Technical Sciences». Vol. 1. No. 52. Р. 17–24. [Іn Ukrainian].
44. Rong W., Liang S., Wang L., Zhang S., & Zhang W. Model and control of a compact long-travel accurate-manipulation platform. IEEE/ASME Transactions on Mechatronics. Vol. 22. No. 1. 2016. Р. 402–411. DOI: https://doi.org/10.1109/TMECH.2016.2597168
45. Wang J., Adib F., Knepper R., Katabi D., & Rus D. RF-compass: Robot object manipulation using RFIDs, In Proceedings of the 19th annual international conference on Mobile computing & networking. 2013. September. Р. 3–14. DOI: https://doi.org/10.1145/2500423.2500451
46. Sajjan S., Moore M., Pan M., Nagaraja G., Lee J., Zeng A., & Song S. Clear Grasp: 3D Shape Estimation of Transparent Objects for Manipulation. In 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. May. Р. 3634–3642. DOI: https://doi.org/10.1109/ICRA40945.2020.9197518
47. Aulin V. V., Pankov A. O., Zamota T. M., Lyashuk O. L., Hrynkiv A. V., Tykhyi A. A., Kuzyk A. V., Development of mechatronic module for the seeding control system. INMATEH – Agricultural Engineering. Vol. 59. No. 3. 2019. Р. 1–8. DOI: https://doi.org/10.35633/INMATEH-59-20
48. Aulin V., Hrynkiv A., Lyashuk O., Vovk Y., Lysenko S., Holub D., Zamota T., Pankov A., Sokol M., Ratynskyi V., Lavrentieva O. Increasing the functioning efficiency of the working warehouse of the «Uvk Ukraine» company transport and logistics center, Communications – Scientific Letters of the University of Zilina. Vol. 22. No. 2. 2020. Р. 3–14. DOI: https://doi.org/10.26552/com.C.2020.2.3-14
49. Collet A., Berenson D., Srinivasa S. S., & Ferguson D. Object recognition and full pose registration from a single image for robotic manipulation. In 2009 IEEE International Conference on Robotics and Automation. 2009. May. Р. 48–55. DOI: https://doi.org/10.1109/ROBOT.2009.5152739
50. Savkiv V., Mykhailyshyn R., Duchon F., Mikhalishin M. Modeling of Bernoulli gripping device orientation when manipulating objects along the arc, International Journal of Advanced Robotic Systems, 2018. DOI: https://doi.org/10.1177/1729881418762670
51. Mykhailyshyn R., Savkiv V., Duchon F., Koloskov V., Diahovchenko I. Investigation of the energy consumption on performance of handling operations taking into account parameters of the grasping system, 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). 2018. Р. 295–300. DOI: https://doi.org/10.1109/IEPS.2018.8559586
52. Mykhailyshyn R., Savkiv V., Duchon F., Maruschak P., Prentkovskis O. Substantiation of Bernoulli Grippers Parameters at Non-Contact Transportation of Objects with a Displaced Center of Mass, 22nd International Scientific Conference Transport Means 2018. Klaipeda. 2018. Р. 1370–1375.
53. Mykhailyshyn R., Savkiv V., Duchon F., Chovanec L. Experimental Investigations of the Dynamics of Contactless Transportation by Bernoulli Grippers, 2020 IEEE 6th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC). 2020. Р. 97–100. DOI: https://doi.org/10.1109/MSNMC50359.2020.9255521
54. Mykhailyshyn R., Savkiv V., Boyko I., Prada E., & Virgala, I. Substantiation of Parameters of Friction Elements of Bernoulli Grippers With a Cylindrical Nozzle. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME). Vol. 11. No. 2. 2021. Р. 17–39. DOI: https://doi.org/10.4018/IJMMME.2021040102
55. Giesen T., Wertz R., Fischmann C., Kreck G., Govaerts J., Vaes J., & Verl A. Advanced production challenges for automated ultra-thin wafer handling, In Proc. 27th Eur. Photovoltaic Sol. Energy Conf. Exhib., 2012, September. P. 1165–1170.
56. Official website of ABB Robotics, RobotStudio. URL: http://new.abb.com/products/robotics/robotstudio.
Content type: Article
Appears in Collections:Вісник ТНТУ, 2021, № 2 (102)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.