霂瑞霂��撘����迨��辣: http://elartu.tntu.edu.ua/handle/lib/33359

摰����漯敶�
DC �������霂剛��
dc.contributor.authorСтрілець, Олег Романович
dc.contributor.authorStrilets, Oleh
dc.date.accessioned2020-12-23T18:59:12Z-
dc.date.available2020-12-23T18:59:12Z-
dc.date.created2020-09-18
dc.date.issued2020-09-18
dc.date.submitted2020-09-29
dc.identifier.citationStrilets O. Dynamic model of speed control through ring gears in a device with a multistage gear differentials and closed-loop hydraulic systems / Oleh Strilets // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 99. — No 3. — P. 102–111.
dc.identifier.issn2522-4433
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/33359-
dc.description.abstractУ приводах підйомно-транспортних, будівельних, дорожніх, меліоративних, сільськогосподарських і гірничих машин, на автомобілях і тракторах, на судах, літальних і підводних апаратах виникає необхідність керування змінами швидкості за величиною та напрямком їх виконавчих механізмів. Для цього використовуються ступінчасті й безступінчасті коробки швидкостей. Відомі пристрої керування змінами швидкості мають багато недоліків, які негативно впливають на довговічність і надійність деталей приводів і машин у цілому. Розроблення на рівні винаходів вантажоупорного зупинника у вигляді замкнутої гідросистеми (пат. № 2211796 RU і пат. № 44135 UA) і застосування його у зубчастих диференціалах, дозволило розробити ряд пристроїв для керування змінами швидкості у механічних приводах за рахунок регулювання руху рідини в замкнутій гідросистемі. Це пов’язано з тим, що зубчастий диференціал володіє двома ступенями вільності і в передаванні руху приймає три ланки – сонячне зубчасте колесо, епіцикл і водило. Запропоновано, щоб одну із ланок використовувати для керування процесом зміни швидкості між ведучою і веденою ланками за допомогою замкнутої гідросистеми. Розроблений на рівні корисних моделей ряд нових пристроїв керування змінами швидкості підвищують роботоздатність техніки, що підтверджують проведені теоретично- комп’ютерні кінематичні та енергетичні дослідження. Розглянуті останні дослідження й публікації присвячені одноступінчастим планетарним і диференціальним зубчастим передачам та мало пов’язані з багатоступінчастими зубчастими диференціалами. Мета даної роботи розробити математичну модель динамічних процесів у пристроях зміни швидкості за допомогою багатоступінчастих зубчастих диференціалів з замкнутими гідросистеми у випадку, коли ланками керування є епіцикли, а ведучим валом є сонячне зубчасте колесо першого ступеня, а веденим валом є водило останнього ступеня. Для досягнення мети рух механічної системи у формалізованому вигляді змодельовано рівнянням Лагранжа ІІ роду. Для цього складено вираз для кінетичної енергії й обертального моменту та отримано систему диференціальних рівнянь, яка виражає математичну динамічну модель пристрою зміни швидкості за допомогою багатоступінчастого зубчастого диференціала з замкнутими гідросистемами через епіцикли. Отримані результати можуть бути підґрунтям для проведення кількісного аналізу на ПК силових залежностей механічного привода з гідросистемним керуванням через епіцикли, коли навантаження, тобто обертальний момент опору на веденій ланці – водилі, змінюється періодично протягом тривалого часу; або величина ударного навантаження після різкого збільшення залишається незмінним протягом тривалого часу; або величина ударного навантаження після різкого збільшення зберігається протягом малого часу; або виконавчий механізм миттєво зупиняється внаслідок значного перевантаження.
dc.description.abstractThe dynamic processes in the device for speed control with multistage gear differential and closed-loop hydraulic systems through ring gears have been studied for case when the leading link is the sun gear of the first stage, and the driven is a carrier of the last stage. For such a device, the equation of kinetic energy has been compiled and the dynamics equations have been obtained by the Lagrange method, which have been solved. The obtained results are the basis for further computer simulation on and quantitative analysis to assess the performance of such devices and select the necessary closed-loop hydraulic systems to control speed changes.
dc.format.extent102-111
dc.language.isoen
dc.publisherТНТУ
dc.publisherTNTU
dc.relation.ispartofВісник тернопільського національного технічного університету, 3 (99), 2020
dc.relation.ispartofScientific journal of the Ternopil national technical university, 3 (99), 2020
dc.relation.urihttp://dx.doi.org/10.15587/1729-4061.2017.110683
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2013.07.018
dc.relation.urihttps://doi.org/10.1155/2013/149046
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2013.11.001
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2015.05.003
dc.relation.urihttps://doi.org/10.15623/ijret.2015.0406025
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2014.12.017
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2014.12.012
dc.relation.urihttps://doi.org/10.20858/sjsutst.2016.91.1
dc.relation.urihttps://doi.org/10.1016/j.egypro.2017.11.088
dc.relation.urihttps://doi.org/10.1016/j.apm.2018.07.038
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2018.05.015
dc.relation.urihttps://doi.org/10.21122/2227-1031-2018-17-3-228-237
dc.relation.urihttps://doi.org/10.22214/ijraset.2018.4527
dc.relation.urihttps://doi.org/10.33108/visnyk_tntu2020.02.091
dc.subjectдинамічна модель
dc.subjectпристрій для керування змінами швидкості
dc.subjectзубчастий диференціал
dc.subjectзамкнута гідросистема
dc.subjectсонячне зубчасте колесо
dc.subjectепіцикл
dc.subjectводило
dc.subjectсателіт
dc.subjectdynamic model
dc.subjectspeed control device
dc.subjectgear differential
dc.subjectclosed-loop hydraulic system
dc.subjectsun gear
dc.subjectring gear
dc.subjectcarrier
dc.subjectplanet
dc.titleDynamic model of speed control through ring gears in a device with a multistage gear differentials and closed-loop hydraulic systems
dc.title.alternativeДинамічна модель керування швидкістю у пристрої з багатоступінчастим зубчастим диференціалом і замкнутими гідросистемами через епіцикли
dc.typeArticle
dc.rights.holder© Тернопільський національний технічний університет імені Івана Пулюя, 2020
dc.coverage.placenameТернопіль
dc.coverage.placenameTernopil
dc.format.pages10
dc.subject.udc621.833.65
dc.relation.references1. Малащенко В. О., Стрілець О. Р., Стрілець В. М. Класифікація способів і пристроїв керування процесом зміни швидкості у техніці. Підйомно-транспортна техніка. Одеса: ОНПУ, 2015. № 1. С. 70–78.
dc.relation.references2. Mаlashchenkо, V., Strilets, О., Strilets, V. Determining performance efficiency of the differential in a device for speed change through ring gear. Eastern-European Journal of Enterprise Technologies. 2017. 6 (7 (90)). С. 51–57. http://dx.doi.org/10.15587/1729-4061.2017.110683
dc.relation.references3. Bahk, C.-J, Parker R. G. Analytical investigation of tooth profile modification effects on planetary gear dynamics. Mechanism and Machine Theory. Elsevier. 2013. No. 70. Р. 298–319. https://doi.org/10.1016/j.mechmachtheory.2013.07.018
dc.relation.references4. Qilin, H., Yong, W., Zhipu, H., Yudong, X. Nonlinear Dynamic Analysis and Optimization of Closed-Form Planetary Gear System. Mathematical Problems in Engineering. 2013. Vol. 2013. 12 p. https://doi.org/10.1155/2013/149046
dc.relation.references5. Salgado, D. R., Castillo J. M. (2014) Analysis of the transmission ratio and efficiency ranges of the four-, five-, and six-link planetary gear trains, Mechanism and Machine Theory, Vol. 73. P. 218–243. https://doi.org/10.1016/j.mechmachtheory.2013.11.001
dc.relation.references6. Grzegorz Peruń Verification Of Gear Dynamic Model In Different Operating Conditions, Scientific Journal of Silesian University of Technology. Series Transport. 2014. 84, 99–104.
dc.relation.references7. Fuchun Yang, Jianxiong Feng, Hongcai Zhang Power flow and efficiency analysis of multi-flow planetary gear trains. Mechanism and Machine Theory. 2015. Vol. 92, 86–99. https://doi.org/10.1016/j.mechmachtheory.2015.05.003
dc.relation.references8. Pawar1, P. V., Kulkarni, P. R. Design of two stage planetary gear train for high reduction ratio. International Journal of Research in Engineering and Technology, 2015. Vol. 4. Iss. 6. ЕSAT Publishing House, Bangalore, India, 150–157. https://doi.org/10.15623/ijret.2015.0406025
dc.relation.references9. Chao Chen, Jiabin Chen Efficiency analysis of two degrees of freedom epicyclic gear transmission and experimental. Mechanism and Machine Theory. 2015. Vol. 87, 115–130. https://doi.org/10.1016/j.mechmachtheory.2014.12.017
dc.relation.references10. Tianli Xie, Jibin Hu, Zengxiong Peng, Chunwang Liu Synthesis of seven-speed planetary gear trains for heavy-duty commercial vehicle, Mechanism and Machine Theory. 2015. Vol. 90, 230–239. https://doi.org/10.1016/j.mechmachtheory.2014.12.012
dc.relation.references11. Drewniak, J., Garlicka, P., Kolber (2016) Design for the bi-planetary gear train. Scientific Journal of Silesian University of Technology. Series Transport. 91, 5–17. https://doi.org/10.20858/sjsutst.2016.91.1
dc.relation.references12. Li Jianying, Hu Qingchun, Zong Changfu, Zhu Tianjun Power Analysis and Efficiency Calculation of Multistage Micro-planetary Transmission. Energy Procedia, 2017. 141, 654–659. https://doi.org/10.1016/j.egypro.2017.11.088
dc.relation.references13. Wenjian Yang, Huafeng Ding Automatic detection of degenerate planetary gear trains with different degree of freedoms. Applied Mathematical Modelling, 2018, 64, 320–332. https://doi.org/10.1016/j.apm.2018.07.038
dc.relation.references14. Esmail, E. L., Pennestrì, E., Hussein Juber A. Power losses in two-degrees-of-freedom planetary gear trains: A critical analysis of Radzimovsky’s formulas, Mechanism and Machine Theory, 2018. Vol. 128, pp. 191–204. https://doi.org/10.1016/j.mechmachtheory.2018.05.015
dc.relation.references15. Dankov, A. M. Planetary Continuously Adjustable Gear Train With Force Closure Of Planet Gear And Central Gear: From Idea To Design. Science & Technique, 2018. 17 (3), 228–237. https://doi.org/10.21122/2227-1031-2018-17-3-228-237
dc.relation.references16. Dobariya Mahesh Design of Compound Planetary Gear Train, International Journal for Research in Applied Science and Engineering Technology, 2018, vol. 6, iss. 4, 3179–3184. https://doi.org/10.22214/ijraset.2018.4527
dc.relation.references17. Стрілець О. Р. Малащенко В. О., Пасіка В. Р., Стрілець В. М. Динамічна модель керування швидкості через епіцикл привода із зубчастою диференціальною передачею. Вісник Національного університету «Львівська політехніка». «Динаміка, міцність та проектування машин і приладів». 2019. № 911. С. 63–67.
dc.relation.references18. Стрілець О. Р. Малащенко В. О., Стрілець В. М. Динаміка пристрою для керування змінами швидкості з зубчастою диференціальною передачею і замкнутою гідросистемою через сонячне зубчасте колесо. Вісник Національного технічного університету «ХПІ». Серія: Машинознавство та САПР. 2020. № 1. С. 93–98. https://doi.org/10.33108/visnyk_tntu2020.02.091
dc.relation.references19. Стрілець О. Р. Малащенко В. О., Стрілець В. М. Динаміка пристрою для керування змінами швидкості з зубчастою диференціальною передачею і замкнутою гідросистемою через водило. Науковий вісник ХДМУ. 2020. № 2 (7). С. 176–182.
dc.relation.references20. Стрілець О. Р. Малащенко В. О., Стрілець В. М. (2020) Визначення зведених обертальних моментів рівнянь динаміки пристроїв зміни швидкості через зубчасті диференціали з замкнутими гідросистемами. Вісник Хмельницького національного університету. Науковий журнал. Технічні науки. 2020. Вип. 4. С. 18–23.
dc.relation.references21. Strilets O., Malashchenko V., Strilets V. Dynamic model of a closed-loop hydraulic system for speed control through gear differential. Scientific Journal of TNTU. 2020. Vol 98. No. 2. P. 91–98. https://doi.org/10.33108/visnyk_tntu2020.02.091
dc.relation.references22. Малащенко В. О., Стрілець О. Р., Стрілець В. М. (2016) Керування швидкістю руху машин багатоступеневою зубчастою диференціальною передачею через епіцикл. Вісник Національного університету «Львівська політехніка». «Динаміка, міцність та проектування машин і приладів». 2016. № 838. С. 57–63.
dc.relation.referencesen1. Malashchenko V. О., Strilets O. R., Strilets V. М. Klasyfikatsiya sposobiv i prystroyiv keruvannya protsesom zminy shvydkosti u tekhnitsi. Pidyomno-transportna tekhnika. Odesa: ONPU, 2015, no. 1. P. 70–78. [In Ukrainian].
dc.relation.referencesen2. Mаlashchenkо, V., Strilets, О., Strilets, V. Determining performance efficiency of the differential in a device for speed change through ring gear. Eastern-European Journal of Enterprise Technologies, 2017, 6 (7 (90)), 51–57. http://dx.doi.org/10.15587/1729-4061.2017.110683
dc.relation.referencesen3. Bahk, C.-J, Parker R. G. Analytical investigation of tooth profile modification effects on planetary gear dynamics. Mechanism and Machine Theory, Elsevier, 2013, no. 70. P. 298–319. https://doi.org/10.1016/j.mechmachtheory.2013.07.018
dc.relation.referencesen4. Qilin, H., Yong, W., Zhipu, H., Yudong, X. Nonlinear Dynamic Analysis and Optimization of Closed- Form Planetary Gear System. Mathematical Problems in Engineering, 2013, vol. 2013, 12 p. https://doi.org/10.1155/2013/149046
dc.relation.referencesen5. Salgado, D. R., Castillo, J. M. Analysis of the transmission ratio and efficiency ranges of the four-, five-, and six-link planetary gear trains, Mechanism and Machine Theory, 2014, Vol. 73, pp. 218–243, https://doi.org/10.1016/j.mechmachtheory.2013.11.001
dc.relation.referencesen6. Grzegorz, P. Verification Of Gear Dynamic Model In Different Operating Conditions, Scientific Journal of Silesian University of Technology. Series Transport, 2014, 84, 99–104.
dc.relation.referencesen7. Fuchun, Y., Jianxiong, F., Hongcai, Zh. Power flow and efficiency analysis of multi-flow planetary gear trains. Mechanism and Machine Theory, 2015, Vol. 92, 86–99. https://doi.org/10.1016/j.mechmachtheory.2015.05.003
dc.relation.referencesen8. Pawar1, P. V., Kulkarni, P. R. Design of two stage planetary gear train for high reduction ratio. International Journal of Research in Engineering and Technology, 2015, Vol. 4. Iss. 6, P. 150–157. https://doi.org/10.15623/ijret.2015.0406025
dc.relation.referencesen9. Chao, Ch., Jiabin, Ch. Efficiency analysis of two degrees of freedom epicyclic gear transmission and experimental. Mechanism and Machine Theory, 2015, Vol. 87, pp. 115–130. https://doi.org/10.1016/j.mechmachtheory.2014.12.017
dc.relation.referencesen10. Tianli, X., Jibin, H., Zengxiong, P., Chunwang, L. Synthesis of seven-speed planetary gear trains for heavy- duty commercial vehicle, Mechanism and Machine Theory, 2015, Vol. 90, pp. 230–239. https://doi.org/10.1016/j.mechmachtheory.2014.12.012
dc.relation.referencesen11. Drewniak, J., Garlicka, P., Kolber Design for the bi-planetary gear train. Scientific Journal of Silesian University of Technology. Series Transport. 2016, 91, 5–17. https://doi.org/10.20858/sjsutst.2016.91.1
dc.relation.referencesen12. Li, J., Hu, Q., Zong, Ch., Zhu, T. Power Analysis and Efficiency Calculation of Multistage Micro-planetary Transmission. Energy Procedia, 2017, 141, 654–659. https://doi.org/10.1016/j.egypro.2017.11.088
dc.relation.referencesen13. Wenjian, Y., Huafeng, D. Automatic detection of degenerate planetary gear trains with different degree of freedoms. Applied Mathematical Modelling, 2018, 64, 320–332. https://doi.org/10.1016/j.apm.2018.07.038
dc.relation.referencesen14. Esmail, E. L., Pennestrì, E., Hussein Juber A. Power losses in two-degrees-of-freedom planetary gear trains: A critical analysis of Radzimovsky’s formulas, Mechanism and Machine Theory, 2018, Vol. 128, 191–204. https://doi.org/10.1016/j.mechmachtheory.2018.05.015
dc.relation.referencesen15. Dankov, A. M. Planetary Continuously Adjustable Gear Train With Force Closure Of Planet Gear And Central Gear: From Idea To Design. Science & Technique, 2018, 17 (3), 228–237. https://doi.org/10.21122/2227-1031-2018-17-3-228-237
dc.relation.referencesen16. Dobariya, M. Design of Compound Planetary Gear Train, International Journal for Research in Applied Science and Engineering Technology, 2018, vol. 6, iss. 4, 3179–3184. https://doi.org/10.22214/ijraset.2018.4527
dc.relation.referencesen17. Strilets O. R., Malashchenko V. О., Pasika V. R., Strilets V. М. Dynamichna model keruvannya shvydkosti cherez epitsykl pryvoda iz zubchastoyu dyferentsialnoyu peredacheyu. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. “Dynamika, mitsnist ta proektuvannya mashyn i pryladiv”, 2019, no. 911, pp. 63–67. [In Ukrainian].
dc.relation.referencesen18. Strilets O. R., Malashchenko V. О., Strilets V. М. Dynamika prystroyu dlya keruvannya zminamy shvydkosti z zubchastoyu dyferentsialnoyu peredacheyu i zamknutoyu hidrosystemoyu cherez sonyachne zubchaste koleso. Visnyk Natsionalnoho tekhnichnoho universytetu “KHPI”. Seriya: Mashynoznavstvo ta SAPR, 2020, no. 1’2020. P. 93–98. [In Ukrainian]. https://doi.org/10.33108/visnyk_tntu2020.02.091
dc.relation.referencesen19. Strilets O. R., Malashchenko V. О., Strilets V. М. Dynamika prystroyu dlya keruvannya zminamy shvydkosti z zubchastoyu dyferentsialnoyu peredacheyu i zamknutoyu hidrosystemoyu cherez vodylo. Naukovyy visnyk KhDMU, 2020, no. 2 (7), pp. 176–182. [In Ukrainian].
dc.relation.referencesen20. Strilets O. R., Malashchenko V. О., Strilets V. М. Vyznachennya zvedenykh obertalnykh momentiv rivnyan dynamiky prystroyiv zminy shvydkosti cherez zubchasti dyferentsialy z zamknutymy hidrosystemamy. Visnyk Khmelnytskoho natsionalnoho universytetu. Naukovyy zhurnal. Tekhnichni nauky, 2020, iss. 4, pp. 18–23. [In Ukrainian].
dc.relation.referencesen21. Strilets O. R., Malashchenko V. О., Strilets V. М. Dynamic model of a closed-loop hydraulic system for speed control through gear differential. Scientific Journal of TNTU. Tern.: TNTU, 2020, vol. 98, no. 2. P. 91–98. https://doi.org/10.33108/visnyk_tntu2020.02.091
dc.relation.referencesen22. Malashchenko V. О., Strilets O. R., Strilets V. М. Keruvannya shvydkistyu rukhu mashyn bahatostupenevoyu zubchastoyu dyferentsialnoyu peredacheyu cherez epitsykl. Visnyk Natsionalnoho universytetu “Lʹvivsʹka politekhnika”. “Dynamika, mitsnist ta proektuvannya mashyn i pryladiv”. 2016. No. 838. P. 57–63. [In Ukrainian].
dc.identifier.citationenStrilets O. (2020) Dynamic model of speed control through ring gears in a device with a multistage gear differentials and closed-loop hydraulic systems. Scientific Journal of TNTU (Tern.), vol. 99, no 3, pp. 102-111.
dc.identifier.doihttps://doi.org/10.33108/visnyk_tntu2020.03.102
dc.contributor.affiliationНаціональний університет водного господарства та природокористування, Рівне, Україна
dc.contributor.affiliationNational University of Water and Environmental Engineering, Rivne, Ukraine
dc.citation.journalTitleВісник тернопільського національного технічного університету
dc.citation.volume99
dc.citation.issue3
dc.citation.spage102
dc.citation.epage111
�蝷箔����:Вісник ТНТУ, 2020, № 3 (99)



�DSpace銝剜�������★��������雿��.