Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/33040
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorIasnii, Volodymyr Petrovych-
dc.contributor.authorNykyforchyn, Hryhorii Mykolayovych-
dc.contributor.authorStudent, Oleksandra Zinoviivna-
dc.contributor.authorSvirska, Lesia Mykolaivna-
dc.date.accessioned2020-12-04T21:12:57Z-
dc.date.available2020-12-04T21:12:57Z-
dc.date.issued2020-08-25-
dc.identifier.citationIasnii, V.P., Nykyforchyn, H.M., Student, O.Z. et al. Fractographic Features of the Fatigue Fracture of Nitinol Alloy. Mater Sci 55, 774–779 (2020).uk_UA
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/33040-
dc.description.abstractWe study the macro- and microfractographic features of the mechanism of initiation and propagation of fatigue cracks in the nitinol alloy after its testing for low-cycle fatigue and analyze possible influence of the structural and phase transformations caused by the cyclic deformation of nitinol on the fracto-graphic features of its fatigue fracture. Thus, almost parallel transcrystalline facets of brittle cleavage located in almost mutually perpendicular planes along the entire length of martensite crystals are ob-served within the boundaries of separate grains (first of all, in the early stages of fracture). The signs of shallow fatigue striations are detected (but rarely) in the zone of the stable growth of the fatigue crack. The spacing of these striations approximately corresponds to a crack-growth rate of8⋅107 m/cycle. It is suggested that the deformation transformation of austenite into martensite can also distort the clas-sical deformation mechanism of formation of the fatigue striations. In the zones of fractures with un-controlled crack growth, the elements of ductile pit topography are predominant, which is typical of the fracture surfaces of specimens destroyed under active loading.uk_UA
dc.format.extent774-779-
dc.language.isoenuk_UA
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs11003-020-00370-9uk_UA
dc.subjectshape-memory alloyuk_UA
dc.subjectmartensitic transformationuk_UA
dc.subjectfractographyuk_UA
dc.subjecthydrogen effectuk_UA
dc.subjectlastic deformationuk_UA
dc.titleFractographic features of the fatigue fracture of nitinol alloyuk_UA
dc.typeArticleuk_UA
dc.subject.udc620.193.81: 620.197.6uk_UA
dc.relation.referencesen1. G. Kang and D. Song, “Review on structural fatigue of NiTi shape memory alloys: Pure mechanical and thermo-mechanical ones,” Theor. Appl. Mech., 5, No. 6, 245–254 (2015).uk_UA
dc.relation.referencesen2. S. Miyazaki, S. Kimura, F. Takei, T. Miura, K. Otsuka, and Y. Suzuki, “Shape memory effect and pseudoelasticity in a TiNi single crystal,” Scr. Metall., 17, No. 9, 1057–1062 (1983).uk_UA
dc.relation.referencesen3. F. Auricchio, E. Boatti, and M. Conti, “SMA biomedical applications,” in: L. Lecce and A. Concilio (editors), Shape Memory Alloy Engineering, Butterworth–Heinemann, Boston (2015), pp. 307–341.uk_UA
dc.relation.referencesen4. V. Torra, C. Auguet, G. Carreras, L. Dieng, F. C. Lovey, and P. Terriault, “The SMA: An effective damper in civil engineering that smoothes oscillations,” Mater. Sci. Forum, 706–709, 2020–2025 (2012).uk_UA
dc.relation.referencesen5. P. Yasniy, M. Kolisnyk, O. Kononchuk, and V. Iasnii, “Calculation of constructive parameters of SMA damper,” Sci. J. TNTU, 88, No. 4, 7–15 (2017).uk_UA
dc.relation.referencesen6. D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,” Proc. Inst. Mech. Eng. Part G. J. Aerosp. Eng., 221, No. 4, 535–552 (2007).uk_UA
dc.relation.referencesen7. S. W. Robertson, A. R. Pelton, and R. O. Ritchie, “Mechanical fatigue and fracture of Nitinol,” Int. Mat. Reviews, 57, No. 1, 1–36 (2012).uk_UA
dc.relation.referencesen8. V. Iasnii, P. Yasniy, Yu. Lapusta, and T. Shnitsar, “Experimental study of pseudoelastic NiTi alloy under cyclic loading,” Sci. J. TNTU, 92, No. 4, 7–12 (2018).uk_UA
dc.relation.referencesen9. V. P. Iasnii, H. M. Nykyforchyn, O. T. Tsyrul’nyk, and O. Z. Student, “Specific features of deformation of the nitinol alloy after electrolytic hydrogenation,” Fiz.-Khim. Mekh. Mater., 54, No. 4, 124–130 (2018); English translation: Mater. Sci., 54, No. 4, 582–588 (2019).uk_UA
dc.relation.referencesen10. V. Iasnii and P. Yasniy, “Influence of stress ratio on functional fatigue of pseudoelastic NiTi alloy,” Proced. Struct. Integrity, 16, 67–72 (2019).uk_UA
dc.relation.referencesen11. V. Iasnii and P. Yasniy, “Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading: an experimental study,” Acta Mech. Autom., 13, No. 2, 95–100 (2019).uk_UA
dc.relation.referencesen12. O. Z. Student, W. Dudzinski, H. M. Nykyforchyn, and A. Kaminska, “Effect of high-temperature degradation of heat-resistant steel on mechanical and fractographic peculiarities of fatigue crack growth,” Fiz.-Khim. Mekh. Mater., 34, No. 4, 49–58 (1999); English translation: Mater. Sci., 35, No. 4, 499–508 (1999).uk_UA
dc.relation.referencesen13. P. O. Maruschak, D. Ya. Baran, A. P. Sorochak, R. T. Bishchak, and V. P. Yasnii, “Cyclic crack resistance and micromechanisms of fracture of steel 25Kh1M1F,” Strength Mater., 44, No. 4, 410–418 (2012).uk_UA
dc.relation.referencesen14. L. Poberezhnyi, P. Maruschak, O. Prentkovskis, I. Danyliuk, T. Pyrig, and J. Brezinová “Fatigue and failure of steel of offshore gas pipeline after the laying operation,” Arch. Civil Mech. Eng., 16, No. 3, 524–536 (2016).uk_UA
dc.relation.referencesen15. Y. Murakami and R. O. Ritchie, “Effects of hydrogen on fatigue-crack propagation in steels,” in: R. P. Gangloff and B. P. Somerday (editors), Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterization and Effects on Particular Alloy Classes, Vol. 1, Woodhead Publ., Cambridge (2012), pp. 379–417.uk_UA
dc.relation.referencesen16. V. P. Iasnii, O. Z. Student, and H. M. Nykyforchyn, “Influence of hydrogenation on the fracture of nitinol alloy in tension,” Fiz.-Khim. Mekh. Mater., 54, No. 3, 80–85 (2019); English translation: Mater. Sci., 55, No. 3, 386–391 (2019).uk_UA
dc.contributor.affiliationTernopil Ivan Puluj National Technical University, Ternopil, Ukraineuk_UA
dc.contributor.affiliationKarpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraineuk_UA
Розташовується у зібраннях:Наукові публікації працівників кафедри будівельної механіки

Файли цього матеріалу:
Файл Опис РозмірФормат 
10.1007@s11003-020-00370-9(1).pdf3,24 MBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора