Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/33039
Назва: Influence of stress ratio on structural fatigue of pseudoelastic NiTi alloy
Автори: Yasniy, Petro Volodymyrovych
Iasnii, Volodymyr Petrovych
Приналежність: Ternopil Ivan Puluj National Technical University, Ternopil 46011, Ukraine
Бібліографічний опис: V. Iasnii, P. Yasniy. The influence of stress ratio on fatigue lifetime of NiTi shape memory alloy, Procedia Structural Integrity, Vol. 28, 2020, P. 1551-1558
Дата публікації: 2020
Дата внесення: 4-гру-2020
Теми: pseudoelastic alloy
energy dissipation
residual stress
stress ratio
Короткий огляд (реферат): The influence of stress ratio on functional properties of pseudoelastic NiTi alloy are studied. The changes of residual strain, strain ratio and dissipated energy on the stress ratio of shape memory alloy are investigated. The functional fatigue of the NiTi alloy under the stress-controlled cyclic loading is dependent on the stress range and stress ratio. Dissipated energy and strain range are invariant to the loading cycles for stress ratio 0 and 0.5. When stress ratio increases from 0 to 0.5 at the same maximal stress, the strain range and energy dissipation are decreasing. With the change of the stress ratio from 0 to 0.5 the residual strain in the first and next cycles increases significantly even at lower values of maximal stress.
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/33039
URL-посилання пов’язаного матеріалу: https://www.researchgate.net/publication/335020334_Influence_of_stress_ratio_on_functional_fatigue_of_pseudoelastic_NiTi_alloy
Перелік літератури: Auricchio, F., Marfia, S., Sacco, E., 2003. Modelling of SMA Materials: Training and Two Way Memory Effect. Computers and Structures 81, 2301–2317.
Auricchio, F., Boatti, E., Conti, M., 2015. Chapter 11 – SMA Biomedical Applications. In Shape Memory Alloy Engineering, 307–336.
Brinson, C L., Schmidt, I., Lammering, R., 2004. Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. Journal of Mechanics and Physics of Solids 52, 1549.
Hsu, W.-N., Polatidis, E., Šmíd, M., Van Petegem, S., Casati, N., Van Swygenhoven, H., 2019. Deformation and Degradation of Superelastic NiTi under Multiaxial Loading. Acta Materialia 167, 149–158.
Iasnii, V., Junga R., 2018. Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory. Materials Science 54(3), 406–411.
Iasnii, V, Yasniy, P., Lapusta, Yu., Shnitsar, T., 2018. Experimental Study of Pseudoelastic NiTi Alloy under Cyclic Loading. Scientific Journal of TNTU 92 (4), 7–12.
Iasnii, V., Yasniy, P., 2019. Degradation of Functional Properties of Pseudoelastic Niti Alloy under Cyclic Loading : An Experimental Study. Acta Mechanica et Automatica 13(2), to be published.
Kang, G., Kan, Q., Chao, Yu., Song, D., Liu, Y., 2012. Whole-Life Transformation Ratchetting and Fatigue of Super-Elastic NiTi Alloy under Uniaxial Stress-Controlled Cyclic Loading. Materials Science and Engineering: A 535, 228–234.
Mahtabi, M., Shamsaei, N., 2016. A Modified Energy-Based Approach for Fatigue Life Prediction of Superelastic NiTi in Presence of Tensile Mean Strain and Stress. International Journal of Mechanical Sciences 117, 321–333.
Matsui, R., Makino, Y., Tobushi, H., Furuichi, Y., Yoshida, F., 2006. Influence of Strain Ratio on Bending Fatigue Life and Fatigue Crack Growth in TiNi Shape-Memory Alloy Thin Wires. Materials Transactions 47(3), 759–765.
Menna, C., Auricchio, F., Asprone, D., 2015, Chapter 13 –Applications of Shape Memory Alloys in Structural Engineering. In Shape Memory Alloy Engineering, 369–403.
Miyazaki, S., Imai, T., Igo, Y., Otsuka, K., 1986. Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys,Metallurgical Transactions A 17 (1), 115–120.
Mohd Jani, J., Leary, M., Subic, A., Gibson, M., 2014. A Review of Shape Memory Alloy Research, Applications and Opportunities,Materials and Design 56, 1078–1113.
Moumni, Z., Van Herpen, A., Riberty, P., 2005. Fatigue Analysis of Shape Memory Alloys: Energy Approach. Smart Mater. Struct. 14, 287–292
Moumni, Z., Zaki W., Maitournam H., 2009. Cyclic Behavior and Energy Approach to the Fatigue of Shape Memory Alloys, Journal of Mechanics of Materials and Structures 4(2), 395–411.
Ozbulut, O., Hurlebaus E., Desroches R., 2011. Seismic Response Control Using Shape Memory Alloys: A Review, Journal of Intelligent Material Systems and Structures 22(14), 1531–1549.
Predki W., Klönne, M., Knopik, A., 2006. Cyclic Torsional Loading of Pseudoelastic NiTi Shape Memory Alloys: Damping and Fatigue Failure,Materials Science and Engineering A 417(1–2), 182–189.
Robertson, S.W., Pelton, A.R, Ritchie R.O., 2012. Mechanical Fatigue and Fracture of Nitinol. International Materials Reviews 57(1), 1–37
Torra V., Auguet C., Carreras G., Dieng, L., Lovey, F., Terriault, P., 2012. The SMA: An Effective Damper in Civil Engineering That Smoothes Oscillations. Materials Science Forum 706–709, 2020–2025.
Wagner, M.F, Nayan, N., Ramamurty, U., 2008. Healing of Fatigue Damage in NiTi Shape Memory Alloys, 41: 22–25.
Yasniy, P., Kolisnyk, M., Kononchuk, O., Iasnii, V., 2017. Calculation of Constructive Parameters of SMA Damper. Scientific Journal of TNTU88 (4), 7–15.
Тип вмісту: Article
Розташовується у зібраннях:Наукові публікації працівників кафедри будівельної механіки

Файли цього матеріалу:
Файл Опис РозмірФормат 
1-s2.0-S2452321620306296-main.pdf623,71 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора