Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://elartu.tntu.edu.ua/handle/lib/32428

Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorХома, Володимир Васильович
dc.contributor.authorХома, Юрій Володимирович
dc.contributor.authorКочан, Орест Володимирович
dc.contributor.authorKhoma, Volodymyr
dc.contributor.authorKhoma, Yuriy
dc.contributor.authorKochan, Orest
dc.date.accessioned2020-09-17T08:45:18Z-
dc.date.available2020-09-17T08:45:18Z-
dc.date.created2020-04-28
dc.date.issued2020-04-28
dc.date.submitted2020-03-19
dc.identifier.citationKhoma V. Unification of the analog part of the biosignal processing channel / Volodymyr Khoma, Yuriy Khoma, Orest Kochan // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 97. — No 1. — P. 97–109.
dc.identifier.issn2522-4433
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/32428-
dc.description.abstractПотреба у вимірюванні та опрацюванні біосигналів виникає не лише у медичній діагностиці, але також багатьох нових застосуваннях, зокрема, у біометриці, афективній інформатиці людино-машинній взаємодії, цілодобовому клінічному моніторингу. Нові застосування підвищують вимоги до технічних і експлуатаційних характеристик засобів відбору та перетворення біосигналів. Необхідно здійснювати відбір біосигналів поза стаціонарними умовами, забезпечити синхронне опрацювання різних видів біосигналів. У цьому контексті потрібно максимально уніфікувати апаратні засоби біоінформатичної системи, особливо її аналогову частину. У роботі розглянуто особливості формування і відбору найпоширеніших біосигналів, проаналізовано джерела спотворень та описано типові вимірювальні перетворення на прикладах сигналу електрокардіограми й біоімпедансу. На підставі проведеного аналізу визначено завдання, щодо уніфікації вимірювального каналу, які можуть бути раціонально вирішені на основі використання можливостей компонентної бази сучасної мікроелектроніки та обчислювальної техніки. Показано можливість істотного спрощення вимірювального каналу вимірювання біопотенціалів, завдяки застосуванню багаторозрядних дельта- сигма АЦП. Вимірювання біоімпедансу має свою специфіку через пасивну векторну природу цієї величини. Для цього застосовують зовнішні джерела збудження, зазвичай, у вигляді джерела синусоїдного струму частотою декілька десятків кілогерц. Інформацію про складові біоімпеданса одержують за допомогою синхронного детектування. Обґрунтовано принцип побудови та синтезовано структуру аналогової частини універсального вимірювального каналу, придатного для вимірювання як біосигналів, так і біоімпеданса. Її основу складає багаторозрядний і швидкодіючий АЦП, що відкриває можливість переведення частини вимірювальних перетворень до цифрового вигляду, забезпечує стійкість до спотворень зумовлених артефактами та впливом завад.
dc.description.abstractMeasurement methods and design principles for measuring channel are considered in this paper. They extend the capacity of improving noise immunity and resolution of bio-signals measurement means. The analog parts of measuring channels for measurement of different kinds of bio-signals, as well as the sources of errors for such channels are analyzed. The structure of the analog part of the high-precision universal measuring channel (invariant to the type of the measured bio-signal) is developed on the basis of this analysis.
dc.format.extent97-109
dc.language.isoen
dc.publisherТНТУ
dc.publisherTNTU
dc.relation.ispartofВісник Тернопільського національного технічного університету, 1 (97), 2020
dc.relation.ispartofScientific Journal of the Ternopil National Technical University, 1 (97), 2020
dc.relation.urihttps://doi.org/10.1002/9781119068129
dc.relation.urihttps://doi.org/10.33108/visnyk_tntu2018.04.126
dc.relation.urihttps://doi.org/10.1111/cas.12776
dc.relation.urihttps://doi.org/10.1002/(SICI)1099-0992(200003/04)30:2<211::AID-EJSP988>3.0
dc.relation.urihttps://doi.org/10.23939/istcmtm2018.03.005
dc.relation.urihttps://doi.org/10.3390/s19102350
dc.relation.urihttps://doi.org/10.33108/visnyk_tntu2019.03.123
dc.relation.urihttps://doi.org/10.1134/S0020441215010091
dc.relation.urihttps://doi.org/10.1080/03091900410001662323
dc.relation.urihttps://doi.org/10.1109/MMAR.2018.8486014
dc.relation.urihttps://doi.org/10.1007/978-3-319-75025-5_2
dc.relation.urihttps://doi.org/10.1186/s12938-015-0072-y
dc.relation.urihttps://doi.org/10.1109/TBME.2016.2594127
dc.relation.urihttps://doi.org/10.1515/msr-2015-0041
dc.relation.urihttps://doi.org/10.2478/msr-2019-0022
dc.relation.urihttps://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical
dc.relation.urihttps://www.analog.com/media/en/analog-dialogue/volume-48/number-4/articles/synchronous-detectors-facilitate-precision.pdf
dc.relation.urihttps://doi.org/10.21014/acta_imeko.v4i2.230
dc.relation.urihttps://doi.org/10.1155/2015/367302
dc.subjectбіосигнал
dc.subjectбіоімпеданс
dc.subjectзлиття сенсорів
dc.subjectвимірювальний канал
dc.subjectстійкість до спотворень
dc.subjectbio-signal
dc.subjectbio-impedance
dc.subjectsensor fusion
dc.subjectmeasuring channel
dc.subjectdistortion resistance
dc.titleUnification of the analog part of the biosignal processing channel
dc.title.alternativeУніфікація аналогової частини каналу опрацювання біосигналів
dc.typeArticle
dc.rights.holder© Тернопільський національний технічний університет імені Івана Пулюя, 2020
dc.coverage.placenameТернопіль
dc.coverage.placenameTernopil
dc.format.pages13
dc.subject.udc621.317
dc.relation.references1. Rangayyan R. Biomedical Signal Analysis. A Case-Study Approach. John Willey and Sons Inc. 2015. 552 p. DOI:10.1002/9781119068129. https://doi.org/10.1002/9781119068129
dc.relation.references2. Dozorska O. The mathematical model of electroenсephalographic and electromyographic signals for the task of human communicative function restoration. Scientific Journal of TNTU. 2018. Vol. 92. No. 4. P. 126–132. https://doi.org/10.33108/visnyk_tntu2018.04.126
dc.relation.references3. Жевандрова Я., Сыропятов А., Буряк В. Комплексная биометрическая аутентификация личности. Системи обробки інформації. 2016. Том. 141. Вип. 4. C. 104–107. https://doi.org/10.1111/cas.12776
dc.relation.references4. Niedenthal P. M., Halberstadt J. B., Margolin J., Innes-Ker A. H. Emotional state and the detection of change in facial expression of emotion in European. Journal of Social Psychology. Vol. 2000. No. 30. P. 211–222. URL: https://doi.org/10.1002/(SICI)1099-0992(200003/04)30:2<211::AID-EJSP988>3.0. CO;2-3.
dc.relation.references5. Хома Ю. В., Стадник Б. І., Микийчук М. М., Фріш С. Методи і засоби вимірювання та комп’ютерного опрацювання біосигналів. Вимірювальна техніка та метрологія. 2018. Том. 79 Вип. 3. С. 5–16. URL: https://doi.org/10.23939/istcmtm2018.03.005.
dc.relation.references6. Pelc M., Khoma Y., Khoma V. ECG Signal as Robust and Reliable Biometric Marker: Datasets and Algorithms Comparison in Sensors. 2019. Vol. 19. No. 10. 2350. P. 1–8. https://doi.org/10.3390/s19102350.
dc.relation.references7. Sverstiuk A. Comparative analysis of results of numerical simulation of cyber-physical biosensor systems on the basis of lattice differential equations. Scientific Journal of TNTU. 2019. Vol 95. No. 3. Р. 123–138. https://doi.org/10.33108/visnyk_tntu2019.03.123
dc.relation.references8. Абакумов В. Г., Готра З. Ю., Злепко С. М. та ін. Реєстрація, обробка та контроль біомедичних сигналів. Вінниця: ВНТУ, 2011. 352 с.
dc.relation.references9. Оглоблин С., Молчанов А. Инструментальная «детекция лжи». Ярославль: Нюанс, 2004, 411 c.
dc.relation.references10. Jun S., Kochan O. Common mode noise rejection in measuring channels. In Instruments and Experimental Techniques. 2015. Vol. 58. No. 1. P. 86–89. URL: https://doi.org/10.1134/S0020441215010091.
dc.relation.references11. Valverde E. R., Arini P. D., Bertran G. C., Biagetti M. O., Quinteiro R. A. Effect of electrode impedance in improved buffer amplifier for bioelectric recordings. Journal of Medical Engineering & Technology. 2004. Vol. 28. Issue 5. P. 217–222. https://doi.org/10.1080/03091900410001662323.
dc.relation.references12. Сторчун Є. В. Матвійчук Я. М. Біофізичні та математичні основи інструментальних методів медичної діагностики. Львів: Растр-7, 2009. 216 с.
dc.relation.references13. Khoma V., Pelc M., Khoma Y. Artificial Neural Network Capability for Human Being Identification based on ECG Proceedings: the 23rd International Conference on Methods and Models in Automation and Robotics (Miedzyzdroje, 27–30 August 2018.). Miedzyzdroje, 2018. Р. 479–482. https://doi.org/10.1109/MMAR.2018.8486014
dc.relation.references14. Khoma V., Pelc M., Khoma Y., Sabodashko D. Outlier Correction in ECG-Based Human Identification. Biomedical Engineering and Neuroscience. BCI 2018. Advances in Intelligent Systems and Computing. Vol. 720. 2018. P. 11–22. URL: https://doi.org/10.1007/978-3-319-75025-5_2.
dc.relation.references15. Fratini A., Sansone M., Bifulco P., Cesarel M. Individual identification via electrocardiogram analysis. BioMed. Eng. OnLine. 2015. Vol. 14. Р. 1–23. https://doi.org/10.1186/s12938-015-0072-y.
dc.relation.references16. Von Luhmann A., Wabnitz H., Sander T., Muller K.-R. A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring in IEEE Transactions on biomedical engineering. 2017. Vol. 64. No. 6. Р. 1199–1210. https://doi.org/10.1109/TBME.2016.2594127
dc.relation.references17. Aleksandrowicz A., Leonhardt S. Wireless and Non-contact ECG Measurement System – the «Aachen SmartChair» in Acta Polytechnica. 2007. Vol. 47. No. 4–5. Р. 68–71.
dc.relation.references18. Jun S., Kochan O., Chunzhi W., Kochan R. Theoretical and experimental research of error of method of thermocouple with controlled profile of temperature field. In Measurement Science Review. 2015. Vol. 15. No. 6. Р. 304–312. https://doi.org/10.1515/msr-2015-0041.
dc.relation.references19. Wang J., Kochan O., Przystupa K., Su J. Information-measuring System to Study the Thermocouple with Controlled Temperature Field. In Measurement Science Review. 2019. Vol. 19. No. 4. Р. 161–169. https://doi.org/10.2478/msr-2019-0022.
dc.relation.references20. e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi. URL: https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical (last access: 21.09.19).
dc.relation.references21. Orozco L. Synchronous Detectors Facilitate Precision, Low-Level Measurements. Analog Dialogue 48-11, November 2014. URL: https://www.analog.com/media/en/analog-dialogue/volume-48/number-4/articles/synchronous-detectors-facilitate-precision.pdf (last access: 29.09.19).
dc.relation.references22. He C.,Zhang L., Liu B., Xu Z., Zhang Z., A digital phase-sensitive detector for electrical impedance tomography. In 2008 World Automation Congress. WAC-2008. 28 Sept.–2 Oct. 2008. Р. 1–4.
dc.relation.references23. Zhengbing H., Kochan R., Kochan O., Jun S., Klym H. Method of integral nonlinearity testing and correction of multi-range ADC by direct measurement of output voltages of multi-resistors divider. In ACTA IMEKO. 2015. Vol. 4. No. 2. Р. 80–84. https://doi.org/10.21014/acta_imeko.v4i2.230.
dc.relation.references24. AN-1515 A comprehensive study of the howland current pump. Application Report SNOA474A – January 2008–Revised April 2013. Р. 1–17.
dc.relation.references25. Jian Q., Qun S., Xiaoliang W., Chong W., Linlin C. Design and analysis of a low cost wave generator based on direct digital synthesis. In Journal of Electrical and Computer Engineering. 2015. Vol. 17. Р. 1–17. https://doi.org/10.1155/2015/367302
dc.relation.referencesen1. Rangayyan R. Biomedical Signal Analysis. A Case-Study Approach. John Willey and Sons Inc. 2015. 552 p. DOI:10.1002/9781119068129. https://doi.org/10.1002/9781119068129
dc.relation.referencesen2. Dozorska O. The mathematical model of electroenсephalographic and electromyographic signals for the task of human communicative function restoration. Scientific Journal of TNTU. 2018. Vol. 92. No 4. Р. 126–132. https://doi.org/10.33108/visnyk_tntu2018.04.126
dc.relation.referencesen3. Zhevandrova YA., Syropyatov A., Buryak V. Kompleksnaya byometrycheskaya autentyfykatsyya lychnosty. Systemy obrobky informatsiyi. 2016. Vol. 141. Issue 4. Р. 104–107. [Іn Russian]. https://doi.org/10.1111/cas.12776
dc.relation.referencesen4. Niedenthal P. M., Halberstadt J. B., Margolin J., Innes-Ker A. H. Emotional state and the detection of change in facial expression of emotion in European Journal of Social Psychology. Vol. 2000. No. 30. Р. 211–222. URL: https://doi.org/10.1002/(SICI)1099-0992(200003/04)30:2<211::AID-EJSP988>3.0. CO;2-3.
dc.relation.referencesen5. Khoma Y. V., Stadnyk B. I., Mykyychuk M. M., Frish S. Metody i zasoby vymiryuvannya ta kompyuternoho opratsyuvannya biosyhnaliv. Vymiryuvalʹna tekhnika ta metrolohiya. 2018. Vol. 79. Issue 3. Р. 5–16. URL: https://doi.org/10.23939/istcmtm2018.03.005. [Іn Ukranian].
dc.relation.referencesen6. Pelc M., Khoma Y., Khoma V. ECG Signal as Robust and Reliable Biometric Marker: Datasets and Algorithms Comparison in Sensors. 2019. Vol. 19. No. 10. 2350. P. 1–8. https://doi.org/10.3390/s19102350.
dc.relation.referencesen7. Sverstiuk A. Comparative analysis of results of numerical simulation of cyber-physical biosensor systems on the basis of lattice differential equations. Scientific Journal of TNTU. 2019. Vol 95. No. 3. Р. 123–138. https://doi.org/10.33108/visnyk_tntu2019.03.123
dc.relation.referencesen8. Abakumov V. H., Hotra Z. Y., Zlepko S. M., et all. Reyestratsiya, obrobka ta kontrolʹ biomedychnykh syhnaliv. Vinnytsya: VNTU, 2011. 352 p. [Іn Ukranian].
dc.relation.referencesen9. Ogloblin S., Molchanov A. Instrumental'naya “detektsiya lzhi”. Yaroslavl': Nyuans, 2004. 411 p. [In Russian].
dc.relation.referencesen10. Jun S., Kochan O. Common mode noise rejection in measuring channels. In Instruments and Experimental Techniques. 2015. Vol. 58. No. 1. P. 86–89. URL:https://doi.org/10.1134/S0020441215010091.
dc.relation.referencesen11. Valverde E. R., Arini P. D., Bertran G. C., Biagetti M. O., Quinteiro R. A. Effect of electrode impedance in improved buffer amplifier for bioelectric recordings. Journal of Medical Engineering & Technology. 2004. Vol. 28. Issue 5. P. 217–222. https://doi.org/10.1080/03091900410001662323.
dc.relation.referencesen12. Storchun Y. V. Matviychuk Y. M. Biofizychni ta matematychni osnovy instrumentalʹnykh metodiv medychnoyi diahnostyky. Lʹviv: Rastr-7, 2009. 216 p. [In Ukranian].
dc.relation.referencesen13. Khoma V., Pelc M., Khoma Y. Artificial Neural Network Capability for Human Being Identification based on ECG Proceedings: the 23rd International Conference on Methods and Models in Automation and Robotics (Miedzyzdroje, 27–30 August 2018.). Miedzyzdroje, 2018. Р. 479–482. https://doi.org/10.1109/MMAR.2018.8486014
dc.relation.referencesen14. Khoma V., Pelc M., Khoma Y., Sabodashko D. Outlier Correction in ECG-Based Human Identification. Biomedical Engineering and Neuroscience. BCI 2018. Advances in Intelligent Systems and Computing. Vol. 720. 2018. P. 11–22. URL: https://doi.org/10.1007/978-3-319-75025-5_2.
dc.relation.referencesen15. Fratini A., Sansone M., Bifulco P., Cesarel M. Individual identification via electrocardiogram analysis. BioMed. Eng. OnLine. 2015. Vol. 14. Р. 1–23. https://doi.org/10.1186/s12938-015-0072-y.
dc.relation.referencesen16. Von Luhmann A., Wabnitz H., Sander T., Muller K.-R. A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring in IEEE Transactions on biomedical engineering. 2017. Vol. 64. No. 6. Р. 1199–1210. https://doi.org/10.1109/TBME.2016.2594127
dc.relation.referencesen17. Aleksandrowicz A., Leonhardt S. Wireless and Non-contact ECG Measurement System – the «Aachen SmartChair» in Acta Polytechnica. 2007. Vol. 47. No. 4–5. Р. 68–71.
dc.relation.referencesen18. Jun S., Kochan O., Chunzhi W., Kochan R. Theoretical and experimental research of error of method of thermocouple with controlled profile of temperature field. In Measurement Science Review. 2015. Vol. 15. No. 6. Р. 304–312. https://doi.org/10.1515/msr-2015-0041.
dc.relation.referencesen19. Wang J., Kochan O., Przystupa K., Su J. Information-measuring System to Study the Thermocouple with Controlled Temperature Field. In Measurement Science Review. 2019. Vol. 19. No. 4. Р. 161–169. https://doi.org/10.2478/msr-2019-0022.
dc.relation.referencesen20. e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi. URL: https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical (last access: 21.09.19).
dc.relation.referencesen21. Orozco L. Synchronous Detectors Facilitate Precision, Low-Level Measurements. Analog Dialogue 48-11, November 2014. URL: https://www.analog.com/media/en/analog-dialogue/volume-48/number-4/articles/synchronous-detectors-facilitate-precision.pdf (last access: 29.09.19).
dc.relation.referencesen22. He C.,Zhang L., Liu B., Xu Z., Zhang Z., A digital phase-sensitive detector for electrical impedance tomography. In 2008 World Automation Congress. WAC-2008. 28 Sept.–2 Oct. 2008. Р. 1–4.
dc.relation.referencesen23. Zhengbing H., Kochan R., Kochan O., Jun S., Klym H. Method of integral nonlinearity testing and correction of multi-range ADC by direct measurement of output voltages of multi-resistors divider. In ACTA IMEKO. 2015. Vol. 4. No. 2. Р. 80–84. https://doi.org/10.21014/acta_imeko.v4i2.230.
dc.relation.referencesen24. AN-1515 A comprehensive study of the howland current pump. Application Report SNOA474A – January 2008–Revised April 2013. Р. 1–17.
dc.relation.referencesen25. Jian Q., Qun S., Xiaoliang W., Chong W., Linlin C. Design and analysis of a low cost wave generator based on direct digital synthesis. In Journal of Electrical and Computer Engineering. 2015. Vol. 17. Р. 1–17. https://doi.org/10.1155/2015/367302
dc.identifier.citationenKhoma V., Khoma Y., Kochan O. (2020) Unification of the analog part of the biosignal processing channel. Scientific Journal of TNTU (Tern.), vol. 97, no 1, pp. 97-109.
dc.identifier.doihttps://doi.org/10.33108/visnyk_tntu2020.01.097
dc.contributor.affiliationНаціональний університет «Львівська політехніка», Львів, Україна
dc.contributor.affiliationШкола комп’ютерних наук, Університет Хубей, Ухань, Китай
dc.contributor.affiliationLviv Polytechnic National University, Lviv, Ukraine
dc.contributor.affiliationSchool of Computer Science, Hubei University of Technology, Wuhan, China
dc.citation.journalTitleВісник Тернопільського національного технічного університету
dc.citation.volume97
dc.citation.issue1
dc.citation.spage97
dc.citation.epage109
Enthalten in den Sammlungen:Вісник ТНТУ, 2020, № 1 (97)



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.