Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/30545

Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorСверстюк, Андрій Степанович-
dc.contributor.authorSverstiuk, Andrii-
dc.date.accessioned2020-01-17T20:49:42Z-
dc.date.available2020-01-17T20:49:42Z-
dc.date.created2019-06-25-
dc.date.issued2019-06-25-
dc.date.submitted2019-06-14-
dc.identifier.citationСверстюк А. С. Чисельне моделювання електричного сигналу в кіберфізичній імуносенсорній системі на прямокутній решітці в пакеті R / Андрій Сверстюк // Вісник ТНТУ. — Т. : ТНТУ, 2019. — Том 94. — № 2. — С. 96–103. — (Математичне моделювання. Математика).-
dc.identifier.issn2522-4433-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/30545-
dc.description.abstractПроведено чисельне моделювання електричного сигналу з перетворювача в кіберфізичній імуносенсорній системі на прямокутній решітці з використанням диференціальних рівнянь із запізненням за допомогою пакета R. Описано функціональні можливості пакета R як середовища програмування для статистичного аналізу даних, наведено корисні сайти, списки посилань і документація пакета R. У вигляді таблиці представлено назви параметрів моделі імуносенсора на прямокутній решітці з використанням диференціальних рівнянь із запізненням та їх числові значення в пакеті R. Реалізовано комп’ютерну програму «Чисельний аналіз електричного сигналу з перетворювача, який характеризує кількість флуоресціюючих пікселів в імуносенсорі на прямокутній решітці з використанням диференціальних рівнянь із запізненням». Розроблена комп’ютерна програма дає змогу провести дослідження стійкості імуносенсорних систем, які широко використовуються для отримання діагностичної інформації з метою оцінювання критичних станів при серцево-судинних захворюваннях, величини інсуліну при вимірюванні величини глюкози в крові та виявлення кількісних показників у деяких фармацевтичних сполуках. Наведено фрагмент лістингу комп’ютерної програми в пакеті R для отримання електричного сигналу з перетворювача, який характеризує кількість флуоресціюючих пікселів у кіберфізичній імуносенсорній системі на прямокутній решітці з використанням диференціальних рівнянь із запізненням. Проведено чисельне моделювання для електричного сигналу з перетворювача в імуносенсорі на прямокутній решітці з використанням диференціальних рівнянь із запізненням. Проаналізовано зміни отриманого електричного сигналу, які відповідають кількості флуоресціюючих пікселів у кіберфізичній імуносенсорній системі. Обгрунтовано використання пакета R як вільнопоширюваного програмного забезпечення з графічною візуалізацією результатів аналізу.-
dc.description.abstractThe numerical simulation of electric signal from the converter in the cyber-physical immunosensor system on rectangular lattice using differential equations with delay by means of R package is carried out in this paper. The functional features of R package as a programming environment for statistical data analysis are described, useful sites, references lists and documentation of R package are given. The names of parameters of the immunosensor model on rectangular lattice using the differential equations with delay and their numerical values in the package R are presented in the form of the table. The computer program «Numerical analysis of the electrical signal from the converter that characterizes the number of fluorescing pixels in the immunosensor on rectangular lattice using delayed differential equations» is implemented. The developed computer program makes it possible to carry out the investigation of the stability of immunosensory systems, which are widely used to obtain diagnostic information in order to evaluate critical states of cardiovascular disease, insulin values while measuring blood glucose values and identify quantitative indicators in some рharmaceutics compounds. The fragment of computer program listing in R package for obtaining the electrical signal from converter characterizing the number of fluorescent pixels in cyber-physical immunosensor system on rectangular lattice using delayed differential equations is presented. Numerical simulation for the electric signal from the converter in the immunosensor on rectangular lattice using the delayed differential equations is carried out. The changes of the received electrical signal corresponding to the number of fluorescent pixels in the cyber-physical immunosensory system are analyzed. The use of R package as a freely distributed software with graphical visualization of the analysis results is substantiated.-
dc.format.extent96-103-
dc.language.isouk-
dc.publisherТНТУ-
dc.publisherTNTU-
dc.relation.ispartofВісник Тернопільського національного технічного університету, 2 (94), 2019-
dc.relation.ispartofScientific Journal of the Ternopil National Technical University, 2 (94), 2019-
dc.relation.urihttps://doi.org/10.1016/j.mfglet.2014.12.001-
dc.relation.urihttps://doi.org/10.1109/-
dc.relation.urihttps://doi.org/10.1007/s10817-008-9103-8-
dc.relation.urihttps://doi.org/10.1038/nbt1127-
dc.relation.urihttps://doi.org/10.1021/pr060316r-
dc.relation.urihttps://doi.org/10.1007/s00726-010-0503-9-
dc.relation.urihttps://doi.org/10.1016/j.copbio.2005.06.005-
dc.relation.urihttps://doi.org/10.1016/S0956-5663(02)00182-3-
dc.relation.urihttps://doi.org/10.1016/j.bios.2016.06.080-
dc.relation.urihttps://doi.org/10.1016/j.bios.2009.02.016-
dc.relation.urihttps://doi.org/10.1016/j.cageo.2018.10.007-
dc.relation.urihttps://doi.org/10.1016/j.compbiomed.2016.09.010-
dc.relation.urihttps://doi.org/10.14232/ejqtde.2018.1.27-
dc.relation.urihttps://doi.org/10.1615/JAutomatInfScien.v50.i6.50-
dc.subjectкіберфізична система-
dc.subjectбіосенсор-
dc.subjectімуносенсор-
dc.subjectматематична модель-
dc.subjectдиференціальні рівняння-
dc.subjectпакет R-
dc.subjectcyber-physical system-
dc.subjectbiosensor-
dc.subjectimmunosensor-
dc.subjectmathematical model-
dc.subjectdifferential equation-
dc.subjectR package-
dc.titleЧисельне моделювання електричного сигналу в кіберфізичній імуносенсорній системі на прямокутній решітці в пакеті R-
dc.title.alternativeNumerical simulation of electric signal in the cyber-physical immunosensor system on rectangular lattice in R package-
dc.typeArticle-
dc.rights.holder© Тернопільський національний технічний університет імені Івана Пулюя, 2019-
dc.coverage.placenameТернопіль-
dc.coverage.placenameTernopil-
dc.format.pages8-
dc.subject.udc602.1-
dc.subject.udc519.85-
dc.subject.udc53.082.9-
dc.subject.udc616-07-
dc.relation.referencesen1. Lee E. A. Cyber physical systems: Design challenges. Center for Hybrid and Embedded Software Systems / EECS University of California, Berkeley, CA 94720, USA, Tech. Rep. UCB/EECS-2008-8, Jan. 2008. Р. 10.-
dc.relation.referencesen2. Lee J., Bagheri B., Kao H.-A. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters. Vol. 3. 2015. Pp. 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001-
dc.relation.referencesen3. Kim K.-D., Kumar P. R. Cyber–physical systems: A perspective at the centennial. Proceedings of the IEEE. Vol. 100. No. Special Centennial Issue. May 2012. Pp. 1287–1308. https://doi.org/10.1109/ JPROC.2012.2189792-
dc.relation.referencesen4. Platzer A. Differential dynamic logic for hybrid systems. Journal of Automated Reasoning. Vol. 41. No. 2. 2008. Pp. 143–189. https://doi.org/10.1007/s10817-008-9103-8-
dc.relation.referencesen5. Martsenyuk V. P., Klos-Witkowska A., Sverstiuk A. S. Study of classification of immunosensors from viewpoint of medical tasks. Medical informatics and engineering. 2018. № 1 (41). P. 13–19.-
dc.relation.referencesen6. Karunakaran Ch., Pandiaraj M., Santharaman P. Chapter 4 Immunosensors Biosensors and Bioelectronics. New York: Elsevier Inc, 124 p.-
dc.relation.referencesen7. Kaspar Binz H., Amstutz P., Plückthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Natural Biotechnology. 2005. V. 23 (10). P. 1257–1268. https://doi.org/10.1038/nbt1127-
dc.relation.referencesen8. Renberg B., Nordin J., Merca A., Uhlén M., Feldwisch J. Affibody molecules in protein capture microarrays: evaluation of multidomain ligands and different detection formats. Journal of Proteome Resourses. 2007. V. 6. Pр. 171–179. https://doi.org/10.1021/pr060316r-
dc.relation.referencesen9. Miao Z., Levi J., Cheng Z. Protein scaffold–based molecular probes for cancer molecular imaging. Amino Acids. 2010. V. 1. P. 9. https://doi.org/10.1007/s00726-010-0503-9-
dc.relation.referencesen10. Binz H. K., Engineered proteins as specific binding reagents. Current Opinion in Biotechnology. 2005. V. 16. P. 459–469. https://doi.org/10.1016/j.copbio.2005.06.005-
dc.relation.referencesen11. Dillon P. P., Daly S. J., Manning B. M., Kennedy R. O’ Immunoassay for the determination of morphine–3–glucuronide using a surface plasmon resonance–based biosensor. Biosensors and Bioelectronics. 2003. V. 18. Pр. 217–227. https://doi.org/10.1016/S0956-5663(02)00182-3-
dc.relation.referencesen12. Tang J., Huang Y., Zhang C., Liu H., Tang D. Amplified impedimetric immunosensor based on instant catalyst for sensitive determination of ochratoxin A. Biosensors and Bioelectronics. 2016. V. 86. P. 386–392. https://doi.org/10.1016/j.bios.2016.06.080-
dc.relation.referencesen13. Liu Y., Raymond R. L., Zenga X. Single Chain Fragment Variable Recombinant Antibody Functionalized Gold Nanoparticles for a Highly Sensitive Colorimetric Immunoassay. Biosensors and Bioelectronics. 2009. V. 24 (9). Pр. 2853–2857. https://doi.org/10.1016/j.bios.2009.02.016-
dc.relation.referencesen14. Jon Sáenz, Santos J. González-Rojí, Sheila Carreno-Madinabeitia, Gabriel Ibarra-Berastegi Analysis of atmospheric thermodynamics using the R package aiRthermo. Computers & Geosciences. Volume 122. 2019. Pр. 113–119. https://doi.org/10.1016/j.cageo.2018.10.007-
dc.relation.referencesen15. Carla A. R. S. Fontoura, Gastone Castellani, José C. M. Mombach, The R implementation of the CRAN package PATHChange, a tool to study genetic pathway alterations in transcriptomic data. Computers in Biology and Medicine. Volume 78. 2016. Pр. 76–80. https://doi.org/10.1016/j.compbiomed.2016.09.010-
dc.relation.referencesen16. Daniel Adler, Duncan Murdoch, et al. rgl: 3D Visualization Using OpenGL. R package version 0.96.0. 2016.-
dc.relation.referencesen17. Martsenyuk V., Klos-Witkowska A., Sverstiuk A. Stability, bifurcation and transition to chaos in a model of immunosensor based on lattice differential equations with delay. Electronic Journal of Qualitative Theory of Differential Equations. No. 2018 (27). P. 1–31. https://doi.org/10.14232/ejqtde.2018.1.27-
dc.relation.referencesen18. Martsenyuk V., Zinko P., Sverstiuk A. On Application of Latticed Differential Equations with a Delay for Immunosensor Modeling. Journal of Automation and Information Sciences. 2018. Volume 50. Issue 6. P. 55–65. https://doi.org/10.1615/JAutomatInfScien.v50.i6.50-
dc.identifier.citationenSverstiuk A. (2019) Chyselne modeliuvannia elektrychnoho syhnalu v kiberfizychnii imunosensornii systemi na priamokutnii reshittsi v paketi R [Numerical simulation of electric signal in the cyber-physical immunosensor system on rectangular lattice in R package]. Scientific Journal of TNTU (Tern.), vol. 94, no 2, pp. 96-103 [in Ukrainian].-
dc.identifier.doihttps://doi.org/10.33108/visnyk_tntu2019.02.096-
dc.contributor.affiliationТернопільський національний медичний університет імені І. Я. Горбачевського, Тернопіль, Україна-
dc.contributor.affiliationTernopil National Medical University, Ternopil, Ukraine-
dc.citation.journalTitleВісник Тернопільського національного технічного університету-
dc.citation.volume94-
dc.citation.issue2-
dc.citation.spage96-
dc.citation.epage103-
Розташовується у зібраннях:Вісник ТНТУ, 2019, № 2 (94)



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.