Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://elartu.tntu.edu.ua/handle/lib/22585
Full metadata record
DC pole | Hodnota | Jazyk |
---|---|---|
dc.contributor.author | Dubyk, Y. R. | |
dc.contributor.author | Orynyak, I. V. | |
dc.coverage.temporal | 19-22 вересня 2017 року | |
dc.coverage.temporal | 19-22 September 2017 | |
dc.date.accessioned | 2017-12-07T15:56:21Z | - |
dc.date.available | 2017-12-07T15:56:21Z | - |
dc.date.created | 2017-09-19 | |
dc.date.issued | 2017-09-19 | |
dc.identifier.citation | Dubyk Y. R. Dynamic transient analysis of the reactor core barrel due to sudden rupture of the recirculation line piping / Y. R. Dubyk, I. V. Orynyak // Праці конференції „Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування“, 19-22 вересня 2017 року. — Т. : ТНТУ, 2017. — С. 187–190. — (Оцінювання залишкового ресурсу елементів конструкцій). | |
dc.identifier.isbn | 978-966-305-083-6 | |
dc.identifier.uri | http://elartu.tntu.edu.ua/handle/lib/22585 | - |
dc.description.abstract | We have analyzed sudden rupture of the primary cooling loop which causes a water hammer event for the reactor core barrel. Assuming that core barrel is a thin shell, we have performed dynamic stress and strain calculations in the frequency domain. The Duhamel integral was used to calculate the transient response of a shell to an impulse load caused by the water hammer event. The results obtained were used to estimate structural stability of the core barrel | |
dc.format.extent | 187-190 | |
dc.language.iso | en | |
dc.publisher | ТНТУ | |
dc.publisher | TNTU | |
dc.relation.ispartof | Праці Ⅴ Міжнародної науково-технічної конференції „Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування“ | |
dc.relation.ispartof | Proceeding of the International Conference “In-Service Damage of Materials, its Diagnostics and Prediction” | |
dc.title | Dynamic transient analysis of the reactor core barrel due to sudden rupture of the recirculation line piping | |
dc.type | Conference Abstract | |
dc.rights.holder | © Тернопільський національний технічний університет імені Івана Пулюя, 2017; © Ternopil Ivan Pulu’uj National Technical University, 2017 | |
dc.coverage.placename | Тернопіль | |
dc.coverage.placename | Ternopil | |
dc.format.pages | 4 | |
dc.relation.references | 1. NUREG-0609, “Asymmetric Blowdown Loads on PWR (Pressurized-Water-Reactor) Primary Systems: Resolution of Generic Task Action Plan A-2,” Nuclear Regulatory Commission, January 1981. | |
dc.relation.references | 2. BARC/1998/E/032, Fluid Structure Interaction Studies on Acoustic Load Response of Light Water NuclearReactor Core Internals Under Blowdown Condition, Bhabha Atomic Research Centre, 1998, Mumbai, India. | |
dc.relation.references | 3. “Coolant Blowdown Studies of a Reactor Simulator Vessel Containing a Perforated Sieve Plate Separator,” AEC Research and Development Report, Battelle Memorial Institute Pacific Northwest Laboratories, BNWL-1463. | |
dc.relation.references | 4. Sommerville, D., Karpanan, K., “Boiling Water Reactor Core Shroud Acoustic Loads Resulting from a Recirculation Outlet Line Break Loss of Coolant Accident – A Case Study,” 2011 ASME PVP Conference, PVP2011-57743. | |
dc.relation.references | 5. Antti Timperi et al “Validation of fluid-structure interaction calculations in a large break loss of coolant accident” ICONE1648206 May 1115, 2008, Orlando, Florida, USA. | |
dc.relation.references | 6. Y. Murakami, (Editor-in-chief) //Stress Intensity Factors Handbook Volume 2, Pergamon Press (1987). | |
dc.relation.references | 7. Novozhilov, V.V., 1970. Thin Shell Theory. Wolters-Noordhoff, Groningen. | |
dc.relation.references | 8. Dubyk I. R. Analysis of water hammer due to sudden rupture of reactor coolant system/I. R. Dubyk, I. V. Orynyak // Proceedings of the ASME 2016 Pressure Vessels and Piping Conference PVP2016-63589. — July 17-21, 2016, Vancouver. — 9p | |
dc.relation.references | 9. M. Bergman“Stress intensity factors for circumferential surface cracks in pipes”, Fatigue Fract. Eng. Mater. Struct Vol 18. No10 pp.1155-1172, 1995 | |
dc.relation.references | 10. Little, E. A., “Dynamic J-Integral Toughness and Fractographic Studies of Fast Reactor IrradiatedType 321 Stainless Steel,” Effects of Radiation on Material, Properties: 12th Intl. Symp., ASTM STP 870, American Society of Testing and Materials, Philadelphia, PA, pp. 563-579, 1985. | |
dc.relation.referencesen | 1. NUREG-0609, "Asymmetric Blowdown Loads on PWR (Pressurized-Water-Reactor) Primary Systems: Resolution of Generic Task Action Plan A-2," Nuclear Regulatory Commission, January 1981. | |
dc.relation.referencesen | 2. BARC/1998/E/032, Fluid Structure Interaction Studies on Acoustic Load Response of Light Water NuclearReactor Core Internals Under Blowdown Condition, Bhabha Atomic Research Centre, 1998, Mumbai, India. | |
dc.relation.referencesen | 3. "Coolant Blowdown Studies of a Reactor Simulator Vessel Containing a Perforated Sieve Plate Separator," AEC Research and Development Report, Battelle Memorial Institute Pacific Northwest Laboratories, BNWL-1463. | |
dc.relation.referencesen | 4. Sommerville, D., Karpanan, K., "Boiling Water Reactor Core Shroud Acoustic Loads Resulting from a Recirculation Outlet Line Break Loss of Coolant Accident – A Case Study," 2011 ASME PVP Conference, PVP2011-57743. | |
dc.relation.referencesen | 5. Antti Timperi et al "Validation of fluid-structure interaction calculations in a large break loss of coolant accident" ICONE1648206 May 1115, 2008, Orlando, Florida, USA. | |
dc.relation.referencesen | 6. Y. Murakami, (Editor-in-chief) //Stress Intensity Factors Handbook Volume 2, Pergamon Press (1987). | |
dc.relation.referencesen | 7. Novozhilov, V.V., 1970. Thin Shell Theory. Wolters-Noordhoff, Groningen. | |
dc.relation.referencesen | 8. Dubyk I. R. Analysis of water hammer due to sudden rupture of reactor coolant system/I. R. Dubyk, I. V. Orynyak, Proceedings of the ASME 2016 Pressure Vessels and Piping Conference PVP2016-63589, July 17-21, 2016, Vancouver, 9p | |
dc.relation.referencesen | 9. M. Bergman"Stress intensity factors for circumferential surface cracks in pipes", Fatigue Fract. Eng. Mater. Struct Vol 18. No10 pp.1155-1172, 1995 | |
dc.relation.referencesen | 10. Little, E. A., "Dynamic J-Integral Toughness and Fractographic Studies of Fast Reactor IrradiatedType 321 Stainless Steel," Effects of Radiation on Material, Properties: 12th Intl. Symp., ASTM STP 870, American Society of Testing and Materials, Philadelphia, PA, pp. 563-579, 1985. | |
dc.identifier.citationen | Dubyk Y. R., Orynyak I. V. (2017) Dynamic transient analysis of the reactor core barrel due to sudden rupture of the recirculation line piping. Proceedings of the Conference „In-service damage of materials, its diagnostics and prediction“ (Tern., 19-22 September 2017), pp. 187-190 [in English]. | |
dc.contributor.affiliation | G.S. Pisarenko Institute for Problems of Strength, National Academy of Sciences of Ukraine | |
dc.citation.journalTitle | Праці Ⅴ Міжнародної науково-технічної конференції „Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування“ | |
dc.citation.spage | 187 | |
dc.citation.epage | 190 | |
dc.citation.conference | Ⅴ Міжнародна науково-технічна конференція „Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування“ | |
Vyskytuje se v kolekcích: | Ⅴ Міжнародна науково-технічна конференція „Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування“ (2017) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
DMDP_2017_Dubyk_Y_R-Dynamic_transient_analysis_187-190.pdf | 771,51 kB | Adobe PDF | Zobrazit/otevřít | |
DMDP_2017_Dubyk_Y_R-Dynamic_transient_analysis_187-190.djvu | 78,34 kB | DjVu | Zobrazit/otevřít | |
DMDP_2017_Dubyk_Y_R-Dynamic_transient_analysis_187-190__COVER.jpg | 189,9 kB | JPEG | Zobrazit/otevřít |
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.