Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/123456789/16764

Назва: Fatigue crack growth. Overload and underload interactions
Автори: Yasniy, P.
Pyndus, Yu.
Fostyk, V.
Shulgan, I.
Приналежність: Ternopil Ivan Pul’uj State Technical University, Ukraine
Бібліографічний опис: Fatigue crack growth. Overload and underload interactions / P. Yasniy, Yu. Pyndus, V. Fostyk, I. Shulgan // Механічна втома металів. Праці 13-го міжнародного колоквіуму (МВМ-2006), 25-28 вересня 2006 року — Т. : ТДТУ, 2006 — С. 49-56. — (Пленарні доповіді).
Bibliographic description: Yasniy P., Pyndus Yu., Fostyk V., Shulgan I. (2006) Fatigue crack growth. Overload and underload interactions. Mechanical Fatigue of Metals: Proceeding of the 13-th International Colloquium (MFM) (Tern., 25-28 September 2006), pp. 49-56 [in English].
Є частиною видання: ⅩⅢ міжнародний колоквіум „Механічна втома металів“
ⅩⅢ Internation Colloquium "Mechanical fatigue of metals"
Конференція/захід: 13-ий міжнародний колоквіум (МВМ-2006) „Механічна втома металів“
Журнал/збірник: ⅩⅢ міжнародний колоквіум „Механічна втома металів“
Дата публікації: 25-вер-2006
Дата внесення: 5-чер-2016
Видавництво: ТДТУ
TDTU
Місце видання, проведення: Україна, Тернопіль
Ukraine, Ternopil
Часове охоплення: 25-28 вересня 2006 року
25-28 September 2006
Теми: fatigue crack growth
overload
underload
retardation
residual stresses
Кількість сторінок: 8
Діапазон сторінок: 49-56
Початкова сторінка: 49
Кінцева сторінка: 56
Короткий огляд (реферат): This article deals with the study of the overload- underload interactions effects on fatigue crack growth (FCG) rate. With the purpose of understanding of overload-underload interaction mechanisms the FEM modeling of stress-strain state at the crack tip was investigated. FCG tests with single tensile peak overloads and complex overloads- underloads have been performed in D16chT (analogue of American 2024 T3) aluminium alloy. Using the assumption of the principal role of residual stresses (as a result of plastic strain at crack tip) in crack growth retardation and acceleration, the FCG interaction model was developed. Based on the proposed FCG interaction model shows good correlation with calculated and experimental data.
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/123456789/16764
ISBN: 966-305-027-6
Власник авторського права: © Тернопільський державний технічний університет імені Івана Пулюя
Перелік літератури: 1. S. Suresh. Micromechanisms of fatigue crack growth retardation following overloads // Eng. Fract. Mech. – 1983. - Vol18. - 577–593.
2. Злочевский А.Б., Шувалов А.Н. Факторы тормозящие рост усталостных трещин после перегрузок // Физ.-хим. механика материалов. - 1985. - №2. – С.41-46.
3. Количественная фрактография. Усталостное разрушение / Иванова В.С., Шанявский А.А. – Челябинск: Металлургия, 1988. – 400 с.
4. Skorupa M. Load interaction effects during fatigue crack growth under variable amplitude loading – A litterature review. Part I : Empirical trends : Fatigue and Fracture of Engineering materials and structures. 1998, (21), 987-1006.
5. Skorupa M. Load interaction effects during fatigue crack growth under variable amplitude loading – A litterature review. Part II : Qualitative interpretation: Fatigue and Fracture of Engineering materials and structures, 1999, (22). 905-926.
6. K. Sadananda, A.K. Vasudevan, R.L. Holtz, E.U. Lee. Analysis of overload effects and related phenomena // Int. J. of Fatigue: Elsevier, 1999. - Vol.21. - P. 233-246.
7. J.C. Newman, Jr. A crack-closure model for predicting fatigue crack growth under Aircraft spectrum loading // Methods and models for predicting fatigue crack growth under random loading. - Philadelphia(Pa): ASTM STP No748, 1981, P. 53-84.
8. N.A. Fleek. Influence of stress state on crack growth retardation // Basic questions in fatigue. - Philadelphia(Pa): ASTM STP No924, 1988, P. 157-183.
9. P.V. Yasniy, Yu.I. Pyndus, O.I. Semenets. Influence of overloading on fatigue crack growth at various stress ratios // Visnyk of the Ternopil State Technical University.—Ternopil, TSTU – 2001. – Vol.6, №4. P. 5-12. (in Ukrainian).
10. O.E. Wheeler. Spectrum loading and crack growth // Journal of basic engineering. – ASME. – 1972. – P. 181-186.
11. J.P. Gallagher. A generalized development of yield-zone models. – AFFDL-TM-74-28-FBR. – 1974.
12. Johnson W. S. Multi-Parameter Yield Zone Model for Predicting Spectrum Crack Growth // Methods and Models for Predicting Fatigue Crack Growth under Random Loading.- Philadelphia(Pa): ASTM STP No748, 1981, P. 85-102.
13. Yu.I. Pyndus, P.V. Yasniy. The model of fatigue crack growth after single overload // Visnyk of the Zytomyr engineering- technology institute.-2002.-№1.-P.28-36. (In Ukrainian).
14. P. Yasniy, Yu. Pyndus. Prediction of Fatigue Crack Growth Rate after Single Overload at Different Stress Ratios // Proceedings of the 14th Bienniel Conference on fracture – ECF14. – Vol.3. – P.609-616.
15. Yu.I. Pyndus. Prediction of fatigue crack growth at variable amplitude loading in aluminum alloy D16T // Visnyk of the Ternopil State Technical University.—Ternopil, TSTU – 2002. – Vol.7, №1. P. 11-19. (in Ukrainian).
16. McEvily AJ, Yang Z. The nature of the two opening levels following an overload in fatigue crack growth // Metallurgical Transactions. – 1990. - 21A: 2717–27.
17. Makabe, C., Purnowidodo, A., and McEvily, A. J., “Effects of Surface Deformation and Crack Closure on Fatigue Crack Propagation after Overloading and Underloading,” Int. J.Fatigue, Vol. 26, 2004, pp. 1341–1348.
18. J. B. De Ionge, D. Schutz, H. Lowak, I. Schijve. A standardized load sequence for flight simulation tests on aircraft wing structures // LBF – Bericht FB-106, NLR TR 73029U. – 1973. - P. 1-17.
19. P.V. Yasniy, Yu.I. Pyndus. Influence of single overload on fatigue crack growth in aluminum alloy D16chT // Physico-chemical mechanics of materials.-2002.-№2.-P.57-60. (in Ukrainian).
20. ANSYS 9.0, Users Guide.
References: 1. S. Suresh. Micromechanisms of fatigue crack growth retardation following overloads, Eng. Fract. Mech, 1983, Vol18, 577–593.
2. Zlochevskii A.B., Shuvalov A.N. Faktory tormoziashchie rost ustalostnykh treshchin posle perehruzok, Fiz.-khim. mekhanika materialov, 1985, No 2, P.41-46.
3. Kolichestvennaia fraktohrafiia. Ustalostnoe razrushenie, Ivanova V.S., Shaniavskii A.A, Cheliabinsk: Metallurhiia, 1988, 400 p.
4. Skorupa M. Load interaction effects during fatigue crack growth under variable amplitude loading – A litterature review. Part I : Empirical trends : Fatigue and Fracture of Engineering materials and structures. 1998, (21), 987-1006.
5. Skorupa M. Load interaction effects during fatigue crack growth under variable amplitude loading – A litterature review. Part II : Qualitative interpretation: Fatigue and Fracture of Engineering materials and structures, 1999, (22). 905-926.
6. K. Sadananda, A.K. Vasudevan, R.L. Holtz, E.U. Lee. Analysis of overload effects and related phenomena, Int. J. of Fatigue: Elsevier, 1999, Vol.21, P. 233-246.
7. J.C. Newman, Jr. A crack-closure model for predicting fatigue crack growth under Aircraft spectrum loading, Methods and models for predicting fatigue crack growth under random loading, Philadelphia(Pa): ASTM STP No748, 1981, P. 53-84.
8. N.A. Fleek. Influence of stress state on crack growth retardation, Basic questions in fatigue, Philadelphia(Pa): ASTM STP No924, 1988, P. 157-183.
9. P.V. Yasniy, Yu.I. Pyndus, O.I. Semenets. Influence of overloading on fatigue crack growth at various stress ratios, Visnyk of the Ternopil State Technical University.-Ternopil, TSTU – 2001, Vol.6, No 4. P. 5-12. (in Ukrainian).
10. O.E. Wheeler. Spectrum loading and crack growth, Journal of basic engineering, ASME, 1972, P. 181-186.
11. J.P. Gallagher. A generalized development of yield-zone models, AFFDL-TM-74-28-FBR, 1974.
12. Johnson W. S. Multi-Parameter Yield Zone Model for Predicting Spectrum Crack Growth, Methods and Models for Predicting Fatigue Crack Growth under Random Loading, Philadelphia(Pa): ASTM STP No748, 1981, P. 85-102.
13. Yu.I. Pyndus, P.V. Yasniy. The model of fatigue crack growth after single overload, Visnyk of the Zytomyr engineering- technology institute.-2002.-No 1.-P.28-36. (In Ukrainian).
14. P. Yasniy, Yu. Pyndus. Prediction of Fatigue Crack Growth Rate after Single Overload at Different Stress Ratios, Proceedings of the 14th Bienniel Conference on fracture – ECF14, Vol.3, P.609-616.
15. Yu.I. Pyndus. Prediction of fatigue crack growth at variable amplitude loading in aluminum alloy D16T, Visnyk of the Ternopil State Technical University.-Ternopil, TSTU – 2002, Vol.7, No 1. P. 11-19. (in Ukrainian).
16. McEvily AJ, Yang Z. The nature of the two opening levels following an overload in fatigue crack growth, Metallurgical Transactions, 1990, 21A: 2717–27.
17. Makabe, C., Purnowidodo, A., and McEvily, A. J., "Effects of Surface Deformation and Crack Closure on Fatigue Crack Propagation after Overloading and Underloading," Int. J.Fatigue, Vol. 26, 2004, pp. 1341–1348.
18. J. B. De Ionge, D. Schutz, H. Lowak, I. Schijve. A standardized load sequence for flight simulation tests on aircraft wing structures, LBF – Bericht FB-106, NLR TR 73029U, 1973, P. 1-17.
19. P.V. Yasniy, Yu.I. Pyndus. Influence of single overload on fatigue crack growth in aluminum alloy D16chT, Physico-chemical mechanics of materials.-2002.-No 2.-P.57-60. (in Ukrainian).
20. ANSYS 9.0, Users Guide.
Тип вмісту: Article
Розташовується у зібраннях:13-ий міжнародний колоквіум (МВМ-2006) „Механічна втома металів“ (2006)



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.