Ezzel az azonosítóval hivatkozhat erre a dokumentumra forrásmegjelölésben vagy hiperhivatkozás esetén: http://elartu.tntu.edu.ua/handle/123456789/16764

Title: Fatigue crack growth. Overload and underload interactions
Authors: Yasniy, P.
Pyndus, Yu.
Fostyk, V.
Shulgan, I.
Affiliation: Ternopil Ivan Pul’uj State Technical University, Ukraine
Bibliographic description (Ukraine): Fatigue crack growth. Overload and underload interactions / P. Yasniy, Yu. Pyndus, V. Fostyk, I. Shulgan // Механічна втома металів. Праці 13-го міжнародного колоквіуму (МВМ-2006), 25-28 вересня 2006 року — Т. : ТДТУ, 2006 — С. 49-56. — (Пленарні доповіді).
Bibliographic description (International): Yasniy P., Pyndus Yu., Fostyk V., Shulgan I. (2006) Fatigue crack growth. Overload and underload interactions. Mechanical Fatigue of Metals: Proceeding of the 13-th International Colloquium (MFM) (Tern., 25-28 September 2006), pp. 49-56 [in English].
Is part of: ⅩⅢ міжнародний колоквіум „Механічна втома металів“
ⅩⅢ Internation Colloquium "Mechanical fatigue of metals"
Conference/Event: 13-ий міжнародний колоквіум (МВМ-2006) „Механічна втома металів“
Journal/Collection: ⅩⅢ міжнародний колоквіум „Механічна втома металів“
Issue Date: 25-sze-2006
Date of entry: 5-jún-2016
Publisher: ТДТУ
TDTU
Place of the edition/event: Україна, Тернопіль
Ukraine, Ternopil
Temporal Coverage: 25-28 вересня 2006 року
25-28 September 2006
Keywords: fatigue crack growth
overload
underload
retardation
residual stresses
Number of pages: 8
Page range: 49-56
Start page: 49
End page: 56
Abstract: This article deals with the study of the overload- underload interactions effects on fatigue crack growth (FCG) rate. With the purpose of understanding of overload-underload interaction mechanisms the FEM modeling of stress-strain state at the crack tip was investigated. FCG tests with single tensile peak overloads and complex overloads- underloads have been performed in D16chT (analogue of American 2024 T3) aluminium alloy. Using the assumption of the principal role of residual stresses (as a result of plastic strain at crack tip) in crack growth retardation and acceleration, the FCG interaction model was developed. Based on the proposed FCG interaction model shows good correlation with calculated and experimental data.
URI: http://elartu.tntu.edu.ua/handle/123456789/16764
ISBN: 966-305-027-6
Copyright owner: © Тернопільський державний технічний університет імені Івана Пулюя
References (Ukraine): 1. S. Suresh. Micromechanisms of fatigue crack growth retardation following overloads // Eng. Fract. Mech. – 1983. - Vol18. - 577–593.
2. Злочевский А.Б., Шувалов А.Н. Факторы тормозящие рост усталостных трещин после перегрузок // Физ.-хим. механика материалов. - 1985. - №2. – С.41-46.
3. Количественная фрактография. Усталостное разрушение / Иванова В.С., Шанявский А.А. – Челябинск: Металлургия, 1988. – 400 с.
4. Skorupa M. Load interaction effects during fatigue crack growth under variable amplitude loading – A litterature review. Part I : Empirical trends : Fatigue and Fracture of Engineering materials and structures. 1998, (21), 987-1006.
5. Skorupa M. Load interaction effects during fatigue crack growth under variable amplitude loading – A litterature review. Part II : Qualitative interpretation: Fatigue and Fracture of Engineering materials and structures, 1999, (22). 905-926.
6. K. Sadananda, A.K. Vasudevan, R.L. Holtz, E.U. Lee. Analysis of overload effects and related phenomena // Int. J. of Fatigue: Elsevier, 1999. - Vol.21. - P. 233-246.
7. J.C. Newman, Jr. A crack-closure model for predicting fatigue crack growth under Aircraft spectrum loading // Methods and models for predicting fatigue crack growth under random loading. - Philadelphia(Pa): ASTM STP No748, 1981, P. 53-84.
8. N.A. Fleek. Influence of stress state on crack growth retardation // Basic questions in fatigue. - Philadelphia(Pa): ASTM STP No924, 1988, P. 157-183.
9. P.V. Yasniy, Yu.I. Pyndus, O.I. Semenets. Influence of overloading on fatigue crack growth at various stress ratios // Visnyk of the Ternopil State Technical University.—Ternopil, TSTU – 2001. – Vol.6, №4. P. 5-12. (in Ukrainian).
10. O.E. Wheeler. Spectrum loading and crack growth // Journal of basic engineering. – ASME. – 1972. – P. 181-186.
11. J.P. Gallagher. A generalized development of yield-zone models. – AFFDL-TM-74-28-FBR. – 1974.
12. Johnson W. S. Multi-Parameter Yield Zone Model for Predicting Spectrum Crack Growth // Methods and Models for Predicting Fatigue Crack Growth under Random Loading.- Philadelphia(Pa): ASTM STP No748, 1981, P. 85-102.
13. Yu.I. Pyndus, P.V. Yasniy. The model of fatigue crack growth after single overload // Visnyk of the Zytomyr engineering- technology institute.-2002.-№1.-P.28-36. (In Ukrainian).
14. P. Yasniy, Yu. Pyndus. Prediction of Fatigue Crack Growth Rate after Single Overload at Different Stress Ratios // Proceedings of the 14th Bienniel Conference on fracture – ECF14. – Vol.3. – P.609-616.
15. Yu.I. Pyndus. Prediction of fatigue crack growth at variable amplitude loading in aluminum alloy D16T // Visnyk of the Ternopil State Technical University.—Ternopil, TSTU – 2002. – Vol.7, №1. P. 11-19. (in Ukrainian).
16. McEvily AJ, Yang Z. The nature of the two opening levels following an overload in fatigue crack growth // Metallurgical Transactions. – 1990. - 21A: 2717–27.
17. Makabe, C., Purnowidodo, A., and McEvily, A. J., “Effects of Surface Deformation and Crack Closure on Fatigue Crack Propagation after Overloading and Underloading,” Int. J.Fatigue, Vol. 26, 2004, pp. 1341–1348.
18. J. B. De Ionge, D. Schutz, H. Lowak, I. Schijve. A standardized load sequence for flight simulation tests on aircraft wing structures // LBF – Bericht FB-106, NLR TR 73029U. – 1973. - P. 1-17.
19. P.V. Yasniy, Yu.I. Pyndus. Influence of single overload on fatigue crack growth in aluminum alloy D16chT // Physico-chemical mechanics of materials.-2002.-№2.-P.57-60. (in Ukrainian).
20. ANSYS 9.0, Users Guide.
References (International): 1. S. Suresh. Micromechanisms of fatigue crack growth retardation following overloads, Eng. Fract. Mech, 1983, Vol18, 577–593.
2. Zlochevskii A.B., Shuvalov A.N. Faktory tormoziashchie rost ustalostnykh treshchin posle perehruzok, Fiz.-khim. mekhanika materialov, 1985, No 2, P.41-46.
3. Kolichestvennaia fraktohrafiia. Ustalostnoe razrushenie, Ivanova V.S., Shaniavskii A.A, Cheliabinsk: Metallurhiia, 1988, 400 p.
4. Skorupa M. Load interaction effects during fatigue crack growth under variable amplitude loading – A litterature review. Part I : Empirical trends : Fatigue and Fracture of Engineering materials and structures. 1998, (21), 987-1006.
5. Skorupa M. Load interaction effects during fatigue crack growth under variable amplitude loading – A litterature review. Part II : Qualitative interpretation: Fatigue and Fracture of Engineering materials and structures, 1999, (22). 905-926.
6. K. Sadananda, A.K. Vasudevan, R.L. Holtz, E.U. Lee. Analysis of overload effects and related phenomena, Int. J. of Fatigue: Elsevier, 1999, Vol.21, P. 233-246.
7. J.C. Newman, Jr. A crack-closure model for predicting fatigue crack growth under Aircraft spectrum loading, Methods and models for predicting fatigue crack growth under random loading, Philadelphia(Pa): ASTM STP No748, 1981, P. 53-84.
8. N.A. Fleek. Influence of stress state on crack growth retardation, Basic questions in fatigue, Philadelphia(Pa): ASTM STP No924, 1988, P. 157-183.
9. P.V. Yasniy, Yu.I. Pyndus, O.I. Semenets. Influence of overloading on fatigue crack growth at various stress ratios, Visnyk of the Ternopil State Technical University.-Ternopil, TSTU – 2001, Vol.6, No 4. P. 5-12. (in Ukrainian).
10. O.E. Wheeler. Spectrum loading and crack growth, Journal of basic engineering, ASME, 1972, P. 181-186.
11. J.P. Gallagher. A generalized development of yield-zone models, AFFDL-TM-74-28-FBR, 1974.
12. Johnson W. S. Multi-Parameter Yield Zone Model for Predicting Spectrum Crack Growth, Methods and Models for Predicting Fatigue Crack Growth under Random Loading, Philadelphia(Pa): ASTM STP No748, 1981, P. 85-102.
13. Yu.I. Pyndus, P.V. Yasniy. The model of fatigue crack growth after single overload, Visnyk of the Zytomyr engineering- technology institute.-2002.-No 1.-P.28-36. (In Ukrainian).
14. P. Yasniy, Yu. Pyndus. Prediction of Fatigue Crack Growth Rate after Single Overload at Different Stress Ratios, Proceedings of the 14th Bienniel Conference on fracture – ECF14, Vol.3, P.609-616.
15. Yu.I. Pyndus. Prediction of fatigue crack growth at variable amplitude loading in aluminum alloy D16T, Visnyk of the Ternopil State Technical University.-Ternopil, TSTU – 2002, Vol.7, No 1. P. 11-19. (in Ukrainian).
16. McEvily AJ, Yang Z. The nature of the two opening levels following an overload in fatigue crack growth, Metallurgical Transactions, 1990, 21A: 2717–27.
17. Makabe, C., Purnowidodo, A., and McEvily, A. J., "Effects of Surface Deformation and Crack Closure on Fatigue Crack Propagation after Overloading and Underloading," Int. J.Fatigue, Vol. 26, 2004, pp. 1341–1348.
18. J. B. De Ionge, D. Schutz, H. Lowak, I. Schijve. A standardized load sequence for flight simulation tests on aircraft wing structures, LBF – Bericht FB-106, NLR TR 73029U, 1973, P. 1-17.
19. P.V. Yasniy, Yu.I. Pyndus. Influence of single overload on fatigue crack growth in aluminum alloy D16chT, Physico-chemical mechanics of materials.-2002.-No 2.-P.57-60. (in Ukrainian).
20. ANSYS 9.0, Users Guide.
Content type: Article
Ebben a gyűjteményben:13-ий міжнародний колоквіум (МВМ-2006) „Механічна втома металів“ (2006)



Minden dokumentum, ami a DSpace rendszerben szerepel, szerzői jogokkal védett. Minden jog fenntartva!