Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/38123
Назва: Підхід до генерації значень параметрів мікроклімату для моделей приміщень
Інші назви: Approach to the generating of microclimate parameters for building models
Автори: Ясіновська, Наталія Ігорівна
Yasinovska, Nataliya Ihorivna
Приналежність: ТНТУ ім. І. Пулюя, Факультет комп’ютерно-інформаційних систем і програмної інженерії, Кафедра комп’ютерних наук, м. Тернопіль, Україна
Бібліографічний опис: Ясіновська Н.І. Підхід до генерації значень параметрів мікроклімату для моделей приміщень: кваліфікаційна робота освітнього рівня «Бакалавр» «122 – комп’ютерні науки» /Н. І. Ясіновська – Тернопіль : ТНТУ, 2022. – 68 с.
Дата публікації: 13-чер-2022
Дата подання: 29-тра-2022
Дата внесення: 22-чер-2022
Країна (код): UA
Місце видання, проведення: ТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Україна
Науковий керівник: Гром’як, Роман Сильвестрович
Члени комітету: Карпінський, Микола Петрович
УДК: 004.8
Теми: моделювання погоди
weather modeling
ряди даних
data series
історичні дані
historical data
прогнозування
forecasting
модель мікроклімату
microclimate model
Короткий огляд (реферат): У даній роботі представлена перша комплексна оцінка методів створення моделей погодних умов як системи змінних для використання в моделюванні систем штучного клімату будівель. Ми проводимо аналіз різних методологій моделювання та їх основних проблем і обмежень. Виконано також обговорення нових викликів, таких як опрацювання невизначеностей, врахування острівців тепла у населених пунктах, зміна клімату та різні екстремальні кліматичні явища. На основі цього аналізу запропоновано моделі щодо наступного покоління файлів погоди для моделювання будівель. Введено перелік вимог до файлів погоди і порівняння найсучаснішого стану за допомогою картографування. Виявлено, що дві області, які найбільше потребують уваги, це створення файлів погоди для міського ландшафту та файлів, спеціально розроблених для перевірки будівель на відповідність критеріям захворюваності, смертності та збоїв систем обслуговування та підтримки будівель. Практичне застосування розробки може бути ключем до проектування стійких, комфортних будівель. Ця робота надає комплексну оцінку технічних вимог до моделей погодних умов, щоб забезпечити хорошу роботу будівель як у поточних, так і в майбутніх кліматичних умовах. This paper presents the first comprehensive assessment of methods for creating models of weather conditions as a system of variables for use in modeling artificial climate systems of buildings. We analyze various modeling methodologies and their main problems and restrictions. New challenges were also discussed, such as dealing with uncertainties, taking into account heat islands in human settlements, climate change and various extreme climatic events. Based on this analysis, models for the next generation of weather files for building modeling are offered. A list of requirements for weather files and a comparison of the latest status with the help of mapping is introduced. The two areas that need the most attention are identified: the creation of weather files for the urban landscape and files specifically designed to check buildings for compliance with the criteria of morbidity, mortality and failures of building maintenance and support systems. The practical use of design can be the key to designing of sustainable, comfortable buildings. This work provides a comprehensive assessment of the technical requirements for weather models to ensure good performance of buildings in both modern and upcoming climates.
Зміст: ВСТУП 4 РОЗДІЛ 1. ПОСТАНОВКА ЗАДАЧІ МОДЕЛЮВАННЯ ПОГОДНИХ УМОВ ДЛЯ БУДИНКІВ 7 1.1 Формат файлів погоди 7 1.2 Файли для типових погодних умов 8 1.3 Файли для екстремальних погодних умов 13 1.4 Обмеження використання даних спостережень для типових і екстремальних погодних файлів 16 РОЗДІЛ 2. СИНТЕЗ ПОГОДНИХ УМОВ 19 2.1 Найбільш поширені генератори погоди 20 2.2 Обмеження погодних генераторів 24 РОЗДІЛ 3. МОДЕЛЮВАННЯ ПОГОДНИХ УМОВ ДЛЯ НАЙБЛИЖЧОГО МАЙБУТНЬОГО 27 3.1 Кліматичні прогнози 28 3.2 Перетворення часових рядів погодних даних 31 3.3 Обмеження майбутньої погоди 33 РОЗДІЛ 4. ВРАХУВАННЯ ЕКСТРЕМАЛЬНИХ ПОГОДНИХ ЯВИЩ 36 4.1 Моделювання екстремальних подій 36 4.2 Екстремальні події в будівлях 37 РОЗДІЛ 5. БЕЗПЕКА ЖИТТЄДІЯЛЬНОСТІ, ОСНОВИ ХОРОНИ ПРАЦІ 40 5.1 Поняття та об’єкт аналізу технічної безпеки 40 5.2 Розрахунок захисного заземлення 42 ВИСНОВКИ 48 ПЕРЕЛІК ПОСИЛАНЬ 51
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/38123
Власник авторського права: © Ясіновська Наталія Ігорівна, 2022
Перелік літератури: 1. Stanko, A., Palka, O., Matiichuk, L., Martsenko, N., & Matsiuk, O. (2021, September). Smart City: A Review of Model Architecture and Technology. In 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT) (Vol. 2, pp. 273-277). IEEE. 2. Duda, O., Lypak, H., Matsiuk, O., Mudrokha, V., Pasichnyk, V., Veretennikova, N., & Kunanets, N. (2021). Formation of integrated repositories of social and communication data by consolidating the resources of museums, libraries and archives in smart cities projects. In CEUR Workshop Proceedings (pp. 1420-1430). 3. Bodnarchuk, I., Duda, O., Kharchenko, A., Kunanets, N., Matsiuk, O., & Pasichnyk, V. (2020). Choice Method of Analytical Platform for Smart City (No. 4374). EasyChair. 4. Klepeis, N.E., et al., The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of exposure analysis and environmental epidemiology, 2001. 11(3): p. 231-252. 5. Lader, D., S. Short, and J. Gershuny, The time use survey, 2005. How we spend our time. London: Office for National Statistics., 2006. 15: p. 2009. 6. Fouillet, A., et al., Excess mortality related to the August 2003 heat wave in France. International archives of occupational and environmental health, 2006. 80(1): p. 16-24. 7. Robine, J.-M., et al., Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes rendus biologies, 2008. 331(2): p. 171-178. 8. Charpentier, A., On the return period of the 2003 heat wave. Climatic change, 2011. 109(34): p. 245-260. 9. Directive, H.A.T., Directive 2002/3/EC of the European Parliament an d of the Council of 12 February 2002 relating to ozone in ambient air. Officia l Journal of the European Communities L, 2002. 67: p. 14-30. 10. Laustsen, J., Energy efficiency requirements in building codes, energy efficiency policies for new buildings. International Energy Agency (IEA), 2008: p. 477-488. 11. Mavrogianni, A., et al., Building characteristics as determinants of propensity to high indoor summer temperatures in London dwellings. Building and Environment, 2012. 55: p. 117-130. 12. De Wilde, P. and D. Coley, The implications of a changing climate for buildings. Building and Environment, 2012. 55: p. 1-7. 13. McMichael, A.J., R.E. Woodruff, and S. Hales, Climate change and human health: present and future risks. The Lancet, 2006. 367(9513): p. 859-869. 14. Herrera, M., et al., SAX-Quantile Based Multiresolution Approach for Finding Heatwave Events in Summer Temperature Time Series. AI Communications, 2016. 29(6): p. 725-732. 15. Burnand, G., The study of the thermal behaviour of structures by electrical analogy. British Journal of Applied Physics, 1952. 3(2): p. 50. 16. Newton, D., R. James, and D. Bartholomew, Building energy simulation-a user's perspective. Energy and Buildings, 1988. 10(3): p. 241-247. 17. Clarke, J.A., Energy simulation in building design. 2001: Routledge. 18. Crawley, D.B. Creating weather files for climate change and urbanization impacts analysis. in Building Simulation. 2007. IBPSA Beijing. 19. Murphy, J., Predictions of climate change over Europe using statistical and dynamical downscaling techniques. International Journal of Climatology, 2000. 20(5): p. 489-501. 20. Mylona, A., The use of UKCP09 to produce weather files for building simulation. Building Services Engineering Research and Technology, 2012. 33(1): p. 51-62. 21. Levermore, G. and J. Parkinson, Analyses and algorithms for new Test Reference Years and Design Summer Years for the UK. Building services engineering research and technology, 2006. 27(4): p. 311-325. 22. Fernández, M., et al., Generation and evaluation of typical meteorological year datasets for greenhouse and external conditions on the Mediterranean coast. International journal of biometeorology, 2015. 59(8): p. 1067-1081. 23. Kershaw, T., M. Eames, and D. Coley, Comparison of multi-year and reference year building simulations. Building Services Engineering Research and Technology, 2010. 31(4): p. 357-369. 24. Finkelstein, J.M. and R.E. Schafer, Improved goodness-of-fit tests. Biometrika, 1971. 58(3): p. 641-645. 25. Yang, L., et al., Building energy simulation using multi-years and typical meteorological years in different climates. Energy Conversion and Management, 2008. 49(1): p. 113-124. 26. NCDC, Test Reference Year, in Tape Reference Manual, TD-9706. 1976, National Climate Data Center, U.S. Dept. of Commerce: Asheville, U.S. 27. Festa, R. and C.F. Ratto, Proposal of a numerical procedure to select reference years. Solar Energy, 1993. 50(1): p. 9-17. 28. Lund, H. and S. Eidorff, Selection methods for production of test reference years, in Final Report, Report EUR 7306 EN. 1981, Thermal Insulation Laboratory, Technical University of Denmark: Lyngby, Denmark. 29. Lund, H., The Design Reference Year user’s manual, Thermal Insulation Laboratory. Technical University of Denmark: Lyngby, 1995. 30. Eames, M.E., A.P. Ramallo-Gonzalez, and M.J. Wood, An update of the UK’s test reference year: The implications of a revised climate on building design. Building Services Engineering Research and Technology, 2015. 37(3): p. 316-333. 31. Bilbao, J., et al., Test reference year generation and evaluation methods in the continental Mediterranean area. Journal of Applied Meteorology, 2004. 43(2): p. 390-400. 32. Wilcox, S. and W. Marion, Users manual for TMY3 data sets. 2008: National Renewable Energy Laboratory Golden, CO. 33. Lam, J.C., S.C. Hui, and A.L. Chan, A statistical approach to the development of a typical meteorological year for Hong Kong. Architectural Science Review, 1996. 39(4): p. 201-209. 34. Ecevit, A., B. Akinoglu, and B. Aksoy, Generation of a typical meteorological year using sunshine duration data. Energy, 2002. 27(10): p. 947-954. 35. Yang, L., et al., A new method to develop typical weather years in different climates for building energy use studies. Energy, 2011. 36(10): p. 6121-6129. 36. Hall, I.J., et al., Generation of a typical meteorological year. 1978, Sandia Labs., Albuquerque, NM (USA). 37. Marion, W. and K. Urban, User's Manual for TMY2s: Typical Meteorological Years: Derived from the 1961-1990 National Solar Radiation Data Base. 1995: National Renewable Energy Laboratory. 38. Stoffel, T.L. and M.D. Rymes, Production of the weather year for energy calculations version 2 (WYEC2) data files/Discussion. ASHRAE Transactions, 1998. 104: p. 487. 39. Thevenard, D.J. and A.P. Brunger, The development of typical weather years for international locations: part I, algorithms. ASHRAE Transactions, 2002. 108: p. 376-383. 40. Huang, Y.J., Development of 3012 IWEC2 weather files for international locations (RP1477). ASHRAE Transactions, 2014. 120: p. 340-355. 41. Huang, J., ASHRAE Research Project 1477-RP–Development of over 2,500 weather files for international locations. Final Report. ASHRAE, 2010. 42. Jentsch, M.F., et al., Limitations of the CIBSE design summer year approach for delivering representative near-extreme summer weather conditions. Building Services Engineering Research and Technology, 2014. 35(2): p. 155-169. 43. Yang, L., H. Yan, and J.C. Lam, Thermal comfort and building energy consumption implications–a review. Applied Energy, 2014. 115: p. 164-173. 44. Holmes, M.J. and J.N. Hacker, Climate change, thermal comfort and energy: Meeting the design challenges of the 21st century. Energy and Buildings, 2007. 39(7): p. 802-814. 45. Coley, D., T. Kershaw, and M. Eames, A comparison of structural and behavioural adaptations to future proofing buildings against higher temperatures. Building and Environment, 2012. 55: p. 159-166. 46. Pernigotto, G., et al., Analysis and improvement of the representativeness of EN ISO 159274 reference years for building energy simulation. Journal of Building Performance Simulation, 2014. 7(6): p. 391-410. 47. Kalamees, T., et al., Development of weighting factors for climate variables for selecting the energy reference year according to the EN ISO 15927-4 standard. Energy and Buildings, 2012. 47: p. 53-60. 48. CIBSE Guide J, Weather, solar and illuminance data. Chartered Institution of Building Services Engineers, 2002. 49. Hacker, J., S. Belcher, and A. White, Design Summer Years for London (CIBSE TM49). 2014, Chartered Institution of Building Services Engineers. 50. Eames, M.E., An update of the UK’s design summer years: Probabilistic design summer years for enhanced overheating risk analysis in building design. Building Services Engineering Research and Technology, 2016 51. CIBSE Guide A, Environmental design. The Chartered Institution of Building Services Engineers, London, 2015. 52. ASHRAE, A.S., Standard 55-2013. Thermal Environmental Conditions for Human Occupancy, 2013. 53. Kyselý, J. and M. Dubrovský, Simulation of extreme temperature events by a stochastic weather generator: effects of interdiurnal and interannual variability reproduction. International Journal of Climatology, 2005. 25(2): p. 251-269. 54. Jentsch, M.F., M.E. Eames, and G.J. Levermore, Generating near-extreme Summer Reference Years for building performance simulation. Building Services Engineering Research and Technology, 2015. 36(6): p. 503-522. 55. Levermore, G.J., et al., Deriving and using future weather data for building design from UK climate change projections: an overview of the COPSE Project. 2012. 56. Watkins, R., G. Levermore, and J. Parkinson, The design reference year–a new approach to testing a building in more extreme weather using UKCP09 projections. Building Services Engineering Research and Technology, 2013. 34(2): p. 165-176. 57. Du, H., C. Underwood, and J. Edge, Generating design reference years from the UKCP09 projections and their application to future air-conditioning loads. Building Services Engineering Research and Technology, 2012. 33(1): p. 63-79. 58. Ferrari, D. and T. Lee. Beyond TMY: climate data for specific applications. in Proceedings 3rd International Solar Energy Society conference–Asia Pacific region (ISES-AP-08). 2008. Citeseer. 59. Narowski, P., M. Janicki, and D. Heim. Comparison of Untypical Meteorological Years (UMY) and their influence on building energy performance simulations. in Proc. of Conference “Building Simulation–BS2013”, Le Bourget-du-Lac. 2013. 60. Liu, C., et al., Future probabilistic hot summer years for overheating risk assessments. Building and Environment, 2016. 105: p. 56-68. 61. Matzarakis, A. and B. Amelung, Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans, in Seasonal forecasts, climatic change and human health. 2008, Springer. p. 161-172. 62. Eames, M., T. Kershaw, and D. Coley, On the creation of future probabilistic design weather years from UKCP09. Building Services Engineering Research and Technology, 2010. 32(2): p. 127-142. 63. Eames, M., T. Kershaw, and D. Coley, A comparison of future weather created from morphed observed weather and created by a weather generator. Building and Environment, 2012. 56: p. 252-264. 64. Cai, Y. and D. Hames, Minimum sample size determination for generalized extreme value distribution. Communications in Statistics—Simulation and Computation®, 2010. 40(1): p. 87-98. 65. Fatichi, S., V.Y. Ivanov, and E. Caporali, Simulation of future climate scenarios with a weather generator. Advances in Water Resources, 2011. 34(4): p. 448-467. 66. Furrer, E.M. and R.W. Katz, Improving the simulation of extreme precipitation events by stochastic weather generators. Water Resources Research, 2008. 44(12). 67. Ailliot, P., et al., Stochastic weather generators: an overview of weather type models. Journal de la Société Française de Statistique, 2015. 156(1): p. 101-113. 68. Richardson, C.W. and D.A. Wright, WGEN: A model for generating daily weather variables. 1984, US Department of Agriculture, Agricultural Research Service Washington, DC. 69. Wallis, T.W. and J.F. Griffiths, An assessment of the weather generator (WXGEN) used in the erosion/productivity impact calculator (EPIC). Agricultural and Forest Meteorology, 1995. 73(1): p. 115-133. 70. Nicks, A. and G. Gander. CLIGEN: A weather generator for climate inputs to water resource and other models. in Proc. Fifth Int. Conf. on Computers in Agriculture. 1994. 71. Hayhoe, H. and D. Stewart, Evaluation of CLIGEN and WXGEN weather data generators under Canadian conditions. Canadian Water Resources Journal, 1996. 21(1): p. 53-67. 72. Kou, X., et al., Validation of the weather generator CLIGEN with daily precipitation data from the Loess Plateau, China. Journal of hydrology, 2007. 347(3): p. 347-357. 73. Stöckle, C., et al. ClimGen: a flexible weather generation program. in 2nd International Symposium Modelling Cropping Systems. Florence, Italy. 2001. 74. Castillo, E., et al., Extreme value and related models with applications in engineering and science. 2005: Wiley Hoboken, NJ. 75. El Adlouni, S., B. Bobée, and T. Ouarda, On the tails of extreme event distributions in hydrology. Journal of Hydrology, 2008. 355(1): p. 16-33. 76. Dubrovsky, M., Met&Roll: the stochastic generator of daily weather series for the crop growth model. Meteorological Bulletin, 1996. 49: p. 97-105. 77. Jones, P. and M. Salmon, Development and integration of a stochastic weather generator into a crop growth model for European agriculture. MARS Project, Final Report to Institute of Remote Sensing Applications, Agricultural Information Systems (ISPRA)., Contract, 1995(5631-93): p. 12. 78. Watts, M., C. Goodess, and P. Jones, The CRU Daily Weather Generator: BETWIXT technical Briefing Note 1. The Climate Research Unit, 2004. 79. Chen, J., F.P. Brissette, and R. Leconte, A daily stochastic weather generator for preserving low-frequency of climate variability. Journal of hydrology, 2010. 388(3): p. 480-490. 80. Chen, J., F. Brissette, and R. Leconte, WeaGETS–a Matlab-based daily scale weather generator for generating precipitation and temperature. Procedia Environmental Sciences, 2012. 13: p. 2222-2235. 81. Kreienkamp, F., A. Spekat, and W. Enke, The weather generator used in the empirical statistical downscaling method, WETTREG. Atmosphere, 2013. 4(2): p. 169-197. 82. Yiou, P., Anawege: a weather generator based on analogues of atmospheric circulation. Geoscientific Model Development, 2014. 7(2): p. 531-543. 83. Zorita, E., et al., Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation. Journal of Climate, 1995. 8(5): p. 1023-1042. 84. Yiou, P., et al., Ensemble reconstruction of the atmospheric column from surface pressure using analogues. Climate dynamics, 2013. 41(5-6): p. 1333-1344. 85. Le Bras, J. and V. Masson, A fast and spatialized urban weather generator for long-term urban studies at the city-scale. Frontiers in Earth Science, 2015. 3: p. 27. 86. Remund, J. and S. Kunz, METEONORM: Global meteorological database for solar energy and applied climatology. 1997: Meteotest. 87. Remund, J., et al. The use of Meteonorm weather generator for climate change studies. in 10th EMS Annual Meeting, 10th European Conference on Applications of Meteorology (ECAM) Abstracts, held Sept. 13-17, 2010 in Zürich, Switzerland. http://meetings.copernicus.org/ems2010/, id. EMS2010-417. 2010. 88. Ebrahimpour, A. and M. Maerefat, A method for generation of typical meteorological year. Energy Conversion and Management, 2010. 51(3): p. 410-417. 89. Semenov, M.A., E.M. Barrow, and A. Lars-Wg, A stochastic weather generator for use in climate impact studies. User Manual, Hertfordshire, UK, 2002. 90. King, L.M., A.I. McLeod, and S.P. Simonovic, Improved weather generator algorithm for multisite simulation of precipitation and temperature. JAWRA Journal of the American Water Resources Association, 2015. 51(5): p. 1305-1320. 91. Soltani, A., N. Latifi, and M. Nasiri, Evaluation of WGEN for generating long term weather data for crop simulations. Agricultural and forest meteorology, 2000. 102(1): p. 1-12. 92. Semenov, M.A., et al., Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate research, 1998. 10(2): p. 95-107. 93. Ababaei, B., et al., Evaluation of a stochastic weather generator in different climates. Computer and Information Science, 2010. 3(3): p. 217-229. 94. Smith, S.T. and V.I. Hanby, Methodologies for the generation of design summer years for building energy simulation using UKCP09 probabilistic climate projections. Building Services Engineering Research and Technology, 2012. 33(1): p. 9-17. 95. Goodess, C., et al., Representing climate and extreme weather events in integrated assessment models: a review of existing methods and options for development. Integrated Assessment, 2003. 4(3): p. 145-171. 96. Semenov, M.A., Simulation of extreme weather events by a stochastic weather generator. Climate Research, 2008. 35(3): p. 203-212. 97. Chen, J. and F.P. Brissette, Comparison of five stochastic weather generators in simulating daily precipitation and temperature for the Loess Plateau of China. International Journal of Climatology, 2014. 34(10): p. 3089-3105. 98. Wilby, R., et al., Evidence needed to manage freshwater ecosystems in a changing climate: turning adaptation principles into practice. Science of the Total Environment, 2010. 408(19): p. 4150-4164. 99. Christierson, B.v., J.-P. Vidal, and S.D. Wade, Using UKCP09 probabilistic climate information for UK water resource planning. Journal of Hydrology, 2012. 424: p. 48-67. 100. Ebinger, J.O., Climate impacts on energy systems: key issues for energy sector adaptation. 2011: World Bank Publications. 101. Nakicenovic, N., et al., Special report on emissions scenarios, working group III, Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, 595pp. ISBN 0, 2000. 521(80493): p. 608. 102. Girod, B., et al., The evolution of the IPCC's emissions scenarios. Environmental science & policy, 2009. 12(2): p. 103-118. 103. Pachauri, R.K., et al., Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. R.K. Pachauri and L. Meyer. 2014, Geneva, Switzerland: IPCC. 151. 104. Moss, R.H., et al., The next generation of scenarios for climate change research and assessment. Nature, 2010. 463(7282): p. 747-756. 105. Grotch, S.L. and M.C. MacCracken, The use of general circulation models to predict regional climatic change. Journal of Climate, 1991. 4(3): p. 286-303. 106. Nazarenko, L., et al., Future climate change under RCP emission scenarios with GISS ModelE2. Journal of Advances in Modeling Earth Systems, 2015. 7(1): p. 244-267. 107. Van der Linden, P. and J. Mitchell, editors, ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, 2009. 160. 108. Mearns, L., et al., Climate change projections of the North American regional climate change assessment program (NARCCAP). Climatic Change, 2013. 120(4): p. 965-975. 109. Jacob, D., et al., EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 2014. 14(2): p. 563-578. 110. Belcher, S., J. Hacker, and D. Powell, Constructing design weather data for future climates. Building Services Engineering Research and Technology, 2005. 26(1): p. 49-61. 111. Glenis, V., et al., A transient stochastic weather generator incorporating climate model uncertainty. Advances in Water Resources, 2015. 85: p. 14-26. 112. Jentsch, M.F., et al., Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, 2013. 55: p. 514-524. 113. Meehl, G., et al., The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bulletin of the American Meteorological Society, 2007. 88: p. 1383-1394. 114. Taylor, K.E., R.J. Stouffer, and G.A. Meehl, An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 2012. 93(4): p. 485. 115. Meinshausen, M., et al., The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic change, 2011. 109(1-2): p. 213-241. 116. Nemani, R., et al., Collaborative supercomputing for global change science. Eos, Transactions American Geophysical Union, 2011. 92(13): p. 109-110. 117. Thrasher, B., et al., Downscaled climate projections suitable for resource management. Eos, Transactions American Geophysical Union, 2013. 94(37): p. 321-323. 118. Stoner, A.M., et al., An asynchronous regional regression model for statistical downscaling of daily climate variables. International Journal of Climatology, 2013. 33(11): p. 2473-2494. 116. 119. Hulme, M., J. Turnpenny, and G.J. Jenkins, Climate change scenarios for the United Kingdom: the UKCIP02 briefing report. 2002: Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia Norwich, UK. 120. Fowler, H. and C. Kilsby. Future increases in UK water resource drought projected by a regional climate model. in Proceedings of the BHS International Conference on Hydrology: Science & Practice for the 21st Century. 2004. 121. Kilsby, C., et al., A daily weather generator for use in climate change studies. Environmental Modelling & Software, 2007. 22(12): p. 1705-1719. 122. Murphy, J.M., et al., UK climate projections science report: climate change projections. 2009. 123. Jenkins, G., et al., UK Climate Projections science report: Climate change projections, in UK09 Briefing Report. 2009, UK Climate Projections. p. 10. 124. Sexton, D.M., et al., Multivariate probabilistic projections using imperfect climate models part I: outline of methodology. Climate Dynamics, 2012. 38(11-12): p. 2513-2542. 125. Sexton, D.M. and J.M. Murphy, Multivariate probabilistic projections using imperfect climate models. Part II: robustness of methodological choices and consequences for climate sensitivity. Climate Dynamics, 2012. 38(11-12): p. 2543-2558. 126. Betts, R. and M. Best, Relative impacts of radiative forcing, landscape effects and local heat sources on simulated climate change in urban areas. Report number UKCIP BETWIXT Project Technical Briefing Note, 2004. 6. 127. Kilsby, C., A. Moaven-Hashemi, and P. O’Connell. Simulation of rainfall extremes: fitting to observed annual maxima. in First International Conference on Flood Risk, Institute of Mathematics and its Applications, University of Bath, UK. 2004. 128. UK Met Office, Technical approach to the delivery of new UK Climate Projections (UKCP18 project) Technical briefing note, 2016. V1. 129. Chan, A., Developing future hourly weather files for studying the impact of climate change on building energy performance in Hong Kong. Energy and Buildings, 2011. 43(10): p. 2860-2868. 130. Lempert, R., et al., Characterizing climate-change uncertainties for decision-makers. An editorial essay. Climatic Change, 2004. 65(1): p. 1-9. 131. Jones, P., et al., Perturbing a weather generator using change factors derived from regional climate model simulations. Nonlinear Processes in Geophysics, 2011. 18(4): p. 503-511. 132. Tebaldi, C., et al., Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. Journal of Climate, 2005. 18(10): p. 1524-1540. 133. Nik, V.M., Making energy simulation easier for future climate–Synthesizing typical and extreme weather data sets out of regional climate models (RCMs). Applied Energy, 2016. 177: p. 204-226. 134. Cox, R.A., et al., Simple future weather files for estimating heating and cooling demand. Building and Environment, 2015. 83: p. 104-114. 135. Vandentorren, S., et al., Mortality in 13 French cities during the August 2003 heat wave. American Journal of Public Health, 2004. 94(9): p. 1518-1520. 136. IPCC, Climate Change 2013: Summary for policy makers. In: Climate Change 2013: The Physical Science Basis. constribution of Working Group I. 2013, Intergovernmental Panel on Climate Change 137. Meehl, G.A. and C. Tebaldi, More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 2004. 305(5686): p. 994-997. 138. Perkins, S.E. and L.V. Alexander, On the Measurement of Heat Waves. Journal of Climate, 2013. 26(13): p. 4500-4517. 139. Bateson, A., Comparison of CIBSE thermal comfort assessments with SAP overheating assessments and implications for designers. Building Services Engineering Research and Technology, 2016. 37(2): p. 243-251. 140. Holmes, S.H., T. Phillips, and A. Wilson, Overheating and passive habitability: indoor health and heat indices. Building Research & Information, 2016. 44(1): p. 1-19. 141. De Freitas, C. and E. Grigorieva, A comprehensive catalogue and classification of human thermal climate indices. International journal of biometeorology, 2015. 59(1): p. 109-120. 142. Branković, Č., et al., Downscaling of ECMWF ensemble forecasts for cases of severe weather: Ensemble statistics and cluster analysis. Monthly weather review, 2008. 136(9): p. 3323-3342. 143. Russo, S., et al., Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research-Atmospheres, 2014. 119(22): p. 1250012512. 144. Koffi, B. and E. Koffi, Heat waves across Europe by the end of the 21st century: multiregional climate simulations. Climate Research, 2008. 36(2): p. 153-168. 145. Fischer, E.M. and C. Schar, Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience, 2010. 3(6): p. 398-403. 146. Easterling, D.R., et al., Climate extremes: Observations, modeling, and impacts. Science, 2000. 289(5487): p. 2068-2074. 147. Kysely, J., Recent severe heat waves in central Europe: how to view them in a long-term prospect? International Journal of Climatology, 2010. 30(1): p. 89-109. 148. Furrer, E.M., et al., Statistical modeling of hot spells and heat waves. Climate Research, 2010. 43(3): p. 191-205. 149. Herrera, M., et al., Quantile regression ensemble for summer temperatures time series and its impact on built environment studies, in 8th International Congress on Environmental Modelling and Software, iEMSs, Sabine Sauvage, Jose-Miguel Sanchez-Perez, and A. Rizzoli, Editors. 2016: Toulouse, France. p. 602-609. 150. Hacker, J., et al., Climate change and the indoor environment: impacts and adaptation. 2005: Chartered Institution of Building Services Engineers. 29. 151. ASHRAE, ASHRAE Handbook: Fundamentals. 2009, Tullie Circle, N.E.: American Society of Heating, Refrigerating & Air-Conditioning Engineers, Incorporated. 152. UK Dept. of Health, Heating and ventilation of health sector buildings. Health technical memoranda, 2007. 03-01. 153. Mortimer, D., Controlling humidity for healthier hospitals. Health estate, 2015. 69(1): p. 3943. 154. National-Statistics, English housing survey 2014 to 2015: headline report. 2016, Dept. for Communities and Local Gov. UK. 155. Sakka, A., et al., On the thermal performance of low income housing during heat waves. Energy and Buildings, 2012. 49: p. 69-77. 156. Chua, K., et al., Achieving better energy-efficient air conditioning–a review of technologies and strategies. Applied Energy, 2013. 104: p. 87-104. 157. Vellei, M., A review of factors affecting environmental and economic life-cycle performance for electrically-driven heat pumps, in JRC Science and Policy Reports. 2014, European Commission: Luxembourg. p. 36. 158. Al-Salim, K., I. Andonovic, and C. Michie, Cyclic blackout mitigation and prevention using semi-dispatchable standby generation and stratified demand dispatch. Sustainable Energy, Grids and Networks, 2015. 4: p. 29-42. 159. Futcher, J.A., T. Kershaw, and G. Mills, Urban form and function as building performance parameters. Building and environment, 2013. 62: p. 112-123.
Тип вмісту: Bachelor Thesis
Розташовується у зібраннях:122 — Компʼютерні науки (бакалаври)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Ясіновська_СНзс-42,2022.pdf882,51 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора