Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/36959

Назва: Substantiation of design parameters of bernoulli grippers with automated control of the sizes of objects of manipulation
Автори: Savkiv, Volodymyr
Mykhailyshyn, Roman
Duchon, Frantisek
Kelemen, Michal
Приналежність: Ternopil National Ivan Puluj Technical University, Rus’ka str. 56, 46001, Ternopil, Ukraine
Slovak University of Technology in Bratislava, Ilkovičova 3, SK-812 19, Bratislava; Slovak Republic
Technical University of Kosice, Letna 9, 04200, Kosice, Slovak Republic
Бібліографічний опис: Substantiation of design parameters of bernoulli grippers with automated control of the sizes of objects of manipulation / Volodymyr Savkiv, Roman Mykhailyshyn, Frantisek Duchon, Michal Kelemen // ICAAEIT 2021, 15-17 December 2021. — Tern. : TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC, 2021. — P. 46–52. — (Electrical engineering and power electronics).
Bibliographic description: Savkiv V., Mykhailyshyn R., Duchon F., Kelemen M. (2021) Substantiation of design parameters of bernoulli grippers with automated control of the sizes of objects of manipulation. ICAAEIT 2021 (Tern., 15-17 December 2021), pp. 46-52.
Є частиною видання: Proceedings of the International Conference „Advanced applied energy and information technologies 2021”, 2021
Дата публікації: 15-гру-2021
Дата внесення: 28-гру-2021
Видавництво: TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC
Місце видання, проведення: Ternopil
Часове охоплення: 15-17 December 2021
Теми: Bernoulli gripping device
object manipulation
air gaging
nozzle
industrial robot
RANS
SST-model of turbulence
Кількість сторінок: 7
Діапазон сторінок: 46-52
Початкова сторінка: 46
Кінцева сторінка: 52
Короткий огляд (реферат): The advantages of using jet gripping devices with integrated function of size control of objects of manipulation in robotic systems are substantiated. Rational designs of gripping devices are proposed, which allow to measure the diameter of the object held by them, their design parameters are substantiated. The interaction of air flows flowing from the annular nozzle and measuring ejector nozzles in the gap between the outer surface of the jet gripper and the inner surface of the object of manipulation is carried out. Reynolds-averaged Navier-Stokes equations of viscous gas dynamics, SST-model of turbulence and γ-model of laminar-turbulent transition were used for this purpose. As a result of numerical simulation in the Ansys-CFX software environment, the influence of the spatial location of the measuring nozzles on the load capacity of the jet gripper, the range and accuracy of measuring the diameters of manipulation objects was determined.
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/36959
ISBN: 978-617-8079-60-4
Власник авторського права: © Ternopil Ivan Puluj National Technical University, Ukraine, 2021
URL-посилання пов’язаного матеріалу: https://doi.org/10.1109/YSF.2017.8126583
References: 1. Benhabib, B. (2003). Manufacturing: design, production, automation, and integration. CRC Press.
2. Wang, Yi., Martinsen, K., Yu, T., Wang, K. (2021). Advanced Manufacturing and Automation X. Springer Nature.
3. Savkiv, V., Mykhailyshyn, R., Duchon, F., Prentkovskis, O., Maruschak, P., Diahovchenko, I. (2019). Analysis of operational characteristics of pneumatic device of industrial robot for gripping and control of parameters of objects of manipulation. Transportation Science and Technology, Proceedings of the International Conference TRANSBALTICA. doi:10.1007/978-3-030-38666-5_53.
4. Savkiv, V., Mykhailyshyn, R., Maruschak, P., Kyrylovych, V., Duchon, F., Chovanec, Ľ. (2021). Gripping devices of industrial robots for manipulating offset dish antenna billets and controlling their shape. Transport, 36(1), 63-74. doi:10.3846/transport.2021.14622.
5. Stühm, K., Tornow, A., Schmitt, J., Grunau, L., Dietrich, F., Dröder, K. (2014). A novel gripper for battery electrodes based on the Bernoulli-principle with integrated exhaust air compensation. Procedia CIRP, 23, 161-164. doi:10.1016/j.procir.2014.10.065.
6. Li, X., Kagawa, T. (2013). Development of a new noncontact gripper using swirl vanes. Robotics and Computer-Integrated Manufacturing, 29(1), 63-70. doi:10.1016/j.rcim.2012.07.002.
7. Savkiv, V., Mykhailyshyn, R., Duchon, F., Fendo, O. (2017). Justification of design and parameters of Bernoulli–vacuum gripping device. International Journal of Advanced Robotic Systems, 14(6). doi:10.1177/1729881417741740.
8. Savkiv, V., Mykhailyshyn, R., Duchon, F. (2019). Gasdynamic analysis of the Bernoulli grippers interaction with the surface of flat objects with displacement of the center of mass. Vacuum, 159, 524-533. doi:10.1016/j.vacuum.2018.11.005.
9. Mykhailyshyn, R., Savkiv, V., Boyko, I., Prada, E., Virgala, I. (2021). Substantiation of Parameters of Friction Elements of Bernoulli Grippers With a Cylindrical Nozzle. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 11(2), 17-39. doi:10.4018/IJMMME.2021040102.
10. Mykhailyshyn, R., Savkiv, V., Duchon, F., Chovanec, L. (2020). Experimental Investigations of the Dynamics of Contactless Transportation by Bernoulli Grippers. Methods and Systems of Navigation and Motion Control (MSNMC), Proceedings of the 6th International Conference. doi: 10.1109/MSNMC50359.2020.9255521.
11. Savkiv, V., Mykhailyshyn, R., Duchon, F., Maruschak, P. (2019). Justification of influence of the form of nozzle and active surface of Bernoulli gripping devices on its operational characteristics. Transportation Science and Technology. Proceedings of the International Conference TRANSBALTICA. doi: 10.1007/978-3-030-38666-5_53.
12. Savkiv, V., Mykhailyshyn, R., Maruschak, P., Chovanec, L., Prada, E., Virgala, I., Prentkovskis, O. (2019). Optimization of design parameters of Bernoulli gripper with an annular nozzle. Transport Means 2019: Sustainability: Research and Solutions.Proceedings of the 23rd International Scientific Conference. 13. Savkiv, V., Mykhailyshyn, R., Fendo, O., & Mykhailyshyn, M. 2017. Orientation modeling of Bernoulli gripper device with off-centered masses of the manipulating object. Procedia Engineering, 187, 264-271.
13. Savkiv, V., Mykhailyshyn, R., Duchon, F., Mikhalishin, M. (2018). Modeling of Bernoulli gripping device orientation when manipulating objects along the arc. International Journal of Advanced Robotic Systems, 15(2). doi:10.1177/1729881418762670.
14. Mykhailyshyn, R., Savkiv, V., Mikhalishin, M., Duchon, F. (2017). Experimental research of the manipulatiom process by the objects using bernoulli gripping devices. International Young Scientists Forum on Applied Physics and Engineering. Proceedings of International Forum. https://doi.org/10.1109/YSF.2017.8126583.
15. Savkiv, V., Mykhailyshyn, R., Duchon, F., Mikhalishin, M. (2017). Energy efficiency analysis of the manipulation process by the industrial objects with the use of Bernoulli gripping devices. Journal of Electrical Engineering, 68(6). doi:10.1515/jee-2017-0087.
16. Mykhailyshyn, R., Savkiv, V., Duchon, F., Trembach, R., Diahovchenko, I.M. (2019). Research of energy efficiency of manipulation of dimensional objects with the use of pneumatic gripping devices. 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). Proceedings of Conference. doi:10.1109/UKRCON.2019.8879957.
17. Savkiv, V., Mykhailyshyn, R., Duchon, F., Maruschak, P., Prentkovskis, O. (2018). Substantiation of Bernoulli grippers parameters at non-contact transportation of objects with a displaced center of mass. Transport Means. Proceedings of the 22nd International Scientific Conference. Klaipeda.
18. Mykhailyshyn, R., Savkiv, V., Duchon, F., Koloskov, V., Diahovchenko, I.M. (2018). Investigation of the energy consumption on performance of handling operations taking into account parameters of the grasping system. Intelligent Energy and Power Systems. Proceedings of the 3rd International Conference. doi: 10.1109/ieps.2018.8559586.
19. Mykhailyshyn, R., Savkiv, V., Duchon, F., Koloskov, V., Diahovchenko, I.M. (2018). Analysis of frontal resistance force influence during manipulation of dimensional objects. Intelligent Energy and Power Systems, Proceedings of the 3rd International Conference, doi: 10.1109/ieps.2018.8559527.
20. Jermak, C.J., Jakubowicz, M., Dereżyński, J., Rucki, M. (2016). Air gauge characteristics linearity improvement. Journal of Control Science and Engineering. doi:10.1155/2016/8701238.
21. Jermak, C.J., Rucki, M. (2016). Static characteristics of air gauges applied in the roundness assessment. Metrology and Measurement Systems, 23(1), 85-96. doi:10.1515/mms-2016-0009.
22. Jakubowicz, M., Derezynski, J. (2017). The measuring position designed to determine the metrological properties of air gauges. Advances in Science and Technology, 11(4), 198-205. doi:10.12913/22998624/79830.
23. Snegiryov, A.Y. (2009). High-performance computing in technical physics. Numerical Simulation of Turbulent Flows. S. Petersburg: Polytechnic University Publ.
24. Garbaruk, A.V. (2016). Modern approaches to modeling turbulence. S. Petersburg: Polytechnic University Publ.
25. Menter, F.R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598-1605. doi:10.2514/3.12149.
26. Menter, F.R., Esch, T., Kubacki, S. (2002). Transition modelling based on local variables. Engineering Turbulence Modelling and Experiments, 5, 555-564. doi:10.1016/B978-008044114-6/50053-3.
27. Menter, F.R., Langtry, R., Völker, S. (2006). Transition modelling for general purpose CFD codes. Flow, turbulence and combustion, 77(1-4), 277-303. doi:10.1007/s10494-006-9047-1.
28. Menter, F.R., Smirnov, P.E., Liu, T., Avancha, R. (2015). A one-equation local correlation-based transition model. Flow, Turbulence and Combustion, 95(4), 583-619. doi:10.1007/s10494-015-9622-4.
Тип вмісту: Conference Abstract
Розташовується у зібраннях:International conference „Advanced Applied Energy and Information Technologies 2021“, (ICAAEIT 2021)



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.