Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://elartu.tntu.edu.ua/handle/lib/36941
Назва: | The methods of biosignals processing and their implementation in the structure of the system of impaired human communicative function compensation |
Автори: | Dozorska, Oksana Dozorskyi, Vasil Yavorska, Evhenia Kapatsila, Yuriy Pankiv, Iryna Kubashok, Andriy |
Приналежність: | Ternopil Ivan Puluj National Technical University, Rus’ka str. 56, 46001, Ternopil, Ukraine |
Бібліографічний опис: | The methods of biosignals processing and their implementation in the structure of the system of impaired human communicative function compensation / Oksana Dozorska, Vasil Dozorskyi, Evhenia Yavorska, Yuriy Kapatsila, Iryna Pankiv, Andriy Kubashok // ICAAEIT 2021, 15-17 December 2021. — Tern. : TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC, 2021. — P. 151–156. — (Biomedical engineering). |
Bibliographic description: | Dozorska O., Dozorskyi V., Yavorska E., Kapatsila Y., Pankiv I., Kubashok A. (2021) The methods of biosignals processing and their implementation in the structure of the system of impaired human communicative function compensation. ICAAEIT 2021 (Tern., 15-17 December 2021), pp. 151-156. |
Є частиною видання: | Proceedings of the International Conference „Advanced applied energy and information technologies 2021”, 2021 |
Дата публікації: | 15-гру-2021 |
Дата внесення: | 28-гру-2021 |
Видавництво: | TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC |
Місце видання, проведення: | Ternopil |
Часове охоплення: | 15-17 December 2021 |
Теми: | human communicative function compensation system processing methods spectral-correlation analysis electrodes block of biosignals selection |
Кількість сторінок: | 6 |
Діапазон сторінок: | 151-156 |
Початкова сторінка: | 151 |
Кінцева сторінка: | 156 |
Короткий огляд (реферат): | The methods of biosignals processing and structure of the system of impaired human communicative function compensation are proposed. The methods of biosignals processing are based on the application of spectral-correlation analysis methods using the sliding window method and include preparatory and main stages. The sequence of steps of biosignals processing at the preparatory and main stages is substantiated. Also technical parameters and features of practical realization of constituent elements of the system of impaired human communicative function compensation are offered. The principle of operation of the system is based on the parallel selection and processing of electroencephalographic and electromyographic signals. At the same time the features of electrode constructions for selection of electroencephalographic signals, which are widespread today, as well as possible artifacts that will arise in the process of selection of these signals are analyzed. The design of electrodes for registration of electroencephalographic and electromyographic signals is proposed, the selection and processing of which is the basis of the method of indirect compensation of the impaired communicative function, which is realized by this system. A variant of realization of the functional diagram of the block of biosignals selection is proposed. The proposed design of the system of impaired human communicative function compensation can be manufactured using 3D printing technology, which will reduce its cost. |
URI (Уніфікований ідентифікатор ресурсу): | http://elartu.tntu.edu.ua/handle/lib/36941 |
ISBN: | 978-617-8079-60-4 |
Власник авторського права: | © Ternopil Ivan Puluj National Technical University, Ukraine, 2021 |
References: | 1. Brigham, K., Vijaya Kumar B.V.K. (2010). Imagined Speech Classification with EEG Signals for Silent Communication: A Preliminary Investigation into Synthetic Telepathy. Bioinformatics and Biomedical Engineering, Proceedings of the 4th International Conference. Chengdu, China. 2. Porbadnigk, A., Wester, M., Schultz, T. (2009). EEG-Based Speech Recognition: Impact of Temporal Effects. Bio-inspired Systems and Signal, Processing, Proceedings of the 2nd International Conference. Porto. Portugal. 3. Meltzner, G.S., Heaton, J.T., Deng, Y., De Luca, G., Roy, S.H., Joshua, C. Kline. (2017). Silent Speech Recognition as an Alternative Communication Device for Persons with Laryngectomy. IEEE/ACM Trans Audio Speech Lang Process, Proceedings of the Conference. 4. Herff, C., Schultz, T. (2016). Automatic speech recognition from neural signals: A focused review. Frontiers in Neuroscience, 10, 1-7. 5. Wand, M., Schmidhuber, J. (2016). Deep Neural Network Frontend for Continuous EMG-based Speech Recognition. International Speech Communication Association (Interspeech), Proceedings of the 17th Annual Conference. San Francisco, USA. 6. Jorgensen, C., Lee, D.D., Agabon, S. (2003). Sub Auditory Speech Recognition Based on EMG/EPG Signals. Neural Networks, Proceedings of the International Joint Conference. 7. Khan, M., Jahan, M. (2016). Sub-vocal speech pattern recognition of Hindi alphabet with surface electromyography signal. Perspectives in Science, 8, 558-560. 8. Gonzalez, J.A., Cheah, L.A., Gilbert, J.M., Bai, J., Ell, S.R., Green, P.D., Moore, R.K. (2016). A silent speech system based on permanent magnet articulography and direct synthesis. Computer Speech & Language, 67–87. 9. Xueqian, J., Li, J., Du, Y. (2008). Unvoiced Speech Recognition Based on One-Channel Facial Myoelectric Signal. Intelligent Control and Automation, Proceedings of the Sixth World Congress. Dalian, China. 10. Sannykov, V. (2008). Syloj mysli. Populiarnaia mekhanika, 6(68), 72-75. (in Russian). 11. Dozorska, O. (2018). The mathematical model of electroenсephalographic and electromyographic signals for the task of human communicative function restoration. Scientific jornal of the Ternopil National Technical University, 92(4), 126–132. 12. Nykytyuk, V., Dozorskyi, V., Dozorska, O. (2018). Detection of biomedical signals disruption using a sliding window. Scientific jornal of the Ternopil National Technical University, 91(3), 125–133. |
Тип вмісту: | Conference Abstract |
Розташовується у зібраннях: | International conference „Advanced Applied Energy and Information Technologies 2021“, (ICAAEIT 2021) |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
ICAAEIT_2021_Dozorska_O-The_methods_of_biosignals_151-156.pdf | 639,73 kB | Adobe PDF | Переглянути/відкрити | |
ICAAEIT_2021_Dozorska_O-The_methods_of_biosignals_151-156.djvu | 479,87 kB | DjVu | Переглянути/відкрити | |
ICAAEIT_2021_Dozorska_O-The_methods_of_biosignals_151-156__COVER.png | 559,87 kB | image/png | Переглянути/відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.