Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/35756
Назва: Дослідження ІоТ для використаня в системах охорони здоров’я
Інші назви: IT study aimed at their use in health protection systems
Автори: Доскоч, Назарій Ігорович
Doskoch, Nazarij Igorovych
Приналежність: ТНТУ ім. І. Пулюя, Факультет комп’ютерно-інформаційних систем і програмної інженерії, Кафедра комп’ютерних наук, м. Тернопіль, Україна
Бібліографічний опис: Доскоч Н. І. Дослідження ІоТ для використаня в системах охорони здоров’я : кваліфікаційна робота освітнього рівня „Бакалавр“ „122 — комп’ютерні науки“ / Н. І. Доскоч. — Тернопіль : ТНТУ, 2021. — 52 с.
Дата публікації: 21-чер-2021
Дата подання: 7-чер-2021
Дата внесення: 10-лип-2021
Країна (код): UA
Місце видання, проведення: ТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Україна
Науковий керівник: Мацюк, Олександр Васильович
Члени комітету: Цуприк, Галина Богданівна
УДК: 004.03
Теми: телемедицина
telemedicine
великі дані
big data
інформаційна система
information system
інтернет речей
internet of things
охорона здоров’я
healthcare
Короткий огляд (реферат): У кваліфікаційній роботі розглянуто дослідження ІоТ для використання в системах охорони здоров’я. Віддалений моніторинг є інтенсивним технологічним розвитком, тоді як телемедицина - це інтенсивний процес для людини та експертів; лікарі ставлять діагноз за допомогою своєї експертизи Зроблено огляд політики та правил електронного здоров’я та IoT на користь різних зацікавлених сторін, зацікавлених в оцінці медичних технологій на основі IoT. В роботі запропоновано структуру апаратно-програмного комплексу моніторингу життєдіяльності особи, що дозволяє пацієнтам самостійно відслідковувати життєво важливі показники свого здоров’я, а лікуючим лікарям – контролювати в реальному часі стан здоров’я своїх пацієнтів у режимі віддаленого доступу та проводити аналіз результатів спостереження за допомогою спеціальних мобільних програм-застосунків з метою своєчасного та ефективного корегування лікувальних та профілактичних заходів.
The qualification paper considers IoT research for use in health care systems. Remote monitoring is an intensive technological development, while telemedicine is an intensive process for humans and experts; doctors diagnose with the help of their examination An overview of eHealth policies and regulations and IoT for the benefit of various stakeholders interested in evaluating IoT-based medical technologies. The paper proposes a structure of hardware and software complex for monitoring a person's life, which allows patients to independently monitor vital indicators of their health, and physicians - to monitor in real time the health of their patients remotely and analyze the results of monitoring with special mobile application programs in order to timely and effectively adjust treatment and prevention measures.
Зміст: Вступ 7 1 Телемедицина та віддалений моніторинг здоров’я 8 1.1 Телемедицина 8 1.2 Віддалений моніторинг здоров’я 9 1.3 Проблеми в дистанційному моніторингу здоров’я 11 1.4 Різниця між телемедициною та дистанційним моніторингом здоров’я 13 2 Мережі охорони здоров'я IoT 16 2.1 Топологія IoThNet 16 2.2 Архітектура IoThNet 19 2.3 Послуги і застосунки ІоТ 21 2.4 ІоТ застосунки догляду за здоров'ям 22 2.5 Тенденції та стан галузі охорони здоров'я ІоТ 29 2.6 Архітектура апаратно-програмного комплексу моніторингу в реальному часі стану організму людини 31 3 Безпека життєдіяльності, основи хорони праці 36 3.1 Негативний впливу гаджетів на зір людини, та методи його захисту 36 3.2 Фактори, що впливають на функціональний стан користувачів комп’ютерів 39 Висновки 42 Список використаних джерел 43
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/35756
Власник авторського права: © Доскоч Назарій Ігорович, 2021
Перелік літератури: 1. W. Zhao, W. Chaowei, and Y. Nakahira, ‘‘Medical application on Internet of Things,’’ in Proc. IET Int. Conf. Commun. Technol. Appl. (ICCTA), Oct. 2011, pp. 660–665. 2. N. Yang, X. Zhao, and H. Zhang, ‘‘A non-contact health monitoring model based on the Internet of Things,’’ in Proc. 8th Int. Conf. Natural Comput. (ICNC), May 2012, pp. 506–510. 3. S. Imadali, A. Karanasiou, A. Petrescu, I. Sifniadis, V. Veque, and P. Angelidis, ‘‘eHealth service support in IPv6 vehicular networks,’’ in Proc. IEEE Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob), Oct. 2012, pp. 579–585. 4. R. S. H. Istepanian, ‘‘The potential of Internet of Things (IoT) for assisted living applications,’’ in Proc. IET Seminar Assist. Living, Apr. 2011, pp. 1–40. 5. G. Yang et al., ‘‘A health-IoT platform based on the integration of intel-ligent packaging, unobtrusive bio-sensor, and intelligent medicine box,’’ IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2180–2191, Nov. 2014. 5. A. J. Jara, M. A. Zamora, and A. F. Skarmeta, ‘‘Knowledge acquisition and management architecture for mobile and personal health environments based on the Internet of Things,’’ in Proc. IEEE Int. Conf. Trust, Security Privacy Comput. Commun. (TrustCom), Jun. 2012, pp. 1811–1818. 6. B. Xu, L. D. Xu, H. Cai, C. Xie, J. Hu, and F. Bu, ‘‘Ubiquitous data accessing method in IoT-based information system for emergency medical services,’’ IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1578–1586, May 2014. 7. C. Doukas and I. Maglogiannis, ‘‘Bringing IoT and cloud computing towards pervasive healthcare,’’ in Proc. Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput. (IMIS), Jul. 2012, pp. 922–926. 8. S. Imadali, A. Karanasiou, A. Petrescu, I. Sifniadis, V. Veque, and P. Angelidis, ‘‘eHealth service support in IPv6 vehicular networks,’’ in Proc. IEEE Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob), Oct. 2012, pp. 579–585. 9. A. J. Jara, M. A. Zamora, and A. F. Skarmeta, ‘‘Knowledge acquisition and management architecture for mobile and personal health environments based on the Internet of Things,’’ in Proc. IEEE Int. Conf. Trust, Security Privacy Comput. Commun. (TrustCom), Jun. 2012, pp. 1811–1818. 10. C. Doukas and I. Maglogiannis, ‘‘Bringing IoT and cloud computing towards pervasive healthcare,’’ in Proc. Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput. (IMIS), Jul. 2012, pp. 922–926. 11. M. S. Shahamabadi, B. B. M. Ali, P. Varahram, and A. J. Jara, ‘‘A network mobility solution based on 6LoWPAN hospital wireless sensor network (NEMO-HWSN),’’ in Proc. 7th Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput. (IMIS), Jul. 2013, pp. 433–438. 12. A. J. Jara, A. F. Alcolea, M. A. Zamora, A. F. J. Skarmeta, and M. Alsaedy, ‘‘Drugs interaction checker based on IoT,’’ in Proc. Internet Things (IOT), Nov./Dec. 2010, pp. 1–8. 13. R. S. H. Istepanian, S. Hu, N. Y. Philip, and A. Sungoor, ‘‘The potential of Internet of m-health Things ‘m-IoT’ for non-invasive glucose level sensing,’’ in Proc. IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. (EMBC), Aug./Sep. 2011, pp. 5264–5266. 14. N. Bui, N. Bressan, and M. Zorzi, ‘‘Interconnection of body area networks to a communications infrastructure: An architectural study,’’ in Proc. 18th Eur. Wireless Conf. Eur. Wireless, Apr. 2012, pp. 1–8. 15. P. Lopez, D. Fernandez, A. J. Jara, and A. F. Skarmeta, ‘‘Survey of Internet of Things technologies for clinical environments,’’ in Proc. 27th Int. Conf. Adv. Inf. Netw. Appl. Workshops (WAINA), Mar. 2013, pp. 1349–1354. 16. A. J. Jara, M. A. Zamora-Izquierdo, and A. F. Skarmeta, ‘‘Interconnection framework for mHealth and remote monitoring based on the Internet of Things,’’ IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 47–65, Sep. 2013. 17. R. Tabish et al., ‘‘A 3G/WiFi-enabled 6LoWPAN-based U-healthcare system for ubiquitous real-time monitoring and data logging,’’ in Proc. Middle East Conf. Biomed. Eng. (MECBME), Feb. 2014, pp. 277–280. 18. M.F.A. Rasid et al., ‘‘Embedded gateway services for Internet of Things applications in ubiquitous healthcare,’’ in Proc. 2nd Int. Conf. Inf. Commun. Technol. (ICoICT), May 2014, pp. 145–148. 19. A. J. Jara, M. A. Zamora, and A. F. Skarmeta, ‘‘Knowledge acqui-sition and management architecture for mobile and personal health environments based on the Internet of Things,’’ in Proc. IEEE Int.Conf. Trust, Security Privacy Comput. Commun. (TrustCom), Jun. 2012,pp. 1811–1818. 20. B. Xu, L. D. Xu, H. Cai, C. Xie, J. Hu, and F. Bu, ‘‘Ubiquitous data accessing method in IoT-based information system for emergency medical services,’’ IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1578–1586, May 2014. 21. C. Doukas and I. Maglogiannis, ‘‘Bringing IoT and cloud computing towards pervasive healthcare,’’ in Proc. Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput. (IMIS), Jul. 2012, pp. 922–926. 22. G. Zhang, C. Li, Y. Zhang, C. Xing, and J. Yang, ‘‘SemanMedical: A kind of semantic medical monitoring system model based on the IoT sensors,’’ in Proc. IEEE Int. Conf. eHealth Netw., Appl. Services (Healthcom), Oct. 2012, pp. 238–243. 23. X. M. Zhang and N. Zhang, ‘‘An open, secure and flexible platform based on Internet of Things and cloud computing for ambient aiding living and telemedicine,’’ in Proc. Int. Conf. Comput. Manage. (CAMAN), May 2011, pp. 1–4. 24. M. S. Shahamabadi, B. B. M. Ali, P. Varahram, and A. J. Jara, ‘‘A network mobility solution based on 6LoWPAN hospital wireless sensor network (NEMO-HWSN),’’ in Proc. 7th Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput. (IMIS), Jul. 2013, pp. 433–438. 25. A. J. Jara, A. F. Alcolea, M. A. Zamora, A. F. J. Skarmeta, and M. Alsaedy, ‘‘Drugs interaction checker based on IoT,’’ in Proc. Internet Things (IOT), Nov./Dec. 2010, pp. 1–8. 26. R. S. H. Istepanian, S. Hu, N. Y. Philip, and A. Sungoor, ‘‘The potential of Internet of m-health Things ‘m-IoT’ for non-invasive glucose level sensing,’’ in Proc. IEEE Annu. Int. Conf. Eng. Med. Biol. Soc. (EMBC), Aug./Sep. 2011, pp. 5264–5266. 27. N. Bui, N. Bressan, and M. Zorzi, ‘‘Interconnection of body area networks to a communications infrastructure: An architectural study,’’ in Proc. 18th Eur. Wireless Conf. Eur. Wireless, Apr. 2012, pp. 1–8. 28. P. Lopez, D. Fernandez, A. J. Jara, and A. F. Skarmeta, ‘‘Survey of Internet of Things technologies for clinical environments,’’ in Proc. 27th Int. Conf. Adv. Inf. Netw. Appl. Workshops (WAINA), Mar. 2013, pp. 1349–1354. 29. A. J. Jara, M. A. Zamora-Izquierdo, and A. F. Skarmeta, ‘‘Interconnection framework for mHealth and remote monitoring based on the Internet of Things,’’ IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 47–65, Sep. 2013. 30. R. Tabish et al., ‘‘A 3G/WiFi-enabled 6LoWPAN-based U-healthcare system for ubiquitous real-time monitoring and data logging,’’ in Proc. Middle East Conf. Biomed. Eng. (MECBME), Feb. 2014, pp. 277–280. 31. M. F. A. Rasid et al., ‘‘Embedded gateway services for Internet of Things applications in ubiquitous healthcare,’’ in Proc. 2nd Int. Conf. Inf. Commun. Technol. (ICoICT), May 2014, pp. 145–148. 32. Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded Internet, 1st ed. London, U.K.: Wiley, 2009. 33. L. You, C. Liu, and S. Tong, ‘‘Community medical network (CMN): Architecture and implementation,’’ in Proc. Global Mobile Congr. (GMC), Oct. 2011, pp. 1–6. 34. P. Swiatek and A. Rucinski, ‘‘IoT as a service system for eHealth,’’ in Proc. IEEE Int. Conf. eHealth Netw., Appl. Services (Healthcom), Oct. 2013, pp. 81–84. 35. M. Diaz, G. Juan, O. Lucas, and A. Ryuga, ‘‘Big data on the Internet of Things: An example for the e-health,’’ in Proc. Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput. (IMIS), Jul. 2012, pp. 898–900. 36. X. Wang, J. T. Wang, X. Zhang, and J. Song, ‘‘A multiple communication standards compatible IoT system for medical usage,’’ in Proc. IEEE Faible Tension Faible Consommation (FTFC), Jun. 2013, pp. 1–4. 37. W. Wang, J. Li, L. Wang, and W. Zhao, ‘‘The Internet of Things for resident health information service platform research,’’ in Proc. IET Int. Conf. Commun. Technol. Appl. (ICCTA), Oct. 2011, pp. 631–635. 38. L. Yang, Y. Ge, W. Li, W. Rao, and W. Shen, ‘‘A home mobile healthcare system for wheelchair users,’’ in Proc. IEEE Int. Conf. Comput. Supported Cooperat. Work Design (CSCWD), May 2014, pp. 609–614. 39. Z. Pang, Q. Chen, J. Tian, L. Zheng, and E. Dubrova, ‘‘Ecosystem analysis in the design of open platform-based in-home healthcare terminals towards the Internet-of-Things,’’ in Proc. Int. Conf. Adv. Commun.Technol. (ICACT), Jan. 2013, pp. 529–534. 40. Y. J. Fan, Y. H. Yin, L. D. Xu, Y. Zeng, and F. Wu, ‘‘IoT-based smart rehabilitation system,’’ IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1568–1577, May 2014. 41. M. Bazzani, D. Conzon, A. Scalera, M. A. Spirito, and C. I. Trainito, ‘‘Enabling the IoT paradigm in e-health solutions through the VIRTUS middleware,’’ in Proc. IEEE 11th Int. Conf. Trust, Security Privacy Comput. Commun. (TrustCom), Jun. 2012, pp. 1954–1959. 42. M. Vazquez-Briseno, C. Navarro-Cota, J. I. Nieto-Hipolito, E. Jimenez-Garcia, and J. D. Sanchez-Lopez, ‘‘A proposal for using the Internet of Things concept to increase children’s health awareness,’’ in Proc. 22nd Int. Conf. Elect. Commun. Comput. (CONIELECOMP), Feb. 2012, pp. 168–172. 43. X. Jia, H. Chen, and F. Qi, ‘‘Technical models and key technologies of e-health monitoring,’’ in Proc. IEEE Int. Conf. e-Health Netw., Appl. Services (Healthcom), Oct. 2012, pp. 23–26. 44. V. Miori and D. Russo, ‘‘Anticipating health hazards through an ontology-based, IoT domotic environment,’’ in Proc. 6th Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput. (IMIS), Jul. 2012, pp. 745–750. 45 A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier, ‘‘The Internet of Things for ambient assisted living,’’ in Proc. 7th Int. Conf. Inf. Technol., New Generat. (ITNG), Apr. 2010, pp. 804–809. 46. F. Goncalves, J. Macedo, M. J. Nicolau, and A. Santos, ‘‘Security architecture for mobile e-health applications in medication control,’’ in Proc. 21st Int. Conf. Softw., Telecommun. Comput. Netw. (SoftCOM), Sep. 2013, pp. 1–8. 47. R. S. H. Istepanian, E. Jovanov, and Y. T. Zhang, ‘‘Guest editorial introduction to the special section on m-health: Beyond seamless mobility and global wireless health-care connectivity,’’ IEEE Trans. Inf. Technol.Biomed., vol. 8, no. 4, pp. 405–414, Dec. 2004. 48. ICH Expert Working Group, ‘‘Guidance for industry-E6 good clinical practice: Consolidated guidance,’’ U.S. Dept. Health Human Services, Food Drug Admin., Silver Spring, MD, USA, Apr. 1996. 49. A. J. Jara, F. J. Belchi, A. F. Alcolea, J. Santa, M. A. Zamora-Izquierdo, and A. F. Gomez-Skarmeta, ‘‘A pharmaceutical intelligent information system to detect allergies and adverse drugs reactions based on Internet of Things,’’ in Proc. IEEE Int. Conf. Pervasive Comput. Commun.Workshops (PERCOM Workshops), Mar./Apr. 2010, pp. 809–812. 50. V. M. Rohokale, N. R. Prasad, and R. Prasad, ‘‘A cooperative Internet of Things (IoT) for rural healthcare monitoring and control,’’ in Proc. Int. Conf. Wireless Commun., Veh. Technol., Inf. Theory Aerosp. Electron.Syst. Technol. (Wireless VITAE), Feb./Mar. 2011, pp. 1–6. 51. Awareness Day 2014 Activities by Program Type. [Online]. Available: http://www.samhsa.gov/sites/default/files/children-awareness-day-activities-by-program-2014.pdf, accessed Dec. 7, 2014. 52. S. Vicini, S. Bellini, A. Rosi, and S. Sanna, ‘‘An Internet of Things enabled interactive totem for children in a living lab setting,’’ in Proc. ICE Int. Conf. Eng., Technol. Innov. (ICE), Jun. 2012, pp. 1–10. 53. W.-Y. Chung, Y.-D. Lee, and S.-J. Jung, ‘‘A wireless sensor network compatible wearable u-healthcare monitoring system using integrated ECG, accelerometer and SpO2,’’ in Proc. 30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS), Aug. 2008, pp. 1529–1532. 54. P. Castillejo, J.-F. Martinez, J. Rodriguez-Molina, and A. Cuerva, ‘‘Integration of wearable devices in a wireless sensor network for an e-health application,’’ IEEE Wireless Commun., vol. 20, no. 4, pp. 38–49, Aug. 2013. 55. G. Sebestyen, A. Hangan, S. Oniga, and Z. Gal, ‘‘eHealth solutions in the context of Internet of Things,’’ in Proc. IEEE Int. Conf. Autom., Quality Test., Robot., May 2014, pp. 1–6. 56. A. Burgun, G. Botti, M. Fieschi, and P. Le Beux, ‘‘Sharing knowledge in medicine: Semantic and ontologic facets of medical concepts,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), vol. 6. 1999, pp. 300–305. 57. J. Liu and L. Yang, ‘‘Application of Internet of Things in the community security management,’’ in Proc. 3rd Int. Conf. Comput. Intell., Commun. Syst. Netw. (CICSyN), Jul. 2011, pp. 314–318. 58. Y. Xiao, X. Chen, L. Wang, W. Li, B. Liu, and D. Fang, ‘‘An immune theory based health monitoring and risk evaluation of earthen sites with Internet of Things,’’ in Proc. IEEE Int. Conf. Cyber, Phys. Soc. Comput. Green Comput. Commun. (GreenCom), IEEE Internet Things (iThings/CPSCom), Aug. 2013, pp. 378–382. 59. I. Nikolaevskiy, D. Korzun, and A. Gurtov, ‘‘Security for medical sensor networks in mobile health systems,’’ in Proc. IEEE 15th Int. Symp. World Wireless, Mobile Multimedia Netw. (WoWMoM), Jun. 2014, pp. 1–6. 60. G. Mantas, D. Lymberopoulos, and N. Komninos, ‘‘A new framework for ubiquitous context-aware healthcare applications,’’ in Proc. 10th IEEE Int. Conf. Inf. Technol. Appl. Biomed. (ITAB), Nov. 2010, pp. 1–4. 61. H. Viswanathan, B. Chen, and D. Pompili, ‘‘Research challenges in computation, communication, and context awareness for ubiquitous health-care,’’ IEEE Commun. Mag., vol. 50, no. 5, pp. 92–99, May 2012. 62. M. P. R. Sai Kiran, P. Rajalakshmi, and A. Acharyya, ‘‘Context predictor based sparse sensing technique and smart transmission architecture for IoT enabled remote health monitoring applications,’’ in Proc. IEEE Int. Conf. Eng. Med. Biol. Soc. (EMBC), Aug. 2014, pp. 4151–4154. 63. Z. J. Guan, ‘‘Somatic data blood glucose collection transmission device for Internet of Things,’’ Chinese Patent 202 838 653 U, Mar. 27, 2013. 64. L. Wei, Y. Heng, and W. Y. Lin, ‘‘Things based wireless data transmission of blood glucose measuring instruments,’’ Chinese Patent 202 154 684 U, Mar. 7, 2012. 65. Z. Lijun, ‘‘Multi-parameter medical acquisition detector based on Internet of Things,’’ Chinese Patent 202 960 774 U, Jun. 5, 2013. 66. B. J. Drew et al., ‘‘Practice standards for electrocardiographic monitoring in hospital settings,’’ Circulation, vol. 110, no. 17, pp. 2721–2746, Oct. 2004. 67. P. K. Dash, ‘‘Electrocardiogram monitoring,’’ Indian J. Anaesthesia, vol. 46, no. 4, pp. 251–260, Aug. 2002. 68. E. Agu et al., ‘‘The smartphone as a medical device: Assessing enablers, benefits and challenges,’’ in Proc. IEEE Int. Workshop Internet-Things Netw. Control (IoT-NC), Jun. 2013, pp. 48–52. 69. M.-L. Liu, L. Tao, and Z. Yan, ‘‘Internet of Things-based electrocardiogram monitoring system,’’ Chinese Patent 102 764 118 A, Nov. 7, 2012. 70. Y. Xiaogang, L. Hongjiang, W. Jiaqing, and T. Wentao, ‘‘Realization of comprehensive detection algorithm of electrocardiogram signal at application layer electrocardiogram monitoring Internet of Thing,’’ Chinese Patent 101 947 112 A, Jan. 19, 2011. 71. J. Puustjarvi and L. Puustjarvi, ‘‘Automating remote monitoring and information therapy: An opportunity to practice telemedicine in developing countries,’’ in Proc. IST-Africa Conf., May 2011, pp. 1–9. 72. L. M. R. Tarouco et al., ‘‘Internet of Things in healthcare: Interoperatibility and security issues,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2012, pp. 6121–6125. 73. Z. J. Guan, ‘‘Internet-of-Things human body data blood pressure collecting and transmitting device,’’ Chinese Patent 202 821 362 U, Mar. 27, 2013. 74. T. J. Xin, B. Min, and J. Jie, ‘‘Carry-on blood pressure/pulse rate/blood oxygen monitoring location intelligent terminal based on Internet of Things,’’ Chinese Patent 202 875 315 U, Apr. 17, 2013. 75. M. N. Ruiz, J. M. García, and B. M. Fernández, ‘‘Body temperature and its importance as a vital constant,’’ Revista Enfermeria, vol. 32, no. 9, pp. 44–52, Sep. 2009. 76. Z. Jian, W. Zhanli, and M. Zhuang, ‘‘Temperature measurement system and method based on home gateway,’’ Chinese Patent 102 811 185 A, Dec. 5, 2012. 77. Z. L. In, ‘‘Patient body temperature monitoring system and device based on Internet of Things,’’ Chinese Patent 103 577 688 A, Feb. 12, 2014. 78. H. A. Khattak, M. Ruta, and E. Di Sciascio, ‘‘CoAP-based healthcare sensor networks: A survey,’’ in Proc. 11th Int. Bhurban Conf. Appl. Sci.Technol. (IBCAST), Jan. 2014, pp. 499–503. 79. E. C. Larson, M. Goel, G. Boriello, S. Heltshe, M. Rosenfeld, and S. N. Patel, ‘‘SpiroSmart: Using a microphone to measure lung function on a mobile phone,’’ in Proc. ACM Int. Conf. Ubiquitous Comput., Sep. 2012, pp. 280–289. 80. E. C. Larson, M. Goel, M. Redfield, G. Boriello, M. Rosenfeld, and S. N. Patel, ‘‘Tracking lung function on any phone,’’ in Proc. ACM Symp.Comput. Develop., Jan. 2013, Art. ID 29. 81. E. C. Larson, T. Lee, S. Liu, M. Rosenfeld, and S. N. Patel, ‘‘Accurate and privacy preserving cough sensing using a low-cost microphone,’’ in Proc. ACM Int. Conf. Ubiquitous Comput., Sep. 2011, pp. 375–384. 82. B. Tan and O. Tian, ‘‘Short paper: Using BSN for tele-health application in upper limb rehabilitation,’’ in Proc. IEEE World Forum Internet Things (WF-IoT), Mar. 2014, pp. 169–170. 83. D. Y. Lin, ‘‘Integrated Internet of Things application system for prison,’’ Chinese Patent 102 867 236 A, Jan. 9, 2013. 84. Z. Guangnan and L. Penghui, ‘‘IoT (Internet of Things) control system facing rehabilitation training of hemiplegic patients,’’Chinese Patent 202 587 045 U, Dec. 5, 2012. 85. Y. Yue-Hong, F. Wu, F. Y. Jie, L. Jian, X. Chao, and Z. Yi, ‘‘Remote medical rehabilitation system in smart city,’’ Chinese Patent 103 488 880 A,Jan. 1, 2014. 86. S. Liang, Y. Zilong, S. Hai, and M. Trinidad, ‘‘Childhood autism language training system and Internet-of-Things-based centralized training center,’’ Chinese Patent 102 184 661 A, Sep. 14, 2011. 87. Z. Pang, J. Tian, and Q. Chen, ‘‘Intelligent packaging and intelligent medicine box for medication management towards the Internet-of-Things,’’ in Proc. 16th Int. Conf. Adv. Commun. Technol. (ICACT), Feb. 2014, pp. 352–360. 88. I. Laranjo, J. Macedo, and A. Santos, ‘‘Internet of Things for medication control: E-health architecture and service implementation,’’ Int. J. Rel. Quality E-Healthcare, vol. 2, no. 3, pp. 1–15, Jul. 2013. 89. V. Kolici, E. Spaho, K. Matsuo, S. Caballe, L. Barolli, and F. Xhafa, ‘‘Implementation of a medical support system considering P2P and IoT technologies,’’ in Proc. 8th Int. Conf. Complex, Intell. Softw. Intensive Syst. (CISIS), Jul. 2014, pp. 101–106. 90. M. Pesta, J. Fichtl, V. Kulda, O. Topolcan, and V. Treska, ‘‘Monitoring of circulating tumor cells in patients undergoing surgery for hepatic metastases from colorectal cancer,’’ Anticancer Res., vol. 33, no. 5, pp. 2239–2243, May 2013. 91. A. S. M. Mosa, I. Yoo, and L. Sheets, ‘‘A systematic review of healthcare applications for smartphones,’’ BMC Med. Informat. Decision Making, vol. 12, p. 67, Jul. 2012. 92. P. J. F. White, B. W. Podaima, and M. R. Friesen, ‘‘Algorithms for smartphone and tablet image analysis for healthcare applications,’’ IEEE Access, vol. 2, pp. 831–840, Aug. 2014. 93. J. Lee, B. A. Reyes, D. D. McManus, O. Mathias, and K. H. Chon, ‘‘Atrial fibrillation detection using a smart phone,’’ in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug./Sep. 2012, pp. 1177–1180. 94. J. Lee, B. A. Reyes, D. D. McManus, O. Mathias, and K. H. Chon, ‘‘Atrial fibrillation detection using an iPhone 4S,’’ IEEE Trans. Biomed. Eng., vol. 60, no. 1, pp. 203–206, Jan. 2013. 95. N.-C. Chen, K.-C. Wang, and H.-H. Chu, ‘‘Listen-to-nose: A low-cost system to record nasal symptoms in daily life,’’ in Proc. ACM Int. Conf. Ubiquitous Comput., Sep. 2012, pp. 590–591. 96. T. Wadhawan, S. Ning, R. Hu, K. Lancaster, X. Yuan, and G. Zouridakis, ‘‘Implementation of the 7-point checklist for melanoma detection on smart handheld devices,’’ in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug./Sep. 2011, pp. 3180–3183. 97. L. Wang, P. C. Pedersen, D. Strong, B. Tulu, and E. Agu, ‘‘Wound image analysis system for diabetics,’’ Proc. SPIE, vol. 8669, p. 866924,Mar. 2013
Тип вмісту: Bachelor Thesis
Розташовується у зібраннях:122 — Компʼютерні науки (бакалаври)

Файли цього матеріалу:
Файл Опис РозмірФормат 
bak_2021_SN_41_Doscoch_N_I.pdf930,05 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора