Denne identifikatoren kan du bruke til å sitere eller lenke til denne innførselen: http://elartu.tntu.edu.ua/handle/lib/33043
Tittel: Modeling of mechanical behavior of reinforced concrete beam reinforced by the shape memory alloy insertion using finite elements method
Alternative titler: Моделювання методом скінчених елементів механічної поведінки залізобетонної балки, підсиленої вставками зі сплаву пам’яті форми
Authors: Yasnii, Petro Volodymyrovych
Iasnii, Volodymyr Petrovych
Bykiv, Nazarii Zinoviyovych
Биків, Назарій Зіновійович
Ясній, Петро Володимирович
Ясній, Володимир Петрович
Affiliation: Тернопільський національний технічний університет ім. Івана Пулюя
Bibliographic description (Ukraine): Биків Н. З. Моделювання методом скінчених елементів механічної поведінки залізобетонної балки, підсиленої вставками зі сплаву пам’яті форми // Н. З. Биків, П. В. Ясній, Ясній В. П. // Сучасні технології та методи розрахунків у будівництві. - Луцьк : Луцький національний технічний університет, 2020. - Випуск 13. - С. 24-34.
Bibliographic description (International): Bykiv N. Z., Yasniy P. V., Iasnii V. P. (2020) Modeling of mechanical behavior of reinforced concrete beam reinforced by the shape memory alloy insertion using finite elements method. Modern technologies and methods of calculations in construction (Lutsk), vol. 13, pp. 24-34.
Utgivelsesdato: 22-aug-2020
Date of entry: 4-des-2020
Forlag: Луцький національний технічний університет
Country (code): UA
Place of the edition/event: Луцький національний технічний університет
UDC: 69.07
Emneord: сплав пам’яті форми
надпружність
підсилення конструкції
Serie/Rapport nr.: 13;
Abstrakt: One of the methods for improving the bearing capacity of the construction structures and engineering constructions is the application of construction materials with the improved strength and flexibility characteristics as well as the ability to disperse the vibration energy. It is of particular importance for the construction structures being in the seismic regions, which are under dynamic loading during their operation. The shape Memory Alloys (SMA) are promising materials, which can recover their original shape after uploading (the effect of superelasticity) or being under the temperature influence (the effect of shape memory) during many cycles of loading –unloading.The mechanical behavior of a reinforced concrete beam with classical reinforcement and a reinforced concrete beam reinforced with inserts of superelastic Nitinol (Ni-Ti) is simulated by the finite element method. Beam dimensions: h=140 mm; b=80 mm; L=1200 mm. The beam is made of concrete of the С20/25 class, armature А400С2Ø12mm L=1080 mm; mountings armature А240С 2Ø6mm L=1200 mm, reinforcing insert Ni-Ti 2Ø12 mm L=120 mm. Behavior simulation took place in the ANSYS Workbench 19 R2 PC environment. Reinforced concrete beam isdivided into finite elements. Size of the Solid 186 elements for the armature 12,5 mm, for the mountings armature 40 mm. The size of the Solid 186 elements for the body of the beam was automatically selected by the software –200 mm. In total, the reinforced concrete beam consisted of 22872 finite elements and 4730 nodes. Reinforced concrete beam with armature A400C is subjected to evenly distributed load on the plane 120×80 mm (Р=20MPa). It is revealed that the transition of the yield strength in the simulated beam with armature А 400С occurs at a load ofР = 9MPa. Therefore, the study of the behavior of the reinforced concrete beam with classical reinforcement (armature A 400C) and the reinforced concrete beam reinforced with inserts of superelastic Nitinol (Ni-Ti) occurred when loading beams to the value of Р = 9MPa and their complete unloading. The insert of nickel-titanium (Ni-Ti) alloy replaced the plastically deformed section of the working reinforcement A400C, where the stresses exceeded the yield strength (ζt 0.2= 365 MPa). The values of displacements, maximum stresses and residual stresses of the beams by compared. It was concluded that the inserts made of superelastic Ni-Ti alloy 16,9 times reduced the εresof the working reinforcement,increased the maximum displacement of the beam by 9,7%,increased the εmaxby 47,8% compared to the working reinforcement А400C.
URI: http://elartu.tntu.edu.ua/handle/lib/33043
URL for reference material: https://doi.org/10.36910/6775-2410-6208-2020-3(13)-03
References (International): 1.Menna C., Auricchio F., Asprone D. Applications of shape memory alloys in structural engineering // Shape Memory Alloy Engineering. 2015. 369–403 p.
2.Isalgue A. et al. SMA for Dampers in Civil Engineering // Mater. Trans. 2006. Vol. 47, No 3. P. 682–690.
3.Silva P., Almeida J., Guerreiro L. Semi-active Damping Device Based on Superelastic Shape Memory Alloys // Structures. Elsevier B.V., 2015. Vol. 3. P. 1–12
4.Ozbulut O.E., Hurlebaus S. Re-centering variable friction device for vibration control of structures subjected to near-field earthquakes // Mech. Syst. Signal Process. 2011
5.Torra V. et al. The SMA: An Effective Damper in Civil Engineeringthat Smoothes Oscillations // Mater. Sci. Forum. 2012. Vol. 706–709, No July 2015. P. 2020–2025.
6.Fang C. et al. Superelastic NiTi SMA cables: Thermal-mechanical behavior, hysteretic modelling and seismic application // Eng. Struct. 2019. Vol. 183. P. 533–549.
7. Ai-Rong L. et al. A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables // Int. J. Struct. Stab. Dyn. 2017. Vol. 17, No 7. P. 6–23.
8.Song G., Ma N., Li H.-N. Applications of shape memory alloys in civil structures // Eng. Struct. 2006. Vol. 28. P. 1266–1274.
9.Alam M.S., Youssef M.A., Nehdi M. Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review // Can. J. Civ. Eng. 2007. Vol. 34, No 9. P. 1075–1086.
10. Kolisnyk M.B. Sobashek L. Yasnii V.P. Obhruntuvannia vykorystannia SPF splaviv u dempfuiuchykh prystroiakh // Zbirnyk Tez Dopovidei VII Mizhnarodnoi Naukovo-tekhnichnoi Konferentsii Molodykh Uchenykh Ta Studentiv „Aktualni Zadachi Suchasnykh Tekhnolohii―. 2018. Vol. 1. P. 35.
11.Van Humbeeck J. Non-medical applications of shape memory alloys // Mater. Sci. Eng. A. Elsevier, 1999. Vol. 273–275. P. 134–148.
12.Song G., Ma N., Li H.N. Applications of shape memory alloys in civil structures // Eng. Struct. 2006. Vol. 28, No 9. P. 1266–1274.
13.Hamid N.A. et al. Behaviour of smart reinforced concrete beam with super elastic shape memory alloy subjected to monotonic loading // AIP Conf. Proc. 2018. Vol. 1958.
14.Hamid N.A. et al. Finite element analysis of smart reinforced concrete beam with super elastic shape memory alloy subjected to static loading for seismic mitigation. 1958. P. 20033.
15.Iasnii V. et al. Experimental study of pseudoelastic NiTi alloy under cyclic loading // Sci. J. TNTU. 2018. Vol. 92, No 4. P. 7–12.
16.DBN V.2.6-98:2009. Konstruktsii budynkiv isporud. Betonni ta zalizobetonni konstruktsii. Osnovni polozhennia.2011.17.DSTU B V.2.6-156:2010. Konstruktsii budynkiv i sporud. Betonni ta zalizobetonni konstruktsii z vazhkoho betonu. Pravylaproektuvannia.2010.
Content type: Article
Vises i samlingene:Наукова діяльність Яснія П. В.
Наукові публікації працівників кафедри будівельної механіки

Tilhørende filer:
Fil Beskrivelse StørrelseFormat 
327-Текст статті-1200-1-10-20200822.pdf772,1 kBAdobe PDFVis/Åpne


Alle innførsler i DSpace er beskyttet av copyright

Administrasjonsverktøy