Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/31513
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorYuzevych, Volodymyr-
dc.contributor.authorPavlenchyk, Nataliia-
dc.contributor.authorZaiats, Olha-
dc.contributor.authorHeorhiadi, Nellі-
dc.contributor.authorLakiza, Viktoriia-
dc.date.accessioned2020-05-06T02:14:39Z-
dc.date.available2020-05-06T02:14:39Z-
dc.date.issued2020-05-01-
dc.identifier.citationYuzevych, V., Pavlenchyk, N., Zaiats, O., Heorhiadi, N., & Lakiza, V. (2020). Qualimetric Analysis of Pipelines with Corrosion Surfaces in the Monitoring System of Oil and Gas Enterprises // International Journal of Recent Technology and Engineering (IJRTE), 9(1), 1145–1150. (ISSN 2277-3878).uk_UA
dc.identifier.issn2277-3878-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/31513-
dc.description.abstractThe introduction of new technologies for diagnosing underground metal pipelines with dangerous surface defects is a practically important task. That is why studies aimed at improving the methods of assessing the quality of deformed metal pipelines and structural elements are necessary and relevant. The evaluation of the effectiveness of engineering and technological solutions for oil and gas enterprises needs improvement. In this context, an important task is to solve the problem of quality control (including durability) of gas and oil transportation systems and the improvement of appropriate metrological support. Based on surface physics and fracture mechanics, development of a methodological approach to assessing the quality and resource of underground metal pipelines (UMP) of oil and gas enterprises, taking into account the constructions strength, corrosion fatigue, parameters of corrosion protection and metrological support. Results of processing of normative documents and scientific works in the field of gas transportation enterprises, as well as methods of surface physics, mechanics of deformed solid body, fracture mechanics, qualimetry regarding the system “pipeline (UMP) – coating”. A new criterion for the strength of the surface of a metal underground pipe is proposed, which characterizes the peculiarities of bond fractures (adhesion) between the coating and the metal. Using the criterion of the strength of a metal tube with a defect in the electrolyte, the dependence of the critical internal pressure of the gas pipeline (UMP) on the geometric and energy (elastic and plastic) parameters of the metal, as well as the current of the anodic dissolution, which characterizes the features of the crack propagation at the bottom of the corrosion cavern. On the basis of surface physics and fracture mechanics obtained, a methodology for evaluating the quality of underground metal pipelines of oil and gas enterprises was developed to determine their resource, taking into account strength, corrosion fatigue, parameters of corrosion protection and metrological support.uk_UA
dc.format.extent1145–1150-
dc.language.isoenuk_UA
dc.relation.urihttp://www.ijrte.org/archive/uk_UA
dc.relation.urihttps://www.scopus.com/sourceid/21100889873uk_UA
dc.subjectpipelineuk_UA
dc.subjectmetaluk_UA
dc.subjectoil and gas enterprisesuk_UA
dc.subjectstructure degradationuk_UA
dc.subjectfractureuk_UA
dc.subjectcavernuk_UA
dc.subjectcrackuk_UA
dc.subjectmetrologyuk_UA
dc.subjectquality controluk_UA
dc.subjectnon-destructive testinguk_UA
dc.subjectneural networkuk_UA
dc.titleQualimetric Analysis of Pipelines with Corrosion Surfaces in the Monitoring System of Oil and Gas Enterprisesuk_UA
dc.typeArticleuk_UA
dc.relation.referencesen1. Technical diagnostics of materials and structures: Reference manual / Ed.-in-chief Z. T. Nazarchuk. Vol. 4: Electrophysical methods for nondestructive testing of defects in structural elements / R. M. Dzhala (ed), V. R. Dzhala, I. B. Ivasiv, V. G. Rybachuk, V. M. Uchanin. Lviv: Prostir-M, 2018. 356 p. (In Ukr.).uk_UA
dc.relation.referencesen2. Lozovan, V., Dzhala, R., Skrynkovskyy, R., & Yuzevych, V. (2019). Detection of specific features in the functioning of a system for the anti-corrosion protection of underground pipelines at oil and gas enterprises using neural networks. Eastern-European Journal of Enterprise Technologies, 1(5(97)), 20–27. doi: http://dx.doi.org/10.15587/1729-4061.2019.154999.uk_UA
dc.relation.referencesen3. Lozovan, V., Skrynkovskyy, R., Yuzevych, V., Yasinskyi, M., & Pawlowski, G. (2019). Forming the toolset for development of a system to control quality of operation of underground pipelines by oil and gas enterprises with the use of neural networks. Eastern-European Journal of Enterprise Technologies, 2(5(98)), 41–48. doi: http://dx.doi.org/10.15587/1729-4061.2019.161484.uk_UA
dc.relation.referencesen4. Yuzevych, V., Skrynkovskyy, R., & Koman, B. (2018). Intelligent Analysis of Data Systems for Defects in Underground Gas Pipeline. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478560.uk_UA
dc.relation.referencesen5. Yuzevych, L., Skrynkovskyy, R., & Koman, B. (2017). Development of information support of quality management of underground pipelines. EUREKA: Physics and Engineering, 4, 49–60. doi: https://doi.org/10.21303/2461-4262.2017.00392.uk_UA
dc.relation.referencesen6. Yuzevych, V. M., Dzhala, R. M., & Koman, B. P. (2018). Analysis of Metal Corrosion under Conditions of Mechanical Impacts and Aggressive Environments. Metallofizika i Noveishie Tekhnologii, 39(12), 1655–1667. doi: https://doi.org/10.15407/mfint.39.12.1655.uk_UA
dc.relation.referencesen7. Yuzevych, V., Klyuvak, O., & Skrynkovskyy, R. (2016). Diagnostics of the system of interaction between the government and business in terms of public e-procurement. Economic Annals-ХХI, 160(7-8), 39–44. doi: https://doi.org/10.21003/ea.v160-08.uk_UA
dc.relation.referencesen8. Dzhala, R. M., Savula, S. F., & Yuzevych, V. M. (2014). Mathematical Model for Evaluation of Resource of Pipeline with corrosive Crack at loading intrinsic Pressure. Methods and Devices of Quality Control, 2(33), 123–126.uk_UA
dc.relation.referencesen9. Din, M. M., Ithnin, N., Zain, A. M., Noor, N. M., Siraj, M. M., & Rasol, R. M. (2015). An artificial neural network modeling for pipeline corrosion growth prediction. ARPN Journal of Engineering and Applied Sciences, 10(2), 512–519.uk_UA
dc.relation.referencesen10. Liao, K., Yao, Q., Wu, X., & Jia, W. A (2012). Numerical Corrosion Rate Prediction Method for Direct Assessment of Wet Gas Gathering Pipelines Internal Corrosion. Energies, 5(10), 3892–3907. doi: https://doi.org/10.3390/en5103892.uk_UA
dc.relation.referencesen11. Cosham, A., & Hopkins, P. (2004). The assessment of corrosion in pipelines – guidance in the pipeline. Pipeline Pigging and Integrity Management Conference (17-18th May 2004 – Amsterdam, The Netherlands), 1–31.uk_UA
dc.relation.referencesen12. Zhang, H., Zhang, H., Zhao, X., Wang, Y., & Li, N. (2016). Study of Thickness Effect on Fracture Toughness of High Grade Pipeline Steel. MATEC Web of Conferences, 67(Article Number 03016), 1–8. doi: https://doi.org/10.1051/matecconf/20166703016.uk_UA
dc.relation.referencesen13. Skrynkovskyi, R. (2008). Investment attractiveness evaluation technique for machine-building enterprises. Actual Problems of Economics, 7(85), 228–240.uk_UA
dc.relation.referencesen14. Skrynkovskyi, R. M. (2011). Methodical approaches to economic estimation of investment attractiveness of machine-building enterprises for portfolio investors. Actual Problems of Economics, 118(4), 177–186.uk_UA
dc.relation.referencesen15. Podgórski, J. (2017). The criterion for determining the direction of crack propagation in a random pattern composites. Meccanica, 52(8), 1923–1934. doi: https://doi.org/10.1007/s11012-016-0523-y.uk_UA
dc.relation.referencesen16. Koman, B. P., & Yuzevich, V. M. (2015). Energy Parameters of Interfacial Layers in Composite Systems: Graphene – (Si, Cu, Fe, Co, Au, Ag, Al, Ru, Hf, Pb) and Semiconductor (Si, Ge) – (Fe, Co, Cu, Al, Au, Cr, W, Pb). Journal of nano- and electronic physics, 7(4), 04059-104059-7.uk_UA
dc.relation.referencesen17. Kaneko, K., & Narahashi, K. (2009). Study on Adhesive Strength Criterion under Complex Stresses. Journal of Solid Mechanics and Materials Engineering, 3(1), 49–63. doi: https://doi.org/10.1299/jmmp.3.49.uk_UA
dc.relation.referencesen18. Monda, J., Marandi, M., Kozlova, J., Merisalu, M., Niilisk, A., & Sammelselg, V. (2014). Protection and Functionalizing of Stainless Steel Surface by Graphene Oxide-Polypyrrole Composite Coating. J. Chem. Chem. Eng., 8, 786–793.uk_UA
dc.relation.referencesen19. Salnikov, A. V., Sharygin, A. M., & Ignatik, A. A. (2016). Strength and durability evaluation of pipes with defects for effective repair planning on the linear part of the main pipelines. Territorija “NEFTEGAS” [Oil and Gas Territory], 9, 114–121 (In Russ.). URL: https://tng.elpub.ru/jour/article/view/375.uk_UA
dc.relation.referencesen20. Dzhala, R. M., Kaplun, A. V., Valiashek, V. B., & Yuzevych, V. M. (2014). Model of the boundary of metals and the method of a small parameter in the problems of the theory of adhesion. Selection and information processing, 41(117), 20–27.uk_UA
dc.relation.referencesen21. Wright, M., Guillen, P., Soltis, J. (2017). Risk management of stress corrosion cracking of buried pipelines. Rio Pipeline Conference & Exhibition 2017, 1–7.uk_UA
dc.relation.referencesen22. Colorado-Garrido, D., Ortega-Toledo, D. M., Hernández, J. A., González-Rodríguez, J. G., & Uruchurtu, J. (2008). Neural networks for Nyquist plots prediction during corrosion inhibition of a pipeline steel. Journal of Solid State Electrochemistry, 13(11), 1715–1722. doi: https://doi.org/10.1007/s10008-008-0728-7.uk_UA
dc.relation.referencesen23. Zhu, P., Yang, L., Li, Z., & Sun, J. (2010). The shielding effects of the crack-tip plastic zone. International Journal of Fracture, 161(2), 131–139. doi: http://dx.doi.org/10.1007/s10704-011-9618-6.uk_UA
dc.relation.referencesen24. Elishakoff, I. Interrelation Between Safety Factors and Reliability. NASA/CR-2001-211309; Florida Atl.Univ., Boca Raton, Florida. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020011027.pdf.uk_UA
dc.relation.referencesen25. El May, M., Saintier, N., Palin-Luc, T., Devos, O., & Brucelle, O. (2018). Modelling of corrosion fatigue crack initiation on martensitic stainless steel in high cycle fatigue regime. Corrosion science,133, 397–405. doi: http://dx.doi.org/10.1016/j.corsci.2018.01.034.uk_UA
dc.relation.referencesen26. Babych, M., Korobka, S., Skrynkovskyy, R., Korobka, S., & Krygul, R. (2016). Substantiation of economic efficiency of using a solar dryer under conditions of personal peasant farms. Eastern-European Journal of Enterprise Technologies, 6(8(84)), 41–47. doi: http://dx.doi.org/10.15587/1729-4061.2016.83756.uk_UA
dc.relation.referencesen27. Popova, N., Kataiev, A., Skrynkovskyy, R., & Nevertii, A. (2019). Development of trust marketing in the digital society. Economic Annals-XXI, 176(3-4), 13–25. doi: https://doi.org/10.21003/ea.V176-02.uk_UA
dc.relation.referencesen28. Koman, B., Skrynkovskyy, R., & Yuzevych, V. (2018). Information Parameters of Synergetic Processes in Structures with Interfractional Boundaries. 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). doi: https://doi.org/10.1109/nap.2018.8914983.uk_UA
dc.relation.referencesen29. Dzhala, R., Yuzevych, V., Lozovan, V., Mytsyk, A., Skrynkovskyy, R., & Yasinskyi, M. (2019). Qualimetric analysis of pipelines with surface corrosion defects. Fracture Mechanics of Materials and Structural Integrity: Book of abstracts of the 6th International Conference (June 3–6, 2019, Lviv, Ukraine). Lviv: Karpenko Physico-Mechanical Institute of NASU, 125–126.uk_UA
dc.relation.referencesen30. Klyuvak, A., Kliuva O., & Skrynkovskyy, R. (2018). Partial Motion Blur Removal. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/DSMP.2018.8478595.uk_UA
dc.relation.referencesen31. Yuzevych, L., Skrynkovskyy, R., Yuzevych, V., Lozovan, V., Pawlowski, G., Yasinskyi, M., & Ogirko, I. (2019). Improving the diagnostics of underground pipelines at oil-and-gas enterprises based on determining hydrogen exponent (PH) of the soil media applying neural networks. Eastern-European Journal of Enterprise Technologies, 4(5(100)), 56–64. doi: http://dx.doi.org/10.15587/1729-4061.2019.174488.uk_UA
dc.relation.referencesen32. Yuzevych, L., Yankovska, L., Sopilnyk, L., Yuzevych, V., Skrynkovskyy, R., Koman, B., Yasinska-Damri, L., Heorhiadi, N., Dzhala, R., & Yasinskyi, M. (2019). Improvement of the toolset for diagnosing underground pipelines of oil and gas enterprises considering changes in internal working pressure. Eastern-European Journal of Enterprise Technologies, 6(5(102)), 23–29. doi: http://dx.doi.org/10.15587/1729-4061.2019.184247.uk_UA
dc.relation.referencesen33. Dzhala, R. М., & Yuzevych, L. V. (2019). Modeling of Relationships Between the Mechanoelectrochemical Parameters of the Metal Surface. Materials Science, 54, 753–759. doi: https://doi.org/10.1007/s11003-019-00243-w.uk_UA
dc.citation.journalTitleInternational Journal of Recent Technology and Engineering (IJRTE)-
Розташовується у зібраннях:Зібрання статей

Файли цього матеріалу:
Файл Опис РозмірФормат 
A1341059120.pdf556,14 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.