Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/29009

Назва: On the interest of reliability methods in robots design integrating smart materials
Автори: Chapelle, F.
Gouot, D.
Lemaire, J.-J.
Lapusta, Y.
Приналежність: Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 CLERMONT-FERRAND, FRANCE
Université Clermont Auvergne, CHU, CNRS, SIGMA Clermont, Institut Pascal, F-63000 CLERMONT-FERRAND, FRANCE
Бібліографічний опис: On the interest of reliability methods in robots design integrating smart materials / F. Chapelle, D. Gouot, J.-J. Lemaire, Y. Lapusta // Праці Ⅵ Міжнародної науково-технічної конференції „Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування“, 24-27 вересня 2019 р. — Т. : ТНТУ, 2019. — С. 169–172. — (Оцінювання залишкового ресурсу елементів конструкцій).
Bibliographic description: Chapelle F., Gouot D., Lemaire J.-J., Lapusta Y. (2019) On the interest of reliability methods in robots design integrating smart materials. Proceeding of the International Scientific and Technical Conference "In-Service Damage of Materials, its Diagnostics and Prediction" (Tern., 24-27 September 2019), pp. 169-172.
Є частиною видання: Праці Ⅵ Міжнародної науково-технічної конференції „Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування“, 2019
Proceeding of the International Scientific and Technical Conference "In-Service Damage of Materials, its Diagnostics and Prediction", 2019
Конференція/захід: Ⅵ Міжнародна науково-технічна конференція „Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування“
Журнал/збірник: Праці Ⅵ Міжнародної науково-технічної конференції „Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування“
Дата публікації: 24-вер-2019
Дата внесення: 21-жов-2019
Видавництво: ТНТУ
TNTU
Місце видання, проведення: Тернопіль
Ternopil
Часове охоплення: 24-27 вересня 2019 р.
24-27 September 2019
Кількість сторінок: 4
Діапазон сторінок: 169-172
Початкова сторінка: 169
Кінцева сторінка: 172
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/29009
ISBN: 978-966-305-103-1
Власник авторського права: © Тернопільський національний технічний університет імені Івана Пулюя, 2019
Перелік літератури: 1. B. Siciliano and O. Khatib, Eds., Springer handbook of robotics, 2nd edition. Berlin Heidelberg: Springer, 2016.
2. A. Mekaouche, F. Chapelle, and X. Balandraud, “Using shape memory alloys to obtain variable compliance maps of a flexible structure: concept and modeling,” AIMETA Mecc., vol. 51, no. 6, pp. 1287–1299, 2016.
3. A. Mekaouche, F. Chapelle, and X. Balandraud, “A compliant mechanism with variable stiffness achieved by rotary actuators and shape-memory alloy,” AIMETA Mecc., vol. 53, no. 10, pp. 2555–2571, 2018.
4 H. Yuan, F. Chapelle, J.-C. Fauroux, and X. Balandraud, “Concept for a 3D-printed soft rotary actuator driven by a shape-memory alloy,” Smart Mater. Struct., vol. 27, no. 5, p. 055005, 2018.
5. D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521, no. 7553, p. 467, 2015.
6. F. Schmitt, O. Piccin, L. Barbé, and B. Bayle, “Soft robots manufacturing: a review,” Front. Robot. AI, vol. 5, 2018.
7. H. Banerjee and H. Ren, “Optimizing Double-Network Hydrogel for Biomedical Soft Robots,” Soft Robot., vol. 4, no. 3, pp. 191–201, 2017.
8. Y. Ansari, M. Manti, E. Falotico, M. Cianchetti, and C. Laschi, “Multiobjective Optimization for Stiffness and Position Control in a Soft Robot Arm Module,” IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 108–115, Jan. 2018.
9. T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control Strategies for Soft Robotic Manipulators: A Survey,” Soft Robot., vol. 5, no. 2, pp. 149–163, Apr. 2018.
10. H.-T. D. Chun, J. O. Roberts, M. E. Sayed, S. Aracri, and A. A. Stokes, “Towards more Energy Efficient Pneumatic Soft Actuators using a Port-Hamiltonian Approach,” in 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea (South), 2019, pp. 277–282.
11. J. Amend, N. Cheng, S. Fakhouri, and B. Culley, “Soft robotics commercialization: Jamming grippers from research to product,” Soft Robot., vol. 3, no. 4, pp. 213–222, 2016.
12. V. Govorukha, M. Kamlah, V. Loboda, and Y. Lapusta, Fracture mechanics of piezoelectric solids with interface cracks. Cham: Springer, 2017.
13. M. Alric, “Conception et modélisation modulaire d’un robot bio-inspiré extensible pour l’accès aux tumeurs dans le cerveau,” PhD thesis, Université Blaise Pascal-Clermont-Ferrand II, 2009.
References: 1. B. Siciliano and O. Khatib, Eds., Springer handbook of robotics, 2nd edition. Berlin Heidelberg: Springer, 2016.
2. A. Mekaouche, F. Chapelle, and X. Balandraud, "Using shape memory alloys to obtain variable compliance maps of a flexible structure: concept and modeling," AIMETA Mecc., vol. 51, no. 6, pp. 1287–1299, 2016.
3. A. Mekaouche, F. Chapelle, and X. Balandraud, "A compliant mechanism with variable stiffness achieved by rotary actuators and shape-memory alloy," AIMETA Mecc., vol. 53, no. 10, pp. 2555–2571, 2018.
4 H. Yuan, F. Chapelle, J.-C. Fauroux, and X. Balandraud, "Concept for a 3D-printed soft rotary actuator driven by a shape-memory alloy," Smart Mater. Struct., vol. 27, no. 5, p. 055005, 2018.
5. D. Rus and M. T. Tolley, "Design, fabrication and control of soft robots," Nature, vol. 521, no. 7553, p. 467, 2015.
6. F. Schmitt, O. Piccin, L. Barbé, and B. Bayle, "Soft robots manufacturing: a review," Front. Robot. AI, vol. 5, 2018.
7. H. Banerjee and H. Ren, "Optimizing Double-Network Hydrogel for Biomedical Soft Robots," Soft Robot., vol. 4, no. 3, pp. 191–201, 2017.
8. Y. Ansari, M. Manti, E. Falotico, M. Cianchetti, and C. Laschi, "Multiobjective Optimization for Stiffness and Position Control in a Soft Robot Arm Module," IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 108–115, Jan. 2018.
9. T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, "Control Strategies for Soft Robotic Manipulators: A Survey," Soft Robot., vol. 5, no. 2, pp. 149–163, Apr. 2018.
10. H.-T. D. Chun, J. O. Roberts, M. E. Sayed, S. Aracri, and A. A. Stokes, "Towards more Energy Efficient Pneumatic Soft Actuators using a Port-Hamiltonian Approach," in 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea (South), 2019, pp. 277–282.
11. J. Amend, N. Cheng, S. Fakhouri, and B. Culley, "Soft robotics commercialization: Jamming grippers from research to product," Soft Robot., vol. 3, no. 4, pp. 213–222, 2016.
12. V. Govorukha, M. Kamlah, V. Loboda, and Y. Lapusta, Fracture mechanics of piezoelectric solids with interface cracks. Cham: Springer, 2017.
13. M. Alric, "Conception et modélisation modulaire d’un robot bio-inspiré extensible pour l’accès aux tumeurs dans le cerveau," PhD thesis, Université Blaise Pascal-Clermont-Ferrand II, 2009.
Тип вмісту: Conference Abstract
Розташовується у зібраннях:Ⅵ Міжнародна науково-технічна конференція „Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування“ (2019)



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.