Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/28708

Назва: Characteristics and thermomechanical modes of aluminum alloys hot deformation
Автори: Pylypets, Mykhaylo
Shvets, Lyudmyla
Приналежність: Ternopil National Ivan Puluj Technical University, 56 Ruska str., 46001, Ternopil, Ukraine; pulupecmi@gmail.com
Vinnytsia National Agrarian University, 3 Soniachna str., 21008, Vinnytsia, Ukraine; shlv0505@i.ua
Бібліографічний опис: Pylypets M. Characteristics and thermomechanical modes of aluminum alloys hot deformation / Mykhaylo Pylypets, Lyudmyla Shvets // Proceedings of ICCPT 2019, May 28-29, 2019. — Tern. : TNTU, Scientific Publishing House “SciView”, 2019. — P. 195–203.
Bibliographic description: Pylypets M., Shvets L. (2019) Characteristics and thermomechanical modes of aluminum alloys hot deformation. Proceedings of ICCPT 2019 (Tern., May 28-29, 2019), pp. 195-203.
Є частиною видання: Матеріали Міжнародної науково-технічної конференції „Актуальні проблеми транспорту“, 2019
Proceedings of the 1-st International Scientific Conference "Current Problems of Transport", 2019
Конференція/захід: Міжнародна науково-технічна конференція „Актуальні проблеми транспорту“
ICCPT 2019
Журнал/збірник: Матеріали Міжнародної науково-технічної конференції „Актуальні проблеми транспорту“
Дата публікації: 28-тра-2019
Дата внесення: 9-лип-2019
Видавництво: Scientific Publishing House “SciView”
TNTU
Місце видання, проведення: Тернопіль
Ternopil
Часове охоплення: 28-29 травня 2019 року
May 28-29, 2019
Кількість сторінок: 9
Діапазон сторінок: 195-203
Початкова сторінка: 195
Кінцева сторінка: 203
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/28708
ISBN: 978-966-305-101-7
Власник авторського права: © Scientific Publishing House “SciView”, 2019
© Ternopil Ivan Puluj National Technical University, 2019
References: 1. Ren, J.; Wang, R. C.; Feng, Y.; Peng, C. Q.; Cai, Z. Y. Microstructure evolution and mechanical properties of an ultrahigh strength Al-Zn-Mg-Cu-Zr-Sc (7055) alloy processed by modified powder hot extrusion with post aging. Vacuum, 2019; 161, 434-442. 2. He, Z. B.; Wang, Z. B.; Lin, Y. L.; Fan, X. B. Hot Deformation Behavior of a 2024 Aluminum Alloy Sheet and its Modeling by Fields-Backofen Model Considering Strain Rate Evolution. Metals, 2019; 9(2). 3. Rodgers, B. I.; Prangnell, P. B. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195. Acta Materialia, 2016; 108, 55-67. 4. Lee, J. W.; Son, H. W.; Hyun, S. K. Hot deformation behavior of AA6005 modified with CaO-added Mg at high strains. Journal of Alloys and Compounds, 2019; 774, 1081-1091. 5. Jian H., Luo J., Tang X., Li X. Effects of plate thickness on fatigue fracture behaviors of an aluminum alloy (Al-Cu-Mg). Materialwissenschaft Und Werkstofftechnik, 2018; 49(9), 1087-1097. 6. Solonina, OP; Ulyakova, N.M. Recrystallization and oxidation of titanium alloy VT3 – 1. Metallography and heat treatment of metals, 2008; 9, 34-38. 7. Hao, PJ; He, A; Sun, WQ. Formation mechanism and control methods of inhomogeneous deformation during hot rough rollingof aluminum alloy plate. Archives of civil and mechanical engineering, 2018; 18, 245-255. 8. Rus, AL Effect of thermo-mechanical treatments on the hot deformation behavior of aluminum alloy 2024. Acta technica napocensis series-applied mathematics mechanics and engineering, 2017; 60, 399-402. 9. Liu, Y; Geng, C; Lin, Q; Xu, J; Kang, W. Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map. Journal of alloys and compounds, 2017; 713, 212-221. 10. Li, DF; Zhang, DZ; Liu, SD; Shan, ZJ; Zhang, XM; Wang, Q,; Han, SQ. Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation. Transactions of nonferrous metals society of China, 2016; 26, 1491-1497. 11. Peng, J; Wang, YJ; Zhong, LP; Peng, LF; Pan, FS. Hot deformation behavior of homogenized Al-3.2Mg-0.4Er aluminum alloy. Transactions of nonferrous metals society of China, 2016; 26, 945-955. 12. Jiang, FL; Zurob, HS; Purdy, GR; Zhang, H. Static softening following multistage hot deformation of 7150 aluminum alloy: Experiment and modeling. Materials science and engineering a-structural materials properties microstructure and processing, 2015; 648, 164-177. 13. Shalin, R.E. Production instructions for forging and stamping wrought aluminum alloys: PI 1.2. 085 - 08: Approved. Head of VIAM Shalin R.E. Moscow, 2008; 17p. 14. Tulyankin, F. V.; Tskhondiya, A. G. Nomenclature of alloys for the production of forgings and forgings. Reference «Aluminum Alloys. Structure and properties of semi-finished products from aluminum alloys». Metallurgy: Moscow, 2004; 330p. 15. Korneev, N.I.; Arzhakov, V.M.; Bormashenko, B.G. and others. Forging and stamping non-ferrous metals. Reference book; Mashinostroenie: Moscow, 2002; 230p. 16. OST 1. 90073 - 05. Industry standard for forgings and forgings of aluminum alloys. Technical conditions. Enter 11/01/05; Standards Publishing House: Moscow, 2009, 39p. 17. Scriabin, S. A. Production of forgings from aluminum alloys by hot deformation, KVITs : Kyiv, 2004; 346p. 18. Liu, S. H.; Pan, Q. L.; Li, H.; Huang, Z. Q.; Li, K.; He, X.; Li, X. Y. Characterization of hot deformation behavior and constitutive modeling of Al-Mg-Si-Mn-Cr alloy. Journal of Materials Science, 2019; 54(5), 4366-4383.
Тип вмісту: Conference Abstract
Розташовується у зібраннях:Міжнародна науково-технічна конференція „Актуальні проблеми транспорту ICCPT“ (2019)



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.