Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/33038
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorYasnii, Petro Volodymyrovych-
dc.contributor.authorDyvdyk, Oleksandr Volodymyrovych-
dc.contributor.authorIasnii, Volodymyr Petrovych-
dc.date.accessioned2020-12-04T20:57:09Z-
dc.date.available2020-12-04T20:57:09Z-
dc.date.issued2020-11-29-
dc.identifier.citationYasnii, P.V., Dyvdyk O.V., Iasnii V.P. Modeling of Cold Plastic Deformation of the Holes Made in Specimens of Shape-Memory Alloy. Mater Sci (2020). - 2020. Vol. 56, No.1, P. 188-194.uk_UA
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/33038-
dc.description.abstractThe process of cold plastic deformation of a hole in a plate made of shape-memory alloy is simulated by the finite-element method by setting the mechanical characteristics and the temperatures of the onset and termination of direct and reverse phase transformations. By using the ANSYS Workbench software, we determine the distribution of residual stresses in the plate in the vicinity of a functional hole. The highest normal compressive and tensile stresses are formed in the middle part of the plate and at a distance of 2–4 mm from the edge of the hole, respectively.uk_UA
dc.format.extent188-194-
dc.language.isoenuk_UA
dc.relation.urihttps://doi.org/10.1007/s11003-020-00414-0uk_UA
dc.subjectshape-memory effectuk_UA
dc.subjectNiTi alloyuk_UA
dc.subjectphase transformationsuk_UA
dc.subjectmartensiteuk_UA
dc.subjectausteniteuk_UA
dc.subjectnormal stressesuk_UA
dc.subjectstrengthening of the holesuk_UA
dc.titleModeling of cold plastic deformation of the holes made in specimens of shape-memory alloyuk_UA
dc.typeArticleuk_UA
dc.subject.udc539.3uk_UA
dc.relation.referencesV. Giurgiutiu and A. Zagrai, “The use of smart materials technologies in radiation environment and nuclear industry,” Proc. SPIE,3985, 855–866 (2000)uk_UA
dc.relation.references. H. Wu and L. McD. Schetky, “Industrial applications for shape memory alloys,” in: Proc. of the Internat. Conf. on Shape Memory and Superelastic Technologies, ASM International, Materials Park (2000), pp. 171–182.uk_UA
dc.relation.referencesD. Tarniţǎ, D. Tarniţǎ, N. Bîzdoacǎ, and V. M. Mîndrilǎ, “Properties and medical applications of shape memory alloys,” Rom. J. Morphol. Embryol.,50, No. 1, 15–21 (2009)uk_UA
dc.relation.referencesV. P. Iasnii, H. M. Nykyforchyn, O. T. Tsyrul’nyk, and O. Z. Student, “Specific features of deformation of the nitinol alloy after elec-trolytic hydrogenation,” Fiz.-Khim. Mekh. Mater.,54, No. 4, 124–130 (2018);English translation: Mater. Sci.,54, No. 3, 582–588 (2019)uk_UA
dc.relation.referencesV. P. Iasnii, O. Z. Student, and H. M. Nykyforchyn, “Influence of hydrogenation on the character of fracture of nitinol alloy in tension,” Fiz.-Khim. Mekh. Mater.,55, No. 3, 80–85 (2019); English translation: Mater. Sci.,55, No. 3, 386–391 (2019).uk_UA
dc.relation.referencesV. P. Iasnii, H. M. Nykyforchyn, O. Z. Student, and L. M. Svirska, “Fractographic features of the fatigue fracture of nitinol alloy,” Fiz.-Khim. Mekh. Mater.,55, No. 5, 148–153 (2019); English translation: Mater. Sci.,55, No. 5, 774–779 (2020).uk_UA
dc.relation.referencesY. Zhang, M. E. Fitzpatrick, and L. Edwards, “Analysis of the residual stress around a cold-expanded fastener hole in a finite plate,” Strain,41, No. 2, 59–70 (2005).uk_UA
dc.relation.referencesY. Zhang, M. E. Fitzpatrick, and L. Edwards, “Measurement of the residual stresses around a cold expanded hole in an EN8 steel plate using the contour method,” Mater. Sci. Forum Trans. Tech. Publ.,404, 527–534 (2002).uk_UA
dc.relation.referencesB. Kawdi and Dr. N. Shanmukh, “Cold hole expansion process for stress analysis and evaluation of fatigue properties,” J. Mech. Civ. Eng., 21–27 (2009).uk_UA
dc.relation.referencesP. Yasniy, S. Glado, and V. Iasnii, “Lifetime of aircraft alloy plates with cold expanded holes,” Int. J. Fatigue,104, 112–119 (2017).uk_UA
dc.relation.referencesB. Nadri, L. Edwards, M. Fitzpatrick, and A. Lodini, “Measurement of residual stresses following overloading of cold expanded holes using the X-ray diffraction technique and finite element method,” J. Neutron Res.,12, Nos. 1–3, 1–11 (2004).uk_UA
dc.relation.referencesV. Lacarac, D. Smith, and M. Pavier, “The effect of cold expansion on fatigue crack growth from open holes at room and high tem-perature,” Int. J. Fatigue,23, 161–170 (2001).uk_UA
dc.relation.referencesP. V. Yasnii, S. V. Hlad’o, V. V. Skochylyas, and O. I. Semenets, “Formation of residual stresses in plates with functional holes after mandrelling,”Fiz.-Khim. Mekh. Mater., 50, No. 6, 95–98 (2014) English translation: Mater. Sci.,50, No. 6, 877–881 (2015).uk_UA
dc.relation.referencesH. D. Gopalakrishna, H. N. Narasimha Murthy, and M. Krishna, “Cold expansion of holes and resulting fatigue life enhancement and residual stresses in Al 2024 T3 alloy – An experimental study,” Eng. Fail. Anal.,17, No. 2, 361–368 (2010).uk_UA
dc.relation.referencesM. Elajrami, H. Melouki, and F. B. Boukhoulda, “Effect of double cold expansion on the fatigue life of rivet hole,” Int. J. Mining, Metall. Mech. Eng.,1, No. 2, 111–113 (2013).uk_UA
dc.relation.referencesT. Yordan and G. Duncheva, Device and Tool for Cold Expansion of Fastener Holes, Patent USA No. 8915114. B23P9/025 B2, Publ. 12.23.2014.uk_UA
dc.relation.referencesS. Pasta and G. V. Mariotti, “Effect of residual stresses and their redistribution on the fatigue crack growth in cold-worked holes,” in: Proc. of the Internat. Conf. “Crack Paths” (2009), pp. 895–902.uk_UA
dc.relation.referencesJ. R. Kennedy and D. J. Larson, Jr., Method of Cold Working Holes Using a Shape Memory Alloy Tool, Patent USA No. 5265456A. B23P9/02, Publ. on 30.11.1993.uk_UA
dc.relation.referencesK.M. Armattoe, C. Bouby, M. Haboussi, and T. Ben, “Modeling of latent heat effects on phase transformation in shape memory alloy thin structures,” Int. J. Solids Struct.,88–89, 293–295 (2016)uk_UA
dc.relation.referencesP. V. Yasnii, O. V. Dyvdyk, V. P. Iasnii. A Tool Made of Shape-Memory Alloy and Intended for Strengthening of Holes in Plates [in Ukrainian], Patent of Ukraine No. 132422, MPK V24V 39/00, Publ. on 25.02.2019, Byul. No. 4.uk_UA
dc.relation.referencesK. Divringi and C. Özcan, Advanced Shape Memory Alloy Material Models for ANSYS [Electronic Resource], Ozen Eng., Sunnyvale, CA (2009), 94085, No. 408.uk_UA
dc.relation.referencesF. Auricchio and L. Petrini, “Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations,” Int. J. Numer. Meth. Eng.,55, No. 11, 1255–1284 (2002).uk_UA
dc.relation.referencesV. Iasnii. R. Junga. “Phase Transformations and mechanical properties of the nitinol alloy with shape memory,” Fiz.-Khim. Mekh. Mater.,54, No. 3, 107–111 (2018); English translation: Mater. Sci.,54, No. 3, 406–411 (2018).uk_UA
dc.contributor.affiliationTernopil Ivan Pulyui National Technical Universityuk_UA
Розташовується у зібраннях:Наукові публікації працівників кафедри будівельної механіки

Файли цього матеріалу:
Файл Опис РозмірФормат 
10.1007@s11003-020-00414-0.pdf583,9 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора