Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/31515
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorYuzevych, Volodymyr-
dc.contributor.authorPavlenchyk, Anatolii-
dc.contributor.authorLozovan, Vitalii-
dc.contributor.authorMykhalitska, Natalia-
dc.contributor.authorBets, Marianа-
dc.date.accessioned2020-05-09T11:57:05Z-
dc.date.available2020-05-09T11:57:05Z-
dc.date.issued2020-05-01-
dc.identifier.citationYuzevych, V., Pavlenchyk, A., Lozovan, V., Mykhalitska, N., & Bets, M. (2020). Diagnostics of Temperature Regime of Technological Environments of Underground Pipelines in the Monitoring System of Oil and Gas Enterprises for Providing of Safe Exploitation // International Journal of Recent Technology and Engineering (IJRTE), 9(1), 1301–1307. (ISSN 2277-3878).uk_UA
dc.identifier.isbn2277-3878-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/31515-
dc.description.abstractThe diagnosed density of corrosion was diagnosed on the outer surface of the underground metal pipeline, depending on the distance L to the compressor station, taking into account the influence of soil, defects, thermal impulses, mechanical vibrational vibrations and corrosion fatigue. The basic relations of the mathematical model for the description of thermal processes and mechanical vibrational vibrations that lead to low-cycle corrosion fatigue in the pipe are proposed. It is noted that the measurement of corrosion currents and polarization potentials at the boundary of the metal pipeline–soil can be detected by devices of types BVS (noncontact current meter), VPP-M (polarization potential meter) and equipment for for diagnostic inspections and monitoring of corrosion protection of underground pipelines (UGPL). Consider for compare the distribution of corrosion current densities and accidents for the pipeline at a distance of L=0..30 km from the compressor station. It is found that the correlation coefficient between them KLD=0,76 is not enough to establish causation. A difference is formed in which the corresponding corrosion current density distribution for a non-oscillating temperature background is subtracted from the total corrosion current density distribution in the range L=0…30 km. In this case, the part of the distribution that is related to the frequency of thermal pulses is highlighted.The correlation coefficient of KWD=0.92 is established between the part of the distribution that is related to the frequency of thermal pulses and the distribution of accidents for the pipeline at a distance of L=0…30 km from the compressor station. Based on KWD, it can be argued that the causal relationship between the distribution of heat pulses and accidents is quite plausible. The noted information is important for improving the methods of operation of compressor stations of oil and gas enterprises, taking into account changes in the frequency of heat pulses with regard to improving the quality of by-laws on labor protection regarding gas supply systems.uk_UA
dc.format.extent1301–1307-
dc.language.isoenuk_UA
dc.relation.urihttp://www.ijrte.org/archive/uk_UA
dc.relation.urihttps://www.scopus.com/sourceid/21100889873uk_UA
dc.subjectunderground pipelineuk_UA
dc.subjectoil and gas enterprisesuk_UA
dc.subjectthermal impulsesuk_UA
dc.subjectthermal backgrounduk_UA
dc.subjectcorrosion currentuk_UA
dc.titleDiagnostics of Temperature Regime of Technological Environments of Underground Pipelines in the Monitoring System of Oil and Gas Enterprises for Providing of Safe Exploitationuk_UA
dc.typeArticleuk_UA
dc.relation.referencesen1. Lozovan, V., Skrynkovskyy, R., Yuzevych, V., Yasinskyi, M., & Pawlowski, G. (2019). Forming the toolset for development of a system to control quality of operation of underground pipelines by oil and gas enterprises with the use of neural networks. Eastern-European Journal of Enterprise Technologies, 2(5(98)), 41–48. doi: http://dx.doi.org/10.15587/1729-4061.2019.161484.uk_UA
dc.relation.referencesen2. Lozovan, V., Dzhala, R., Skrynkovskyy, R., & Yuzevych, V. (2019). Detection of specific features in the functioning of a system for the anti-corrosion protection of underground pipelines at oil and gas enterprises using neural networks. Eastern-European Journal of Enterprise Technologies, 1(5(97)), 20–27. doi: https://doi.org/10.15587/1729-4061.2019.154999.uk_UA
dc.relation.referencesen3. Popova, N., Kataiev, A., Skrynkovskyy, R., & Nevertii, A. (2019). Development of trust marketing in the digital society. Economic Annals-XXI, 176(3-4), 13–25. doi: https://doi.org/10.21003/ea.V176-02.uk_UA
dc.relation.referencesen4. Skrynkovskyi, R. M. (2011). Methodical approaches to economic estimation of investment attractiveness of machine-building enterprises for portfolio investors. Actual Problems of Economics, 118(4), 177–186.uk_UA
dc.relation.referencesen5. Skrynkovskyi, R. (2008). Investment attractiveness evaluation technique for machine-building enterprises. Actual Problems of Economics, 7(85), 228–240.uk_UA
dc.relation.referencesen6. Lu, T., & Wang, K. (2008). Numerical analysis of the heat transfer associated with freezing/solidifying phase changes for a pipeline filled with crude oil in soil saturated with water during pipeline shutdown in winter. Journal of Petroleum Science and Engineering, 62(1-2), 52–58. doi: https://doi.org/10.1016/j.petrol.2008.07.004.uk_UA
dc.relation.referencesen7. Akhmetova, G., & Chichirova, N. D. (2016). Evaluation of Thermal Insulation Type Impact on the Value of Regulatory Heat Losses in Heat and Power Systems. Journal of Engineering and Applied Sciences, 11, 2946–2949.uk_UA
dc.relation.referencesen8. Shkrebko, S. V. (1998). The effect of soil moisture on the thermal conditions of channelless heating mains. Bulletin of the Rostov State University of Civil Engineering, 2, 174–175 (in Russ.).uk_UA
dc.relation.referencesen9. Yuzevych, L., Skrynkovskyy, R., Yuzevych, V., Lozovan, V., Pawlowski, G., Yasinskyi, M., & Ogirko, I. (2019). Improving the diagnostics of underground pipelines at oil-and-gas enterprises based on determining hydrogen exponent (PH) of the soil media applying neural networks. Eastern-European Journal of Enterprise Technologies, 4(5(100)), 56–64. doi: http://dx.doi.org/10.15587/1729-4061.2019.174488.uk_UA
dc.relation.referencesen10. Kuznetsov, G. V., & Polovnikov, V. Y. (2011). The conjugate problem of convective-conductive heat transfer for heat pipelines. Journal of Engineering Thermophysics, 20(2), 217–224. doi: https://doi.org/10.1134/s181023281102010x.uk_UA
dc.relation.referencesen11. Parfentieva, N., Valančius, K., Samarin, O., Paulauskaitė, S., & Čiuprinskienė, J. (2015). Solving the problem of pipeline freezing with respect to external heat exchange. Mechanics, 21(5), 393–396. doi: https://doi.org/10.5755/j01.mech.21.5.11411.uk_UA
dc.relation.referencesen12. Barletta, A., Zanchini, E., Lazzari, S., & Terenzi, A. (2008). Numerical study of heat transfer from an offshore buried pipeline under steady-periodic thermal boundary conditions. Applied Thermal Engineering, 28(10), 1168–1176. doi: https://doi.org/10.1016/j.applthermaleng.2007.08.004.uk_UA
dc.relation.referencesen13. Fürtbauer, D., & Cheng, C. (2019). Investigation of Pipeline Heat Loss to Ground Influenced by Adjacent Pipelines. Pipeline Technology Conference. Berlin, 1–6. URL: https://www.researchgate.net/publication/332396916_Investigation_of_Pipeline_Heat_Loss_to_Ground_Influenced_by_Adjacent_Pipelines.uk_UA
dc.relation.referencesen14. Čarnogurská, M., Příhoda, M., Dobáková, R., & Brestovič, T. (2017). Model of heat losses from underground heat distribution system. doi: https://doi.org/10.1063/1.5004337.uk_UA
dc.relation.referencesen15. Golik, V. V., Zemenkov, Y. D., Gladenko, A. A., & Seroshtanov, I. V. (2019). Modeling the heat transfer processes in the pipe-soil system. IOP Conference Series: Materials Science and Engineering, 663, 012012. doi: https://doi.org/10.1088/1757-899x/663/1/012012.uk_UA
dc.relation.referencesen16. Pyanilo, Y., Pyanilo, G. (2009). On the influence of thermophysical parameters on the process of gas motion in pipelines. Physical-mathematical model and information technology, 10, 106–112 (in Ukraine).uk_UA
dc.relation.referencesen17. Belov, D. B. (2013). Analysis of the effect of the temperature of natural gas in a pipeline on its volume. Bulletin of Tula State University. Technical science. Energy and environmental management, 6-1, 25–31 (in Russ.).uk_UA
dc.relation.referencesen18. Balageas, D., Maldague, X., Burleigh, D., Vavilov, V. P., Oswald-Tranta, B., Roche, J.-M., & Carlomagno, G. M. (2016). Thermal (IR) and Other NDT Techniques for Improved Material Inspection. Journal of Nondestructive Evaluation, 35(1). doi: https://doi.org/10.1007/s10921-015-0331-7.uk_UA
dc.relation.referencesen19. Jianguang, Yi (2018). Methods of Heat Transfer Analysis of Buried Pipes in District Heating and Cooling Systems. Applied Engineering, 2(2), 33–38.uk_UA
dc.relation.referencesen20. Oosterkamp, A., Helgaker, J. F., & Ytrehus, T. (2015). Modelling of Natural Gas Pipe Flow with Rapid Transients-case Study of Effect of Ambient Model. Energy Procedia, 64, 101–110. doi: https://doi.org/10.1016/j.egypro.2015.01.013.uk_UA
dc.relation.referencesen21. Dalla Rosa, A., Li, H., & Svendsen, S. (2011). Method for optimal design of pipes for low-energy district heating, with focus on heat losses. Energy, 36(5), 2407–2418. doi: https://doi.org/10.1016/j.energy.2011.01.024.uk_UA
dc.relation.referencesen22. Danielewicz, J., Śniechowska, B., Sayegh, M. A., Fidorów, N., & Jouhara, H. (2016). Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground. Energy, 108, 172–184. doi: https://doi.org/10.1016/j.energy.2015.07.012.uk_UA
dc.relation.referencesen23. Bohm, B. (2000). On transient heat losses from buried district heating pipes. Int. Journal of Energy Research, 24(15), 1311–1334. doi: https://doi.org/10.1002/1099-114x(200012)24:15<1311::aid-er648>3.0.co;2-q.uk_UA
dc.relation.referencesen24. 2012 ASHRAE Handbook – HVAC Systems and Equipment. Chapter 12. District Heating and Cooling. America: ASHRAE, 2012. URL: https://app.knovel.com/web/toc.v/cid:kpASHRAEA2/viewerType:toc/.uk_UA
dc.relation.referencesen25. Garris, N. A., & Askarov, G. A. (2009). Activation of corrosion process on big diameter gas mains under impulse temperature changes. Oil and Gas Business, 2, 1–15.uk_UA
dc.relation.referencesen26. Liu, Z., Jia, W., Liang, L., & Duan, Z. (2019). Analysis of Pressure Pulsation Influence on Compressed Natural Gas (CNG) Compressor Performance for Ideal and Real Gas Models. Applied Sciences, 9(5), 946. doi: https://doi.org/10.3390/app9050946.uk_UA
dc.relation.referencesen27. Silvestrov, A.S., Bulkin, V.A., & Anvarov, A.D. (2011). Thermocyclic processes as the cause of SCC on gas pipelines. Bulletin of Kazan State Technological University, 18, 168–173 (in Russ.).uk_UA
dc.relation.referencesen28. Tousek, J. (1977). Temperature Dependence of Pitting Corrosion in Cr-Ni stainless steels. Materials and Corrosion/Werkstoffe Und Korrosion, 28(9), 619–622. doi: https://doi.org/10.1002/maco.19770280906.uk_UA
dc.relation.referencesen29. Živica, V. (2002). Significance and influence of the ambient temperature as a rate factor of steel reinforcement corrosion. Bulletin of Materials Science, 25(5), 375–379. doi: https://doi.org/10.1007/bf02708013.uk_UA
dc.relation.referencesen30. Yuzevych, L., Yankovska, L., Sopilnyk, L., Yuzevych, V., Skrynkovskyy, R., Koman, B., & Yasinskyi, M. (2019). Improvement of the toolset for diagnosing underground pipelines of oil and gas enterprises considering changes in internal working pressure. Eastern-European Journal of Enterprise Technologies, 6(5 (102)), 23–29. doi: https://doi.org/10.15587/1729-4061.2019.184247.uk_UA
dc.relation.referencesen31. Yuzevych, L., Skrynkovskyy, R., & Koman, B. (2017). Development of information support of quality management of underground pipelines. EUREKA: Physics and Engineering, 4, 49–60. doi: https://doi.org/10.21303/2461-4262.2017.00392.uk_UA
dc.relation.referencesen32. Moffat, R. J. (1988). Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1(1), 3–17. doi: https://doi.org/10.1016/0894-1777(88)90043-x.uk_UA
dc.relation.referencesen33. Cividino, S., Egidi, G., Zambon, I., & Colantoni, A. (2019). Evaluating the Degree of Uncertainty of Research Activities in Industry 4.0. Future Internet, 11(9), 196. doi: https://doi.org/10.3390/fi11090196.uk_UA
dc.relation.referencesen34. Klyuvak, A., Kliuva O., & Skrynkovskyy, R. (2018). Partial Motion Blur Removal. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/DSMP.2018.8478595.uk_UA
dc.relation.referencesen35. Koman, B., Skrynkovskyy, R., & Yuzevych, V. (2018). Information Parameters of Synergetic Processes in Structures with Interfractional Boundaries. 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). doi: https://doi.org/10.1109/nap.2018.8914983.uk_UA
dc.relation.referencesen36. Yuzevych, V., Klyuvak, O., & Skrynkovskyy, R. (2016). Diagnostics of the system of interaction between the government and business in terms of public e-procurement. Economic Annals-ХХI, 160(7-8), 39–44. doi: https://doi.org/10.21003/ea.v160-08.uk_UA
dc.relation.referencesen37. Yuzevych, V., Skrynkovskyy, R., & Koman, B. (2018). Intelligent Analysis of Data Systems for Defects in Underground Gas Pipeline. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478560.uk_UA
dc.relation.referencesen38. Skrynkovskyy, R. M., Yuzevych, V. M., Kataev, A. V., Pawlowski, G., Protsiuk, T. B. (2019). Analysis of the methodology of constructing a production function using quality criteria. Journal of Engineering Sciences, 6(1), B1–B5. doi: https://doi.org/10.21272/jes.2019.6(1).b1.uk_UA
dc.relation.referencesen39. Sopilnyk, L., Skrynkovskyy, R., Lozovan, V., Yuzevych, V., & Pawlowski, G. (2019). Determination of Economic Losses of Gas Transportation Companies from Accidents on Gas Transmission Pipelines. Path of Science, 5(1), 1008-1017. doi: http://dx.doi.org/10.22178/pos.42-4.uk_UA
dc.relation.referencesen40. Dzhala, R. М., & Yuzevych, L. V. (2019). Modeling of Relationships Between the Mechanoelectrochemical Parameters of the Metal Surface. Materials Science, 54, 753–759. doi: https://doi.org/10.1007/s11003-019-00243-w.uk_UA
dc.relation.referencesen41. Skrynkovskyy, R. M., Yuzevych, L. V., Ogirko, O. I., & Pawlowski, G. (2018). Big Data Approach Application for Steel Pipelines in the Conditions of Corrosion Fatigue. Journal of Engineering Sciences, 5(2), E27–E32. doi: https://doi.org/10.21272/jes.2018.5(2).e6.uk_UA
dc.citation.journalTitleInternational Journal of Recent Technology and Engineering (IJRTE)-
Розташовується у зібраннях:Зібрання статей

Файли цього матеріалу:
Файл Опис РозмірФормат 
A2421059120.pdf624,09 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.