Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/28689
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorIasnii, Volodymyr-
dc.contributor.authorYasniy, Petro-
dc.date.accessioned2019-07-05T15:49:42Z-
dc.date.available2019-07-05T15:49:42Z-
dc.date.issued2019-06-
dc.identifier.citationV. Iasnii, P. Yasniy. Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading: an experimental study. Acta Mechanica et Automatica. – 2019. –Vol. 13, No. 2. – pp. 95–100.uk_UA
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/28689-
dc.description.abstractThe influence of the cyclic loading on the functional properties of NiTi was studied. Cylindrical specimens with adiameter of 4 mm and a gage length of 12.5 mm were tested under uniaxial cyclic loading with control crosshead displacement ata temperatureof 0°С. The dependences of the stress and strain range as well as dissipation energy on the number of loading cycles at different initialstress rangewereanalysed. During the first10loading cycles,arapid decrease inthe strainrange and energy dissipation wasobserved.Dissipation energy wasinvariant to the loading cycles’number at N > 20 cyclesand to the stressrange thatdidnot exceed the martensite finish stress level, waswithin the same scatter band and can be described by the single dependence. With the stress range growth at N < 20 cycles from 509 to 740MPa,the value of dissipation energy increases and thatof relative dissipation energy decreases.Loss coefficient,which characterises material damping ability,significantly decreases during the first 10 loading cycles and remains practically unchanged up to the failure of the specimens. At the stabilisation area,the loss coefficient is almost non-sensitive towards the stressrange.uk_UA
dc.format.extent95-100-
dc.language.isoenuk_UA
dc.relation.urihttp://www.actawm.pb.edu.pl/volume/vol13no2/13_2019_011_IASNII_YASNIY.pdfuk_UA
dc.subjectpseudoelastic alloyuk_UA
dc.subjectfunctional properties-
dc.subjectdissipation energy-
dc.subjectstrain range-
dc.subjectstress range-
dc.titleDegradation of functional properties of pseudoelastic NiTi alloy under cyclic loading: an experimental studyuk_UA
dc.typeArticleuk_UA
dc.relation.referencesen1. Abeyaratne R., Kim S.-J. (1997),Cyclic effects in shape-memory alloys: a one-dimensional continuum model,International Journal of Solids and Structures,34(25),3273-3289uk_UA
dc.relation.referencesen2. Auricchio F., Boatti E., Conti M. (2015),SMA Biomedical Applications,Shape Memory Alloy Engineering, Chapter 11,307-341.uk_UA
dc.relation.referencesen3. Auricchio F., Marfia S., Sacco E. (2003), Modelling of SMA materials: training and two way memory effect, Computers & Structures,81, 2301-2317.uk_UA
dc.relation.referencesen4. ASTM F2516-14(2014),Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials.uk_UA
dc.relation.referencesen5. Chen Q., Thouas G.A.(2015), Metallic implant biomaterials, Materials Science and Engineering: R: Reports, 87, 1-57.uk_UA
dc.relation.referencesen6. Cheung G.S.P., Darvell B.W. (2007), Fatigue testing of a NiTi rotary instrument. Part 1: strain-life relationship, International EndodonticJournal,40(8), 612-618.uk_UA
dc.relation.referencesen7. Eggeler G., Hornbogen E., Yawny A., Heckmann A., Wagner M. (2004), Structural and functional fatigue of NiTi shape memory alloys, Materials Science and Engineering: A,378(1-2),24-33.uk_UA
dc.relation.referencesen8. Gamaoun F., Skhiri I., Bouraoui T., Ben Zineb T. (2014), Hydrogen effect on the austenite–martensite transformation of the cycled Ni–Ti alloy, Journal of Intelligent Materials Systems and Structures, 25(8), 980-988.uk_UA
dc.relation.referencesen9. Hsu W.N., Polatidis E., Šmíd M., Van Petegem S., Casati N., Van Swygenhoven H. (2019), Deformation and degradation of superelastic NiTi under multiaxial loading, Acta Materialia, 167, 149-158.uk_UA
dc.relation.referencesen10. Iasnii V., Junga R. (2018), Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory,Materials Science, 54(3),406-411.uk_UA
dc.relation.referencesen11. Iasnii V., Nykyforchyn H., Tsyrulnyk O., Student O. (2019), Specific features of deformation of the nitinol alloy after electrolytic hydrogenation, Materials Science, 54(4), 582-588.uk_UA
dc.relation.referencesen12. Iasnii V., Yasniy P., LapustaY., ShnitsarT.(2018), Experimental study of pseudoelastic NiTi alloy under cyclic loading, Scientific Journal of TNTU, 92(4), 7-12.uk_UA
dc.relation.referencesen13. Isalgue A., Lovey F., Terriault P., Martorell F., Torra R., Torra V. (2006), SMA for Dampers in Civil Engineering,Materials Transactions,47(3),682–690.uk_UA
dc.relation.referencesen14. Kan Q., Yu C., Kang G., Li J., Yan W. (2016), Experimental observations on rate-dependent cyclic deformation of superelastic NiTi shape memory alloy, Mechanics of Materials, 97, 48-58.uk_UA
dc.relation.referencesen15. Kang G., Kan Q., Yu C., Song D., Liu Y. (2012),Whole-life transformation ratchetting and fatigue of super-elastic NiTi Alloy under uniaxial stress-controlled cyclic loading,Materials Science and Engineering: A, 535(15), 228-234.uk_UA
dc.relation.referencesen16. Matsui R., Tobushi Y., Furuichi Y., HorikawaH.(2004),Tensile Deformation and Rotating-Bending Fatigue Properties of a Highelastic Thin Wire, a Superelastic Thin Wire, and a Superelastic Thin Tube of NiTi Alloys, Journal of Engineering Materials and Technology,126(4),384.uk_UA
dc.relation.referencesen17. Menna C., Auricchio F., Asprone D.(2015),Shape Memory Alloy Engineering,Elsevier.uk_UA
dc.relation.referencesen18. Mohd J., Leary M., Subic A., Gibson M.(2014),A review of shape memory alloy research, applications and opportunities,Materials & Design, 56,1078-1113.uk_UA
dc.relation.referencesen19. Morgan N.B.(2004)Medical shape memory alloy applications -the market and its products, Materials Science and Engineering: A, 378(1-2),16-23.uk_UA
dc.relation.referencesen20. Moumni Z., Zaki W., Maitournam H. (2009), Cyclic Behavior and Energy Approach to the Fatigue of Shape Memory Alloys,Journal of Mechanics of Materials and Structures, 4(2),395-411.uk_UA
dc.relation.referencesen21. Nespoli A., Besseghini S., Pittaccio S., Villa E., Viscuso S.(2010),The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators.SensorsandActuators A:Physical,158, 149-160.uk_UA
dc.relation.referencesen22. Ozbulut O.E., Hurlebaus S., Desroches R.(2011),Seismic response control using shape memory alloys: A review,Journal of Intelligent Material Systems and Structures,22(14),1531-1549.uk_UA
dc.relation.referencesen23.Pan Q., Cho C.(2008),Damping property of shape memory alloys,The 17th International Metallurgical and Materials Conference METAL,1-5.uk_UA
dc.relation.referencesen24. Piedboeuf M.C., Gauvin R.(1998),Damping behaviour of shape memory alloys: strain amplitude, frequency and temperature effects, Journal of Sound and Vibration, 214(5),885-901.uk_UA
dc.relation.referencesen25. Predki W., Klönne M., Knopik A. (2006), Cyclic torsional loading of pseudoelastic NiTi shape memory alloys: Damping and fatigue failure,Materials Science and Engineering: A, 417(1-2),182-189.uk_UA
dc.relation.referencesen26. QiuC.,Zhu S.(2017),Shake table test and numerical study of self-centering steel frame with SMA braces,Earthquake Engineering & Structural Dynamics, 46(1), 117-137.uk_UA
dc.relation.referencesen27. Shen Y., Qian W., Abtin H., Gao Y., Haapasalo M. (2012), Effect of environment on fatigue failure of controlled memory wire nickel-titanium rotary instruments, Journal of Endodontics,38(3),376-380.uk_UA
dc.relation.referencesen28.Sun L.,Huang W.M., Ding Z., Zhao Y., Wang C.C., Purnawali H., Tang C.(2012),Stimulus-responsive shape memory materials: A review,Materials & Design, 33,577-640.uk_UA
dc.relation.referencesen29. Tanaka K., Nishimura F., Hayashi T., Tobushi H., Lexcellent C. (1995), Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads, Mechanics of Materials,19(4),281-292.uk_UA
dc.relation.referencesen30. Tobushi H., Nakahara T., Shimeno Y., Hashimoto T.(1999),Low cycle fatigue of TiNi shape memory alloy and formulation of fatigue life,Journal of Engineering Materials and Technology, 122(2),186-191.uk_UA
dc.relation.referencesen31. Torra V., Isalgue A., Auguet Sangra C., Carreras G.(2012),The SMA: An Effective Damper in Civil Engineering that Smoothes Oscillations,Materials Science Forum, 706-2015,2020-2025.uk_UA
dc.relation.referencesen32. Yasniy P., Hlado V., HutsaylyukV., Vuherer T. (2005), Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation, Fatigue & Fracture of Engineering Materials & Structures, 28(4), 391-397.uk_UA
dc.relation.referencesen33. Yasniy P., Kolisnyk M., Kononchuk O., Iasnii V.(2017),Calculation of constructive parameters of SMA damper,Scientific Journal of TNTU, 88(4),7-15.uk_UA
dc.identifier.doi10.2478/ama-2019-0013-
dc.contributor.affiliationDepartment of Structural Mechanics, Ternopil Ivan Puluj National Technical University,Ruska str. 56,46001, Ternopil, Ukraineuk_UA
dc.citation.journalTitleActa mechanica et automatica-
dc.citation.volume13-
dc.citation.issue2-
dc.citation.spage95-
dc.citation.epage100-
dc.coverage.countryPLuk_UA
Розташовується у зібраннях:Наукові публікації працівників кафедри будівельної механіки

Файли цього матеріалу:
Файл Опис РозмірФормат 
13_2019_011_IASNII_YASNIY.pdf676,38 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора