Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/28688
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorNykyforchyn, H. M.-
dc.contributor.authorTsyrul’nyk, O.T.-
dc.contributor.authorStudent, O.Z.-
dc.contributor.authorIasnii, V. P.-
dc.date.accessioned2019-07-05T15:35:05Z-
dc.date.available2019-07-05T15:35:05Z-
dc.date.issued2019-01-
dc.identifier.citationV.P. Iasnii, H.M. Nykyforchyn, O.T. Tsyrul’nyk, O.Z. Student. Specific features of deformation of the nitinol alloy after electrolytic hydrogenation. Materials Science. – 2019. – 54, № 4. – pp. 582–588.uk_UA
dc.identifier.issn1573-885X-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/28688-
dc.description.abstractSpecific features of the effect of hydrogenation on the susceptibility of a Ni–Ti alloy with shape memory to deformation are determined with the use of metallographic, electrochemical, and mechanical studies. Three sections are detected in the tensile curves of the specimens of nickel–titanium alloy in the initial state. The first section is linear due to the elastic deformation of the alloy with initial austenitic struc-ture. The second section is nonlinear and associated with pseudoelastic structural transformations of the original austenitic structure into a martensitic structure. The third section is also linear and caused by the elastic deformation of martensite formed in the course of deformation of austenite. After hydro-genation of the Ni–Ti alloy, the pseudoelastic structural transformation starts at a somewhat lower level of stresses than without hydrogenation. In this case, the specimens are destroyed after the termination of this transformation for a much lower level of plasticity than in the nonhydrogenated alloy. It is assumed that the electrolytic hydrogenation of the alloy promotes the formation of a very brittle hydride phase on the surface of Ti-type inclusions revealed in the structure of alloy in the initial state. Its thickness is determined by the duration of the process of hydrogenation rather than by the current used for hydro-genation.uk_UA
dc.format.extent582-588-
dc.language.isoenuk_UA
dc.publisherSpringer USuk_UA
dc.relation.urihttps://link.springer.com/article/10.1007/s11003-019-00221-2uk_UA
dc.subjectNi–Ti alloyuk_UA
dc.subjectelectrolytic hydrogenation-
dc.subjecttensile loading-
dc.subjectdeformation behavior-
dc.titleSpecific features of deformation of the nitinol alloy after electrolytic hydrogenationuk_UA
dc.typeArticleuk_UA
dc.relation.referencesen1. P. Iasnii and V. Iasnii, Damping Unit for the Transportation of Large-Size Structures [in Ukrainian], Patent 116582 Ukraine MPK F16F 7/12, Publ. on 25.05.2017; Bull. No. 10.uk_UA
dc.relation.referencesen2. Y. Oshida, R. Sachdeva, Sh. Miyazaki, and S. Fukuyo, “Biological and chemical evaluation of Ti-Ni alloys,” Martens. Transform. Trans. Tech. Publ.,56, 705–710 (1991).uk_UA
dc.relation.referencesen3. Z. Lekston, J. Drugacz, and H. Morawiec, “Application of superelastic NiTi wires for mandibular distraction,” Mater. Sci. Eng. A,378, Nos. 1–2, 537–541 (2004).uk_UA
dc.relation.referencesen4. G. Rondelli, “Corrosion resistance tests on NiTi shape memory alloy,” Biomaterials,17, 2003–2008 (1996).uk_UA
dc.relation.referencesen5. H. Ma, T. Wilkinson, and C. Cho, “Feasibility study on a self-centering beam-to-column connection by using the superelastic be-havior of SMAs,” Smart Mater. Struct.,16, No. 5, 1555–1563 (2007).uk_UA
dc.relation.referencesen6. A. Isalgue, F. C. Lovey, P. Terriault, F. Martorell, R. M. Torra, and V. Torra, “SMA for dampers in civil engineering,” Mater. Trans.,47, No. 3, 682–690 (2006).uk_UA
dc.relation.referencesen7. H. Ma and M. C. H. Yam, “Modeling of a self-centering damper and its application in structural control,” J. Constr. Steel Res.,67, No. 4, 656–666 (2011).uk_UA
dc.relation.referencesen8. V. Torra, C. Auyuet, G. Carreras, L. Dieng, F. C. Lovey, and P. Terriault, “The SMA: An effective damper in civil engineering that smoothes oscillations,” Mater. Sci. Forum,706–709, 2020–2025 (2012).uk_UA
dc.relation.referencesen9. P. Yasniy, M. Kolisnyk, O. Kononchuk, and V. Iasnii, “Calculation of constructive parameters of SMA damper,” Sci. J. TNTU,88, No. 4, 7–15 (2017).uk_UA
dc.relation.referencesen10. G. Kauffman and I. Mayo, “The story of Nitinol: the serendipitous discovery of the memory metal and its applications,” Chem. Educ.,2, No. 2, 1–21 (1997).uk_UA
dc.relation.referencesen11. V. P. Iasnii and R. Junga, “Phase transformations and mechanical properties of the Nitinol alloy with shape memory,” Fiz.-Khim. Mekh. Mater.,54, No. 3, 107–111 (2018).uk_UA
dc.relation.referencesen12. D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,” Proc. of the Inst. Mech. Eng.: J. Aerospace Eng.,221, Part G, 535–582 (2007).uk_UA
dc.relation.referencesen13. A. L. Quintanilla, Shape Memory Alloys, Dissertation, Delft Univ. of Technology (2016).uk_UA
dc.relation.referencesen14. F. Gamaoun, I. Skhiri, T. Bouraoui, and T. Ben Zineb, “Hydrogen effect on the austenite–martensite transformation of the cycled Ni–Ti alloy,” J. Intellig. Mater. Syst. Struct.,25, No. 8, 980–988 (2014).uk_UA
dc.relation.referencesen15. I. Kireeva, Yu. Platonova, and Yu. Chumlyakov, “Effect of hydrogen on the two-way shape memory effect in TiNi single crystals,” Mater. Today,4,No. 3, Part B, 4773–4777 (2017).uk_UA
dc.relation.referencesen16. J. Sheriff, A. R. Pelton, and R. A. Pruitt, “Hydrogen effects on Nitinol fatigue,” in: Proc. In ternat. Conf. on Shape Memory and Superelastic Technologies,SMST-2004, M. Mertman (editor) , ASM International, Baden-Baden (2004), pp. 111–119.uk_UA
dc.relation.referencesen17. K. Yokoyama, T. Ogawa, K. Asaoka, J. Sakai, and M. Nagumo, “Degradation of tensile strength of Ni–Ti superelastic alloy due to hydrogen absorption in methanol solution containing hydrochloric acid,” Mater. Sci. Eng.: A,360, Nos. 1–2, 153–159 (2003).uk_UA
dc.relation.referencesen18. K. Kaneko, K. Yokoyama, K. Moriyama, K. Asaoka, and J. Sakai, “Degradation in the performance of orthodontic wires caused by hydrogen absorption during short-term immersion in 2.0% acidulated phosphate fluoride solution,” Angle Orthodontist,74, No. 4, 487–495 (2004).uk_UA
dc.relation.referencesen19. K. Yokoyama, K. Kaneko, K. Moriyama, K. Asaoka, J. Sakai, and M. Nagumo, “Hydrogen embrittlement of Ni-Ti superelastic alloy in fluoride solution,” J. Biomed. Mater. Res.,65A, 182–187 (2003).uk_UA
dc.relation.referencesen20. V. N. Kudiyarov, A. M. Lider, N. S. Pushilina, and N. A. Timchenko, “Specific features of the accumulation and distribution of hy-drogen in the course of saturation of VT1-0 titanium alloy by the electrolytic method and from a gas atmosphere,” Zh. Tekh. Fiz.,84, Issue 9, 117–121 (2014). 21. V. I. Pokhmurs’kyi and V. V. Fedorov, Influence of Hydrogen on the Diffusion in Metals [in Ukrainian], Enei, Lviv (1998).uk_UA
dc.relation.referencesen21. V. I. Pokhmurs’kyi and V. V. Fedorov, Influence of Hydrogen on the Diffusion in Metals [in Ukrainian], Enei, Lviv (1998).uk_UA
dc.identifier.doi10.1007/s11003-019-00221-2-
dc.contributor.affiliationPulyui Ternopil’ National Technical UniversityTernopilUkraineuk_UA
dc.contributor.affiliationKarpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraineuk_UA
dc.citation.journalTitleMaterials Science-
dc.citation.volume54-
dc.citation.issue4-
dc.citation.spage582-
dc.citation.epage588-
Розташовується у зібраннях:Наукові публікації працівників кафедри будівельної механіки

Файли цього матеріалу:
Файл Опис РозмірФормат 
Iasnii2019_Article_SpecificFeaturesOfDeformationO.pdf2,11 MBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора