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STM32U5 — буде найкращий вибір для критичних енергоефективних 

застосунків з високою безпекою. 

ESP32-S3 — ідеальний для пристроїв з Wi-Fi/BLE та AI-обробкою. 

Nordic nRF52 — лідер у BLE-пристроях з наднизьким споживанням. 

RP2040 — бюджетний варіант для прототипування, не має вбудованого бездротового 

зв’язку. 

У сучасних умовах стрімкого розвитку Інтернету дуже важливим є вибір 

мікроконтролерів, здатних забезпечити тривалу автономну роботу при мінімальному 

енергоспоживанні. Такі рішення, як STM32U5, ESP32-S3, Nordic nRF52 та RP2040, 

показують різні підходи до балансу між продуктивністю, бездротовими можливостями 

та енергоефективністю. Вибір мікроконтролера залежить від конкретних вимог до 

пристрою — тривалості роботи від батареї, типу бездротового зв’язку, обчислювальних 

потреб та інших. Раціональне використання енергозберігаючих режимів та правильне 

проектування системи дозволяє значно продовжити термін служби автономних IoT-

рішень, що є ключовим фактором для сталого розвитку технологій майбутнього. 
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У сучасній медичній візуалізації значна увага приділяється автоматизованим 

методам виявлення патологій на рентгенограмах, зокрема переломів, що підвищує 

якість діагностики та зменшує навантаження на лікарів. Виявлення переломів на 

рентгенограмах є складним завданням через варіативність зображень, пов'язану з 

різними анатомічними областями, такими як кінцівки чи таз, а також через артефакти, 

спричинені імплантатами чи нерівномірним освітленням [1]. 
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Традиційні методи цифрової обробки — порогова сегментація й детекція 

контурів (Собеля, Кенні) — дають змогу знаходити розриви кісткової структури, проте 

чутливі до шумів і потребують ручного налаштування параметрів. Дослідження 

показують, що такі методи досягають точності близько 70-80%, але їх ефективність 

знижується на складних випадках, як-от неповні переломи без чіткого зміщення 

фрагментів [2]. 

Подальший розвиток пов’язаний із використанням машинного навчання, 

зокрема SVM і випадкових лісів, що працюють з попередньо виділеними ознаками 

(текстурні дескриптори Haralick, LBP). Такі підходи покращують точність до 85–90%, 

але залежать від якості та репрезентативності ознак [3]. 

Революційні зрушення принесло глибоке навчання. Згорткові нейронні мережі, 

як-от ResNet чи EfficientNet, забезпечують обробку зображень у форматі end-to-end і 

демонструють точність понад 95% на задачах класифікації переломів. EfficientNet-B4 

поєднує високу точність із помірними обчислювальними витратами, що робить її 

придатною для інтеграції у веб-сервіси медичної діагностики [4]. 

Для задач не лише класифікації, а й локалізації переломів, застосовуються 

об'єктно-детекційні моделі, такі як YOLOv8, які одночасно виконують сегментацію та 

класифікацію, генеруючи bounding boxes навколо патологій з метриками mAP@0.5 

близько 93-94%. Це дозволяє візуалізувати точне місце перелому, що є цінним для 

клініцистів, хоча вимагає більших обчислювальних ресурсів через багатошарову 

архітектуру [5]. 

У сучасних системах застосовують гібридні підходи, де швидка бінарна 

класифікація (наприклад, EfficientNet) комбінується з локальним детектором 

(YOLOv8), що дозволяє оптимізувати час обробки та підвищити точність. Такі методи 

добре масштабуються у веб-сервісах і демонструють стабільність на різних 

анатомічних ділянках, хоча потребують вирішення проблеми дисбалансу класів через 

техніки аугментації [3]. 
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