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інформаційно-вимірювальних систем, що працюють у режимі реального часу та 

взаємодіють із хмарними платформами. 

Проблема, що розглядається в цьому дослідженні, полягає у створенні доступної, 

надійної та енергоефективної системи моніторингу параметрів житлового приміщення 

з можливістю дистанційного керування. Актуальність теми визначається зростанням 

потреби у підвищенні безпеки, комфорту та ефективності використання ресурсів у 

житлових будівлях. Мета дослідження полягає в розробці методів та засобів побудови 

IoT-орієнтованої інформаційно-вимірювальної системи, що базується на доступних 

мікроконтролерних технологіях та здатна забезпечити комплексний контроль 

параметрів розумного будинку. 

Запропонована система складається з низки апаратних і програмних компонентів, 

інтегрованих у єдину IoT-архітектуру. Центральним елементом виступає 

мікроконтролерний Wi-Fi модуль NodeMCU, який забезпечує збирання даних, 

локальну обробку та бездротову передачу інформації у хмару. Для вимірювання 

освітленості застосовано цифровий давач BH1750FVI, що забезпечує високу точність і 

швидкість зчитування рівня освітлення. Контроль температури й вологості виконується 

за допомогою давача DHT22. Виявлення диму та горючих газів здійснюється модулем   

MQ-2, що підвищує рівень безпеки житлового приміщення. Для локального 

відображення зібраних даних використовується OLED-дисплей, що дозволяє 

оперативно переглядати параметри системи без доступу до Інтернету. 

Хмарна взаємодія реалізована на базі Arduino Cloud, що забезпечує збирання, 

візуалізацію та збереження даних, а також дистанційне керування виконавчими 

пристроями. Логіка роботи програми мікроконтролера передбачає циклічне зчитування 

параметрів, їх первинну фільтрацію, передачу до хмари та отримання команд 

користувача. У разі виявлення критичних значень система може виконувати локальні 

аварійні функції, наприклад запуск вентиляції чи подачу сигналізації. Комунікація з 

Arduino Cloud забезпечує можливість віддаленого контролю з будь-якої точки світу. 

Перевагами запропонованої системи є її модульність, низька вартість, доступність 

компонентів, простота інтеграції та масштабованість. Завдяки використанню хмарної 

платформи забезпечено високий рівень зручності для користувача, а вибір 

малопотужних сенсорів і мікроконтролера сприяє енергоефективності. 

Розроблена IoT-орієнтована інформаційно-вимірювальна система є ефективним 

рішенням для моніторингу та управління параметрами розумного будинку. Система 

забезпечує збір широкого спектра даних, інтеграцію з хмарними сервісами та 

можливість дистанційного керування у режимі реального часу.  
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Акустична класифікація літаючих об’єктів є актуальною задачею у контексті 

систем моніторингу повітряного простору. Основна мета дослідження полягає у 
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розробці ефективного методу розпізнавання типу літального апарату за його звуковою 

сигнатурою з використанням інтелектуальних алгоритмів. Звуковий сигнал літаючого 

об’єкта формується комбінацією гармонік від двигунів, резонансів корпусу та 

аеродинамічного шуму, що створює унікальний акустичний відбиток кожного класу 

об’єктів. 

Звуковий сигнал описується функцією     , що представляє зміну амплітуди 
акустичного тиску у часі. Основними характеристиками є амплітуда  , частота  , фаза 
  та тривалість  . Дискретизований сигнал представляється як            , де 
        - період дискретизації,    - частота дискретизації. Енергія сигналу 

визначається як  

  ∑   
         , а середня потужність як   

 

 
∑   

         . 

Важливим етапом, що передує класифікації є попередня обробка сигналів [1,2], 

зокрема нормалізація сигналу здійснюється за формулою  ̃    
      

 
, де  

  
 

 
∑   

       - середнє значення,   √
 

 
∑   

            - стандартне відхилення. 

Фільтрація шуму реалізується через смуговий фільтр з передатною функцією  

     {
         
  інакше

, де         - діапазон робочих частот. Для адаптивного 

шумозаглушення використовується фільтр Вінера      
      

             
,  

де        - спектральна щільність сигналу,        - спектральна щільність шуму. 

Часові ознаки включають короткочасну енергію [3]    ∑         
       , 

швидкість перетину нуля      
 

  
∑        

    sgn       sgn         , де   - 

розмір вікна,  

  - крок зсуву. Частотні характеристики отримуються через перетворення Фур’є  

     ∑     
               , спектральний центроїд    

∑   
 
         

∑   
        

 та спектральний 

розкид    √
∑   

                

∑   
        

. 

Методи на основі спектрального аналізу включають швидке перетворення 

Фур’є, яке реалізується за алгоритмом      ∑     
        

  , де           , з 

обчислювальною складністю         . Спектрограма формується через короткочасне 

перетворення Фур’є        |∫  
 

  
                  |

 
, де      - віконна функція 

Хеммінга                         .  

Вейвлет-аналіз базується на перетворенні        
 

√   
∫  

 

  
     (

   

 
)  , де 

     - материнський вейвлет,   - параметр масштабу,   - параметр зсуву. Вейвлет 

Морле визначається як      
 

√ 
            , що забезпечує оптимальну локалізацію у 

часі та частоті. 

Мел-кепстральні коефіцієнти обчислюються через послідовність перетворень: 

дискретне перетворення Фур’є, застосування мел-фільтрів  

                       , логарифмування енергій та дискретне косинусне 

перетворення         ∑     
          [        

 

 
], де    - енергія в  -му мел-

каналі,             - номер коефіцієнта. 

До статистичних методів відносимо кореляційний аналіз оцінює схожість двох 

сигналів через функцію взаємної кореляції        ∫  
 

  
           , у дискретній 

формі        ∑     
            . Автокореляційна функція  
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       ∫  
 

  
            визначає періодичність сигналу та використовується для 

детектування основної частоти. Коефіцієнт кореляції Пірсона 

  
∑   

       ‾      ‾ 

√∑   
       ‾  √∑   

       ‾  
 кількісно оцінює лінійний зв’язок між сигналами. 

Методи на основі шаблонного співставлення включають алгоритм динамічного 

розтягування DTW, що мінімізує відстань між двома послідовностями через матрицю 

накопичених відстаней                                                  , 

де                  - локальна відстань. Оптимальний шлях знаходиться через 

зворотний прохід матриці  . Еталонна бібліотека формується з набору                
шаблонів для   класів, класифікація виконується за принципом  ̂  
                . 

Методи розпізнавання на основі машинного навчання є найбільш сучасними [4], 

до яких входить багатошарова нейронна мережа яка  реалізує відображення         

через послідовність перетворень                        , де      
 

      - сигмоїдна 

функція активації,      - матриця ваг,      - вектор зміщень. Функція втрат для задачі 

класифікації    
 

 
∑ ∑    

 
   

 
        ̂   , де     - істинна мітка,  ̂   - передбачення. 

Також в роботі нами використано згорткову нейронну мережу, яка показала 

найвищу точність класифікації 92%, вона виконує операцію згортки  

         ∑   
             , пулінгу             

     та повнозв’язних 

шарів.  

Рекурентна ж мережа LSTM оперує з послідовностями через вентилі забування 

       ⋅              , входу        ⋅              , виходу  

       ⋅               та стан комірки  

                     ⋅              . 

Метод опорних векторів знаходить гіперплощину        , що максимізує 

відстань до найближчих точок через оптимізацію       
 

 
      ∑   

 
    за умов 

    
           . Для нелінійної класифікації використовується ядрова функція 

                        , що відображає дані у простір вищої розмірності. 
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