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Abstract. The article presents a modern approach to pulse signal processing under conditions of physical
exertion and in the recovery phase, which is based on the combined use of wavelet processing and the sliding
window method. This approach allows overcoming the limitations of traditional time and frequency methods,
providing a multi-scale time-frequency distribution of the signal and its precise temporal localization.

Particular attention is paid to the use of the 4th-order Daubech wavelet (db4), which provides an optimal
balance between sensitivity to sharp changes in the signal during exertion and smoothness in the recovery phase.
Wavelet-energy analysis of the signal in the sliding window made it possible to track the dynamics of changes in
the cardiovascular system, in particular: an increase in energy during exertion, reaching a peak value and a
gradual return of the indicator to the baseline level in the recovery phase.

The key indicator is the recovery time, which is defined as the interval between the moment of reaching
peak activation and the return of the signal energy level to the resting state. To automate this process, an algorithm
using a threshold device is proposed. At the first stage, a reference interval is selected before the start of the load,
which characterizes the baseline wavelet energy at rest. Then, the threshold value is calculated according to the
formula: Epor = 1.2 x Ebas, i.e. baseline energy plus 20% tolerance. This value allows you to take into account
the variability of the signal and at the same time avoid false positives caused by noise or random fluctuations.

The algorithm defines the recovery moment as the first time interval after physical exertion, in which the
wavelet energy value steadily decreases and remains below the calculated threshold. This approach combines
objectivity and accuracy, eliminating subjective errors in visual signal analysis.

The practical significance of the developed method lies in the possibility of its application for assessing
the fitness of athletes, controlling recovery processes in cardiology, monitoring the condition of patients in
rehabilitation medicine, as well as in its implementation in portable fitness devices and telemetry systems. Thus,
the combination of wavelet processing, window processing and the threshold recovery time algorithm creates a
reliable tool for quantitatively assessing the adaptive capabilities of the cardiovascular system.

Key words: pulse signal, human vessels, physical activity, wavelet processing, sliding window, algorithm,
recovery time, MATLAB.
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1. INTRODUCTION

The study of the processes of recovery of the cardiovascular system (CVS) after dosed
physical exertion is a key task of modern physiology, sports and clinical medicine. One of the
most informative indicators of the state of the CVS is the structure of the pulse signal, which
carries data on vascular elasticity, regulation of peripheral resistance and the rate of
hemodynamic changes. In this regard, the analysis of the time points of recovery based on the
pulse wave is considered a promising tool for assessing the functional reserves of the body.

Effective methods of processing the pulse signal during physical exertion are a key
condition for obtaining reliable information about the functional state of the body and assessing
the adaptive capabilities of the CVS.

Existing methods of pulse signal processing can be conditionally divided into time,
frequency and time-frequency. Classical time methods allow to estimate amplitude, wavelength and
local morphological parameters, however, they do not take into account the spectral component of
the signal, which limits them in the study of recovery processes [1]. Frequency methods, in
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particular Fourier transform, are widely used for processing rhythmic components of pulse
signals [2], however, their disadvantage is the loss of temporal information, which reduces the
efficiency in the analysis of non-stationary biomedical signals. The use of short-time Fourier
transform (STFT) has partially overcome these limitations, however, the fixed processing window
creates a compromise between time and frequency resolution [3]. A more flexible approach to the
analysis of pulse signals under conditions of physical exertion has become wavelet processing. It
provides a multi-level time-frequency decomposition, which allows to simultaneously evaluate
both local time features and the spectral composition of the signal. Due to this, wavelet methods are
widely used for the study of cardiovascular system, in particular for the isolation of diagnostically
significant phases of the pulse wave and the detection of the dynamics of recovery after loads [4,
5]. In[6] it was shown that the wavelet energy and entropy parameters are sensitive to physiological
changes during loading and recovery, which makes them effective markers of adaptation processes.

However, even the most effective wavelet processing methods do not always allow to
accurately determine the time points of transition between the load and recovery phases. In this
context, a promising combination of wavelet transform with the sliding window method is considered,
which provides localized processing in time and allows to record transient signal changes with high
accuracy [7]. Such a combined approach combines the multi-level time-frequency sensitivity of
wavelet processing and the flexibility of the sliding window, which creates new opportunities for
more reliable detection of the moments of CVS recovery after dosed physical exertion.

2. PULSE SIGNAL, PHYSICAL ACTIVITY AND RECOVERY TIME

Analysis of changes in the structure of the pulse signal during dosed physical exertion
is a universal means of controlling and regulating their intensity, and also allows you to detect
hidden pathologies of the cardiovascular system that can lead to sudden death.

The Ruffier test allows you to quickly assess the functional state of the cardiovascular
system. It allows you to identify the adequacy of the heart's response to stress and the speed of
its recovery in the resting phase. Due to its simplicity and informativeness, the test is widely
used in physiology, medicine and sports practice. The methodology and principle of the Ruffier
test consist in performing 30 sit-ups in 30 seconds with subsequent registration of the PS at rest,
after stress and during the recovery period to assess the state of the cardiovascular system.

Fig. 1 shows the change in the PS of human vessels during the Ruffier test: from the
resting state through the stress phase to the gradual recovery of the cardiovascular system.
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Figure 1. Structure of the pulse signal during physical exertion

According to Fig. 1, in the resting state (0—60 sec) the amplitude of the PS is
stable (=0.7-0.8 V), the pulse rate is moderate, uniform. This phase acts as a baseline for
further comparison with the recovery phase.
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In the load phase (30 squats, 60—90 sec) there is an increase in heart rate (the heart beats
faster to deliver more oxygen), the signal amplitude increases (=0.9-1.0 V) due to an increase
in the stroke volume of the heart.

In the recovery phase (=90-210 sec) the pulse rate remains elevated, but gradually
decreases, the signal amplitude begins to decrease. Some signal unevenness is possible due to
active compensatory processes (oxygen deficiency).

In the phase of complete recovery (210-240 sec) the heart rate returns to the initial
state of the resting phase, in particular, the amplitude of oscillations decreases to the initial
values (~0.7-0.8 V), the heart rate decreases, the peaks are located less frequently.

So, during physical exertion, the heart rate, amplitude and shape of the pulse wave
change. After physical exertion, the heart rate and pulse wave change dynamically, in particular,
the heart rate decreases, the morphology of the pulse wave stabilizes and the pulse variability
gradually returns to normal.

Therefore, processing/analysis of the entire signal «in general» does not reflect the real
time when the body has fully recovered. Local processing in time is needed — that is, window
processing to determine the recovery time after physical exertion.

Therefore, recovery time is one of the key indicators for assessing cardiovascular health,
athlete fitness, and the risk of cardiovascular complications. After exercise, a normal person
quickly restores stable pulse parameters (1-3 min). A delay in this time is an indicator of
overfatigue, overtraining, or pathology.

3. WINDOW PROCESSING OF PULSE SIGNAL

Sliding window is a method that allows you to limit the processing to only a part of
the PS around time r=b. This is implemented using a window function D(z-b), which has a
non-zero value only within the interval [b—L/2, b+L/2], where L is the window width
(number of points).

The sliding window allows:

— to monitor the dynamics of changes in the structure of the PS;

— to detect the time point when the parameters return to the baseline (resting state);

— to determine the time of achieving stability of the CVS.

This is important for determining the individual level of fitness or cardiac reserve.

Algorithmic advantages of window processing of the PS:

— window processing allows for real monitoring, including on portable devices (fitness
bracelets, heart rate monitors),

— allows for adaptive processing: for example, changing the width of the window
according to the rate of signal changes,

— suitable for online processing, for example, in sports medicine or telemetry.

The reasons for using PS window treatments are given in Table 1.

Table 1

Advantages of using windowed pulse signal processing

Reason The role of windowing
PS non-stationarity Detecting local changes
Restoration dynamics Determining the time to return to the resting state
PS frequency variability Assessing adaptation of the autonomic nervous system
Individual approach Adapting window width to the rate of recovery
Implementation in real-time devices Optimal processing speed and energy efficiency
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3. COMBINED USE OF WAVELET AND SLIDING WINDOW FOR PULSE
SIGNAL PROCESSING

The combined use of wavelet and sliding window for processing the pulse signal x(¢) in
time space is a modern, effective and justified approach, especially when studying the response
of the cardiovascular system to physical exertion.

Wavelet transformation allows you to process and analyze simultaneously the temporal
and frequency structure of the signal, identify local features, vascular response to exertion and
the appearance of pathological components.

During exertion, wavelet processing allows you to track systolic activity and frequency
peaks, and during recovery — to assess the moment of stabilization of parameters.

Practical value:

— 1in sports: assessment of fitness, training effectiveness.

— 1in cardiology: detection of arrhythmias, hypertension, ischemia.

— 1in rehabilitation: monitoring of the condition after stress.

— in fitness devices: real-time integration for health monitoring.

Wavelet processing of PS using the sliding window method is a highly effective tool for
analyzing the body's physiological responses to physical exertion, allowing for accurate
assessment of both the loading and recovery phases.

Suppose we have a digital (discrete) PS:

x(z), t=0,At,2A¢,....T, (1)

where At — discretization step, 7 — total flight duration.
Continuous wavelet transform allows to decompose the PS into time-scale components:

W (a,b) =[x, (0t @

where v, (t)= Lw(ﬂj — scaled and shifted wavelet function;
, Ja p

a — scale (inversely proportional to frequency);

b — time shift (window centering);

w(r) — mother (base) wavelet.

Therefore, to localize the processing of the PS in time, the window function w(¢) was
used, which limits the calculations within the interval of N points.:

x,(t;0) = x(t)wt b), 3)
where w(r—b) — window function shifted to time b.

Thus, the processing is performed only for the PS fragment around time point b by
combining a sliding window and a wavelet transform:

W(a,b)= [xlehwle—bYy, (1) @)

—o0

This allows performing localized PS analysis in each window centered at b.

66 ............. ISSN 2522-4433. Scientific Journal of the TNTU, No 3 (119), 2025 https://doi.org/10.33108/visnyk_tntu2025.03


https://doi.org/10.33108/visnyk_tntu2025.0

Mykola Khvostivskyi, Serhii Uniiat

Discrete view in computer processing:

W[a, b] = E x(nAl + b)w(n)l//:,h (nAl) , (%)

n=0

where a — scale: large a corresponds to low frequencies (slow changes), small a — high-
frequency oscillations (fast changes).
b — time offset: the position of the center of the window where processing is
performed.
w(t) — window function: Gaussian, rectangular, Hamming, etc., which defines the processing
boundaries.

The result is a matrix of coefficients W(a,b), which reflects how the signal energy
changes over time and scale.

This allows you to detect changes in pulse wave morphology, arrhythmias, or vascular
pathology.

If necessary, it is possible to restore the PS from wavelet coefficients:

1 55 dbda
C—I J.W a, b)l//a b —_— (6)
v 00—
where Cy — normalization constant, depending on the choice Y (t).
The final formula of the combined PS processing model:

W[a,b]zjz_;[x(nAHb)w(n)]y/*(n—Atj, )

a

where w(n)— window function (e.g. rectangular, Gaussian, Henning, etc.);
At — time discretization step;

b - time shift (window position on PS);

a — wavelet scale (analog of frequency: small a = high frequencies);

w*(-) — complex conjugate wavelet function;

N —number of points in the window.

This model takes into account both locality in time and multiscale processing, which is
especially important for physiological signals and allows you to accurately track the body's
response to physical exertion, determine the moment of recovery, detect artifacts or pressure
changes.

Choosing the optimal window width for wavelet processing of PS is a compromise
between time and frequency resolution [8, 9]. Too narrow a window gives good time
localization, but poor frequency. Too wide — the opposite. That is why in wavelet processing
the scale a also controls the window width: the larger the scale, the wider the window in
time.

Recommended window settings:

— width: 25 seconds (optimal value for time accuracy and frequency stability) [8, 10];

— range: 20-30 sec [11];

— maximum: 60 sec (for stationary HRV analysis) [9];

— shift step: 0.1-0.2 seconds for graphic detail [10].

Adopting these parameters ensures accurate detection of the moment
of system recovery after physical exertion with an accuracy of up to tens of
seconds [8, 12].
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4. SELECTING A WAVELET BASIS FOR WINDOWED PULSE SIGNAL
PROCESSING

The 4th-order Daubechie wavelet (db4) is one of the most common orthonormal
wavelets, especially when processing pulse, cardiac (ECG, PPG), tremor, or respiratory signals.
It is justified both theoretically and practically.

db4 provides a balance between localization in time and frequency and has a short
support (filter length), which allows you to well detect sharp changes in the signal (for example,
the phase after physical exertion).

At the same time, it has sufficient smoothness to capture longer wave structures of PS.

Since PS has a non-stationary nature (its shape and frequency change over time (due to
breathing, exercise, stress)), db4 allows you to adaptively decompose the signal into scales
(frequencies) and detect local changes.

dbl (i.e. Haar) is too coarse — it will cut off important details, db6, db8, etc. — have
higher smoothing ability, but lose accuracy in temporal detection of events.

Therefore, db4 is an optimal compromise between smoothing and accuracy.

Table 2 shows the advantages of using the 'db4' wavelet.

Table 2

Advantages of using the 'db4' wavelet

Phase Important properties of wavelets | Advantage of 'db4'

During load Detection of abrupt changes Sensitive to impulses, acceleration
Recovery Smoothing/dynamics Detects slowing of the pulse
Transitional areas | Frequency/time tradeoff Remains accurate

The formula for the 4th order Daubech wavelet (db4) describes the wavelet function
and the scaled mother function in terms of convolution coefficients (filters). The db4 wavelet
has four smoothing filter coefficients h.

Wavelet function:

7

w(t)=> q,6(2t-k), ®)

0

where gk — scaling filter coefficients;
q, = (- l)k h,_, —wavelet filter coefficients (derived from /);

@(t) — zoom function;
(t) — wavelet function.
Filter coefficients for db4:
ho=—0.0105974017850021,
h1=0.0328830116668852,
h>=0.0308413818355607,
h3=—-0.1870348117188811,
hs4=-0.0279837694168599,
hs=0.6308807679295904,
hs=0.7148465705525415,
h7=0.2303778133088964.
The scale filter A, extracts low-frequency information, and the wavelet filter g« extracts
high-frequency components of the PS.
In the context of a PS: db4 allows you to delicately process and analyze transients and
localize changes during physical exertion.
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5. WAVELET ENERGY AS AN INDICATOR OF PULSE SIGNAL RECOVERY
AFTER PHYSICAL EXERTION

Wavelet energy is a quantitative assessment of the energy of local frequency
components of a wave, which allows:

— analyze the frequency content of the PS over time;

— detect dynamic changes in pulse structure;

— study nonlinear and non-stationary systems.

Wavelet energy shows the «strength» of a physiological state, in particular:

— during physical activity, wavelet energy increases;

— after — decreases as recovery occurs;

— return to initial energy level = body recovered.

This allows you to objectively measure the state of the cardiovascular system.

Without energy calculation, only a «raw» signal is obtained (visual viewing, manual
interpretation).

Wavelet energy = an objective, numerical characteristic that:

— easily processed and analyzed;

— used in threshold algorithms;

— allows you to automate the determination of recovery time.

Wavelet energy is a numerical measure of the total energy of a signal in a certain
frequency range in a limited time window. It is determined by the square of the amplitudes of
the wavelet coefficients in the time window D:

E =Y [W(ab) . )

aeD

Therefore, calculating wavelet energy is a necessary step in the processing of PS,
especially during physical exertion. It is the only method that gives:

- detailed, localized assessment of PS activity;

- numerical basis for identifying the recovery moment;

- flexibility and accuracy for use in automatic diagnostic, monitoring and training systems.

6. RESULT OF WINDOWED WAVELET PROCESSING OF A PULSE SIGNAL

Fig. 2 shows the result of window wavelet processing (Daubech basis) of the PS during
physical exertion in the Matlab environment with subsequent calculation of the wavelet energy.

In the time interval up to ~40 sec, a stable low-amplitude level of the indicator
(E=0.15 V?) is observed, which reflects the basic state of regulatory mechanisms during the rest
phase. During the load phase, starting from 40-45 sec, an intensive increase in energy is noted,
which reaches a maximum value (E<0.40 V?) in the range of ~80-90 sec. This stage corresponds
to the phase of peak activation of autonomous regulation and strengthening of the oscillatory
structure of the PS under the influence of post-load adaptation.
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Figure 2. Dependence of wavelet energy of PS on time
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The subsequent time interval (~90-200 sec) is characterized by a monotonic decrease
in wavelet energy with preservation of oscillatory dynamics, which indicates a gradual
restoration of functional activity and return of cardiovascular system parameters to the initial
level (recovery phase). This signal behavior is consistent with the phase structure of the post-
load response: the transition from the activation peak to the recovery stage, which can be used
as an objective marker of the body's adaptive reserves.

To automatically determine the moment of recovery after physical exertion, visual
analysis of the graph alone is not enough (Fig. 2), because:

— energy fluctuates due to natural biological dispersion and signal noise.

— visual assessment is subjective and depends on the operator's experience.

In real-time conditions, automatic decision-making is required without human
intervention.

The threshold device allows:

— determine the baseline energy level at the initial (pre-load) interval.

— set a threshold (e.g. baseline + some tolerance) below which energy is considered
recovered.

— control the moment when the wavelet energy after the peak steadily drops and stays
below the threshold for a given time (to avoid false positives due to random fluctuations).

Thus, the threshold device provides an objective, fast and stable determination of the
recovery time, which is important in medical monitoring systems and sports diagnostics.

The recovery threshold is set to detect the moment when the vascular pulse signal
returns to the «normal» state after physical exertion. This is done through the analysis of the
energy of the wavelet components in the time space using the sliding window method.

The algorithm for finding the recovery time is shown in Fig. 3.

- s D

Allocation of reference period to
load

v

Threshold value formation

v

Finding a recovery point in time

< Etd D)

Figure 3. Algorithm for finding recovery time after physical exertion

At the stage of allocating a reference period to the load:

— The time interval before the start of physical activity (rest phase period) is selected.

— Wavelet energy during this period is considered reference or background activity.

— The average energy value in this rest state is calculated.

At the threshold value formation stage, the threshold level for making a decision on
restoration is selected/selected.

In works on biosignal analysis (e.g., [1], [4]) it is shown that:

— too low threshold (<115%) — high sensitivity, but many false positives;

— too high threshold (>130%) — misses real changes (low sensitivity);
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— the value of 120% corresponds to the ROC optimum in similar decision-making tasks
(Receiver Operating Characteristic): maximizing the area under the AUC curve in rhythm
restoration tasks [4].

The threshold value is set as 120% of the baseline energy level (i.e. baseline energy +
20% reserve).

Setting the threshold at +20% allows:

— ignore small fluctuations (i.e. do not react to noise);

— detect true recovery when energy has returned to background.

In wavelet processing, the energy of the frequency coefficients indicates the dynamic
activity of the signal:

— during load — energy increases significantly (sometimes 2-3 times).

— after recovery — returns to baseline.

The 120% threshold provides a safe cutoff below which the signal is considered inactive
or restored. This allows you to take into account small fluctuations not related to the load
(pulsation, noise).

The method corresponds to the concept of threshold decision making, when:

— if the energy is below the threshold — the signal is considered to have stabilized;

— if higher — signal still unstable (load effect continues).

The value of 120% is a compromise between sensitivity and specificity:

— lower threshold — risk of false positive;

— higher threshold — recovery signal may be missed (false negative).

At the stage of searching for the moment of recovery:

— the search begins after the loading phase ends.

— 1is checked: when the energy first falls below the threshold, this moment is considered
the point of recovery of vascular activity.

Table 3 summarizes the rationale for the methodology and the corresponding justifications.

Table 3

Justification of the methodology for finding recovery time after physical exertion

Algorithm steps Justification
Select base energy before loading This is a «standard» of the body’s resting state

Threshold = 1.2 x base energy
(pre-load state)

Search after loading Determines the real time when the body has returned to normal

Takes into account natural variability + margin for reliability

Fig. 4 shows the results of calculating the time point of CVS recovery after physical
exertion based on wavelet energy data and threshold level data.

Recovery time, Trec=T2-T1
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Figure 4. Dependence of wavelet energy of PS on time with marked time moments and threshold
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According to Fig. 4. in the initial section of the curve (0-40 s) the energy value is at the
base level (E=0.15 V?) below the threshold value. After exceeding the threshold value, a rapid
increase in the energy indicator is observed, reaching a maximum in the range of 90 s. The time
of reaching the peak value is designated as T1. Further dynamics is characterized by a gradual
decrease in energy, which reflects the CCS recovery phase. The moment when the wavelet
energy value decreases to the threshold value from the peak level in the descending section is
designated as T2.

The recovery time (Trec) is calculated as the difference between these timestamps:

Trec=T2-T1=196,75sec - 90 sec= 106,75 sec. (10)

Thus, the proposed approach allows us to quantitatively assess the rate of return of the
cardiovascular regulatory mechanisms to the initial level after physical exertion using the
recovery time indicator Trel.

7. CONCLUSIONS

The combined use of wavelet processing and the sliding window method provides
multi-scale and time-localized processing of the pulse signal, which allows you to accurately
track both the phase of physical exertion and the process of recovery of the cardiovascular
system.

The use of wavelet energy as a numerical indicator allows you to quantitatively
determine the recovery time after exertion, when the physiological parameters of the
cardiovascular system return to baseline values.

The use of a threshold device with a level of 120% of the baseline energy eliminates the
subjectivity of the assessment, allows you to automate the determination of the moment of
recovery and increases the reliability of the method for practical use in sports medicine,
cardiology and real-time monitoring systems.

Prospects for further research include the development of adaptive threshold
algorithms with dynamically formed decision levels, the expansion of wavelet bases
and multiresolution approaches, the integration of machine-learning methods for
automatic functional-state classification, the creation of real-time embedded
monitoring systems, the clinical validation of the proposed methodology on diverse
population groups, and the investigation of multi-parameter monitoring through the
combination of wavelet pulse characteristics with respiratory, HRV and impedance-
cardiography signals.

Thus, the proposed approach forms a reliable methodological basis for quantitative
assessment of the recovery processes of the cardiovascular system, and its further development
will contribute to the creation of intelligent diagnostic and monitoring systems in sports,
cardiology and personalized medicine.
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KOMBIHOBAHE BUKOPUCTAHHS BEVBJIET I KOB3HOI'O BIKHA
I OITPALHIOBAHHS ITYJIBCOBOI'O CUT'HAJLY ITPH
PIBUYHOMY HABAHTAKEHHI

Muxkoga XBocTiBebKuii; Ceprid YHiAT

Teproninbcokutl HayioHAIbHUL MeXHIYHUU YHIgepcumem imeni leana 1lynros,
Tepuonins, Ykpaina

Pestome. [Ipeocmasneno cyuachuil nioxio 00 ONPaylO8anHs NY1bCOBO2O CUSHATY 8 YMOBAX (Qi3UUHOO
HABAHMANICEHHs. Ma y Daszi GIOHOGNEHHS, AKUNL OA3VEMbCs HA KOMOIHOBAHOMY GUKOPUCMAHHI 6eligiem-
ONpayio8ants ma memooy Kog3Ho2o GikHA. Taxuul nioxio 00380se 00aamu 0OMeNCeHH MPAOUYITIHUX YACOBUX
ma 4acmomuux Memoois, 3abesneuyouu 6aamomMacumadtuil 4aco-4acmomHull Po3KIad CUSHALY ma Uo2o
mouny uacosy aokanizayito. Ocodnusy yeazy npudineno euxopucmannio eeisnema Jobewi 4-20 nopsoky (db4),
AKul 3abe3neuye OnMUMAIbHUll OANAHC MIdC YyMAUGICMIO 00 PI3KUX 3MIH Y CUSHATL NI0 YAC HABGAHMAICEHHS MA
3enadocenicmio y Qasi 6i0Ho6NeHHA. Bellgnem-enepeemuune onpayio6aHHa CUZHATY 8 KOB3HOMY GiKHI 003801ULA
giocmedcumu OUHAMIKY 3MIH cepyeso-CyOUHHOT cucimemil, 30Kpema: 3pOCTNanHts eHepeli nio 4ac Ha8AHMAalCeHHs,
00CsACHEHHA NIKOBO20 3HAYEHHS MA NOCMYNo8e NOGePHEeHHA NOKA3HUKA 00 0308020 piéHA Y ¢hasi 6i0HOGNEHHA.
Kniouosum noxasmukom eucmynae uac 6iOHOGIeHMs, AKULL GUSHAYAEIbCA AK NPOMINCOK MIXC MOMEHMOM
00CsicHeHHs1 NiK0GOI akmueayii ma NOBEPHEHHAM eHEP2eMUYHO20 DI6HS CUSHATY 00 CmaHy cnokow. s
asmomamuzayii Yyboeo NPoOYecy 3anpoONnOHOBAHO ANCOPUMM I3 GUKOPUCMAHHAM NOpP0206020 npucmporw. Ha
nepwomy emani oOUpPACMbC eMALOHHUL THMEPEaAnl 00 NOYAMKY HABAHMANCEHHS, WO Xapakmepusye 6a308y
selisem-enepeito 'y cnokoi. Jlani obuucmoemvcsi nopoeoge 3HauenHs 3a gopmynorw Enop=1,2*xEba3, moomo
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Combined use of wavelets and sliding window for pulse signal processing under physical load

6azosa enepeisn nuoc 20% donycky. Lle 3Hauenna 003601€ 8paxysamu 8apiabenbHicmb CUSHATY MA 0OHOYACHO
VHUKHYMU XUOHUX CAPAYbOBYEAHb, 3YMOBIEHUX WYMAMU YU SUNAOKOBUMU KOAUBAHHAMU. AN2OpUmm usHayae
MOMenm BIOHOGACHHS AK NePUULl 4aco8utl iHmepsan nicis Qi3uuHo20 HABAHMAICEHHS, 8 SKOMY 3HAYEHHS.
etignem-enepeii cmadiibHo 3HUINCYEMBCS Tl MPUMAEMbCS HUDICUe 00uucieno2o nopozy. Taxuii nioxio noeonye
00 €KmMuBHiCb Ma MOYHICMb, YCY8alouu Cy6 €KMUBHi NOXUOKU Gi3yanbHo2o ananizy cuenany. Ilpaxmuuna
3HAUYWicmy po3poOIEeHOI MEMOOUKU NOISACAE 8 MONCAUBOCI IT 3aCMOCYSantsL O OYIHIOBAHHS MPEHOBAHOCMI
CHOPMCMEHIB, KOHMPOJIIO BIOHOBHUX NPOYECi8 Y Kapoiono2ii, MOHIMOPUHSY CMAHY NAYIEHMIE Y peabiiimayiiHit
MeOUYUHI, A MAKOHC Y BNPOBAOINCEHHI 6 nNOpMamuseHi pimuec-npucmpoi ma cucmemu menemempii. Taxum yunom,
NOEOHAHHSA BeliBlem-ONPaAYO8aAHHs, GIKOHHO20 ONPAYIOBAHHA MA AN20PUMMY NOPO208020 GUSHAYEHH YACy
BIOHOBIEHHA CMBOPIOE HAOIUHUL THCMPYMeHm OAA KiIbKICHO20 OYIHIOBAHHA aA0ANMAYIUHUX MOXMCIUBOCHEN
cepyeo-cyOUHHOI cucmemu.

Knrwuosi cnosa: nynrvcosuil cusHan, cyouHu mioOuHUY, Qisuiune HABAHMANCEHHS, 8elignem ONnpayo8anHs,
KOB3He 8iKHO, aneopumm, yac ioHoenernns, MATLAB.
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