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Abstract. This study deals with the modelling of NiTi shape memory alloy dissipated energy by means of 

supervised machine learning methods, considering the loading frequency. Shape memory alloys are materials of 

high interest both to science and industry. These materials are enjoying wide popularity due to their two peculiar 

properties: unique effect of shape memory and superplasticity, caused by direct austenite-martensite phase 

transformation and reverse martensite-austenite transformation. The traditional deterministic methods of 

assessment of material properties are often costly, time-consuming, and demand a well-trained workforce and 

laboratory equipment. On the contrary, in recent years, the methods of artificial intelligence have gained 

widespread attention due to their ability to reveal hidden insights from existing data. Machine learning is a subset 

of artificial intelligence. It allows training based on the available data and becomes better with time without the 

explicit need to be programmed. The experimental dataset was taken from open scientific sources. It contained the 

hysteresis curves for six loading frequencies of 0.1, 0.5, 1, 5, 7, and 10 Hz. The input data consisted of the next 

features: stress s (MPa), cycle number N, and loading frequency f (Hz). Based on these data, for each loading 

cycle, and for each loading cycle, the dissipated energy was calculated. To remove noise, Locally Weighted 

Scatterplot Smoothing (LOWESS) smoother in the nonparametric package of statsmodels was utilized. After that, 

the trapezoid numerical integration method was employed to calculate the area enclosed by the hysteresis loop of 

the respective cycle, that is, the dissipated energy. To augment the dataset, its points were interpolated using the 

modified Akima interpolation method (makima). Four models were built using the methods of Random Forest, 

AdaBoost, Gradient Boosting, and Neural Network. The best results were shown by the ensemble methods, such 

as AdaBoost, and Random Forest. For instance, the MAPE of AdaBoost was just 0.074, whereas the MAPE of 

Random Forest was 0.144. It was found that the Gradient Boosting method and Neural Network are not suitable 

for such a dataset, since the errors are quite large and, therefore, these methods are not good enough to be 

employed for solving such a problem. 
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1. INTRODUCTION 
 

Traditional, so-called classical materials, such as various metals and alloys, played 

a key role as the structural elements for quite a long time [1]. Engineers of the past designed 

the devices and chose the alloys by employing the classical engineering approach to 

comprehend the macroscopic properties of the materials and select the appropriate ones that 

allowed them to provide the required functionality for certain applications [2]. With the 

advances in material science as well as with the increase in structure size and logistic 

limitations, scientists have continuously invented new high-quality materials for numerous 

practical needs [2]. The eternal and unchanged aim of the engineers in most cases is the 

improvement of structures' efficiency and decreasing their weight without loss of costs or 

technical properties. To achieve this goal, the change of multicomponent systems for a 

smaller number of lightweight, highly productive components is quite promising [2, 3]. 

Such modern materials played a dominant role in the development of numerous engineering 

innovations and achievements, such as Airbus A380, Boeing 787 Dreamliner, reliable cars 
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with low consumption of fuel, better methods of drug delivery, etc [4]. Ingenious 

commercial products in various areas of engineering science correspond to all the 

requirements, due to the advancements of numerous latest technologies and satisfying the 

challenges of tomorrow's needs [4]. 

Shape memory alloys (SMAs) are materials of high interest both to science and 

industry [5]. These materials are enjoying wide attention due to their two peculiar properties: 

unique effect of shape memory and superplasticity, caused by direct austenite-martensite phase 

transformation and reverse martensite-austenite transformation [6, 7]. A lot of types of SMAs 

are already known, for instance, the most ubiquitous are alloys based on Ni, Fe, Cu, and 

magnetic SMAs [1]. One of the examples of magnetic SMA is Ni-Mn-Ga. 

The examples of commercially available SMAs are alloys based on Co-Al-Ni, 

Fe-Mn-Si, Co-Zn-Al, and Ni-Ti, the latter of which is the most widespread due to its best 

replication thermomechanical characteristics, the higher strength, big hysteresis loops, and 

biocompatibility [8, 9]. Also, the two-component (binary) NiTi SMA is the material that is most 

widely used among the already known SMAs, since it can recover after the strains that reach 

up to 8% [10]. The binary NiTi shows not only one-way SMA, but also the superplasticity and 

two-way shape memory effect, which can be altered by changing the amount of Ni in the alloy 

and using the thermomechanical treatment [11]. 

SMAs can recover their initial shape by memorising it between two transformation 

phases, which depend on external factors, such as temperature, loading, or magnetic 

field. There are two known phases of SMA: parent phase (austenite), which is stable 

under high temperatures, and the derived phase (martensite), which is stable at low 

temperatures. Due to its relative softness, SMA is easily deformed in the martensite 

phase. Austenite phase is a well-formed body-centered cubic structure with one 

variant. Martensite phase is characterized by low symmetry, and, depending on phase 

transition, can exist in various configurations (monoclinic, orthorhombic, and 

rhombohedral structures) [12]. 

The classical deterministic methods of assessment of the material properties are 

often costly and time-consuming, and require a well-trained workforce and laboratory 

equipment. On the contrary, in recent years, the methods of artificial intelligence (AI) have 

gained widespread attention due to their abilities to reveal hidden insights from a large 

amount of existing data of various natures. Machine learning (ML) is a subset of AI.  

It allows training based on the available data and becomes better with time without 

the explicit need to be programmed. Methods of ML allow us to find dependencies that exist 

in the available datasets, and based on them, perform the predictions or take certain 

decisions [13]. 

In recent decades, ML has become one of the main trends and cutting-edge information 

technologies, and a basic and integral attribute of everyday life. The amount of information is 

being increased exponentially, and there emerges the requirement to analyse it to get the hidden 

and non-obvious dependencies among the data [13]. 

ML has found its application in various fields of science and technology. It is the 

number of algorithms that allow us to understand data and their nature [14]. In general, 

these algorithms can be divided into the following: supervised learning and 

unsupervised learning. Overall, methods of ML are based on the construction of a 

statistical model for the prediction or estimation of the target based on at least one 

input variable, also known as a feature. Such problems often emerge in business,  

medicine, finance, psychology, engineering, and other areas of human activity. On the 

contrary, unsupervised learning utilizes the input variables, or features, but the target is not 

given. In this case, it is possible to study the dependencies and structure of the data of such 

nature.  
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Therefore, due to SMAs unique properties and their practical use in science and 

technology, it is of high importance to investigate the functional and structural properties of 

SMAs, considering the effect of loading frequency. 

There are quite a lot of studies that deal with the SMAs, modelling of their functional 

and structural properties of SMA using various methods of ML [15–18]. 

However, as far as the authors knowledge goes, the study of the loading frequency 

effect on the dissipated energy of NiTi SMA by means of supervised ML methods remains 

unaddressed. 

This work focuses on the investigation of the effect of test loading frequency on the 

functional properties, namely, on the dissipated energy of loading cycle based on various 

supervised learning methods. 
 

2. EXPERIMENTAL METHODS 
 

The experimental dataset was taken from the study [19]. It contained the hysteresis 

curves for six loading frequencies of 0.1, 0.5, 1, 5, 7 and 10. The input data consisted 

of the next features: stress  (MPa), cycle number N, and loading frequency f (Hz). Based 

on these data, for each test frequency, and for each loading cycle, the dissipated energy 

was calculated using the following procedure. At first, each loading cycle was divided 

into loading and unloading part. Since the experimental data are often noisy, an 

additional smoothing was employed. The preprocessing script was written in Python 3.10 

programming language.  Namely, to remove the noise in experimental data, Locally 

Weighted Scatterplot Smoothing (LOWESS) smoother in the nonparametric package 

of statsmodels was utilized [20]. LOWESS performs weighted local linear fits.  

LOWESS is a non-parametric regression method used to create a smooth line or curve 

through a scatterplot of data. It visually represents the general trends and patterns in a 

dataset without making strong assumptions about the data underlying structure. The locally 

weighted means that a regression is performed on small subsets of the data, with points 

closer to the central point of that subset receiving more weight in the calculation of the 

smoothed value.   

Instead of fitting a single line or curve to the entire dataset, LOWESS fits a series of 

regression models to small, localized portions of the data. For each point on the resulting 

smooth curve, a regression is performed using the surrounding data points. Points closer to the 

point being smoothed are given higher weights than those further away. The weighted 

regressions are combined to create a smooth, flexible curve that passes through the data, 

revealing underlying trends and minimizing noise. LOWESS can be made more resistant to 

outliers by using a robust weighting function, which further downweights extreme data points 

that might distort the trend. 

After that, the trapezoid numerical integration method was employed to calculate 

the area enclosed by the hysteresis loop of the respective cycle, that is, the dissipated 

energy Wdis. 

Afterwards, to augment the dataset, the points of the dataset were interpolated 

using the modified Akima interpolation method (makima) [21]. This method efficiently 

eliminates overshoot and avoids edge cases of both numerator and denominator being 

equal to 0.  
 

3. RESULTS AND DISCUSSION 
 

After the experimental data were preprocessed, a dataset was obtained that contained 2 

input features and one target. The input features were the frequency f (Hz) and the number of 

loading cycles N. The target was dissipated energy Wdis (MJ/m3). The dataset had 10761 samples 
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and comprised data for six test frequencies, namely, 0.1, 0.5, 1, 5, 7, and 10 Hz. The data were 

also normalised to the interval [0,1]. 

To build the prediction regression models, the Orange 3.38 Data Mining software was 

utilized.  

To train the models, k-fold cross-validation method was employed. In the present study, 

k was chosen as 5. 

In general, 4 models were built using the methods of Random Forest, AdaBoost, 

Gradient Boosting, and Neural Network. The training of the models was performed on a laptop 

with a 13th-generation Intel Core i7-1365U, with a frequency of 1800 MHz, that has ten cores 

and twelve logical processors, and 32 GB of RAM. 

The flowchart of the model built in Orange Data Mining software is shown 

on Fig. 1 

 

 

 

Figure1. Flowchart of the model built in Orange Data Mining Software 

 

Table 1 shows the performance of models, and running time of the corresponding methdos. 
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Table 1 

 

The performance of the models 

 

Model Train time [s] Test time [s] MSE RMSE MAE MAPE 

AdaBoost 2.413 0.108 10816.392 104.002 1.698 0.074 

Random Forest 0.833 0.026 13377.201 115.660 2.476 0.144 

Gradient Boosting 2.546 0.014 13826.829 117.588 5.595 47.103 

Neural Network 17.234 0.021 13902.953 117.911 18.427 222.660 

 

As can be seen from Table 1, the best results were shown by the ensemble methods, 

such as AdaBoost, Random Forest. For instance, the MAPE of AdaBoost was just 0,074, 

whereas the MAPE of Random Forest was 0.144. It was found that the Gradient Boosting 

method and Neural network are not suitable for such a dataset, since the errors are quite large 

and are not good enough to be employed for solving such a problem. 
 

4. CONCLUSIONS 
 

In the current study, the modelling of dissipated energy of NiTi shape memory alloy 

was performed by means of supervised machine learning methods, taking into account the test 

loading frequency.  

The dataset contained the hysteresis curves for six loading frequencies of 0.1, 0.5, 1, 5, 

7, and 10 Hz. The input data consisted of the next features: stress s (MPa), cycle number N, and 

loading frequency f (Hz). Based on these data, for each loading cycle, and for each loading 

cycle, the dissipated energy was calculated.  

To remove noise, Locally Weighted Scatterplot Smoothing (LOWESS) smoother in the 

nonparametric package of statsmodels was utilized. After that, the trapezoid numerical 

integration method was employed to calculate the area enclosed by the hysteresis loop of the 

respective cycle, that is, the dissipated energy Wdis. 

To augment the dataset, its points were interpolated using the modified Akima 

interpolation method (makima). Four models were built using the methods of Random Forest, 

AdaBoost, Gradient Boosting, and Neural Network.  

It was found that the Gradient Boosting method and Neural Network are not suitable for 

such a dataset, since the errors are quite large and, therefore, these methods are not good enough 

to be employed for solving such a problem. 

The best results were shown by the ensemble methods, such as AdaBoost, and Random 

Forest. For instance, the MAPE of AdaBoost was just 0.074, whereas the MAPE of Random 

Forest was 0.144.  
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МОДЕЛЮВАННЯ ФУНКЦІОНАЛЬНИХ ВЛАСТИВОСТЕЙ SMA ЗА 

ДОПОМОГОЮ МЕТОДІВ МАШИННОГО НАВЧАННЯ  
 

Владислав Демчик; Олег Ясній 
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Резюме. Дослідження стосується моделювання розсіяної енергії NiTi сплаву з пам’яттю методами 

машинного навчання з учителем, враховуючи частоту навантаження. Сплави з пам’яттю форми – матеріали, 

які становлять важливий інтерес як для науки, так і для промисловості. Ці матеріали користуються 

широкою популярністю з огляду на їхні дві особливі властивості: унікальний ефект пам’яті форми та 

псевдопружність, спричинені прямим аустенітно-мартенситним перетворенням і зворотним мартенситно-

аустенітним перетворенням. Традиційні детерміновані методи оцінювання властивостей матеріалу часто є 

дороговартнісними, вимагають значних часових витрат, вимагають добре тренованого персоналу та 

лабораторного обладнання. На противагу цьому, за останні роки методи штучного інтелекту завоювали 

широку увагу через їхню здатність знаходити приховані інсайти з існуючих даних. Машинне навчання є 
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частиною штучного інтелекту. Вона дозволяє вчитися на основі наявних даних і стає ліпшою з часом без явної 

вимоги програмування. Експериментальні дані взято з відкритих наукових джерел. Вони містили криві 

гістерезису для шести частот навантаження 0,1; 0,5; 1; 5; 7 та 10 Hz. Вхідні дані складалися з наступних 

ознак: напруження  (MPa), циклу навантаження N, і частоти навантаження f (Hz). Ґрунтуючись на 

експериментальних даних, для кожної частоти навантаження і для кожного циклу, обчислено розсіяну 

енергію. Для того, аби видалити шум, скористалися Локально Зваженим Згладжування Графіка (ЛЗЗГ) з 

пакету nonparametric модуля statsmodels. Після цього площу під петлею гістерезису, тобто розсіяною енергію 

Wdis, обчислювали числово, інтегруючи методом трапецій . Для того, аби збільшити набір даних, його точки 

інтерполювали модифікованим методом інтерполяції Akima (makima). Побудовано чотири моделі методами 

випадкових лісів, Ада Буст, Градієнтним Бустінгом і нейронною мережею. Найліпші результати показали 

ансамблеві методи, такі, як Ада Буст і випадковий ліс. Приміром, MAPE методу Ada Буст складала тільки 

0,074, тоді як MAPE випадкового лісу становила 0,144. Виявлено, що методи градієнтного бустінгу і нейронні 

мережі не підходять для такого набору даних, оскільки помилки є досить великими. Таким чином, ці методи 

недостатньо добрі для застосування до розв’язування такої задачі. 

Ключові слова: сплав з пам’яттю форми, машинне навчання, розсіяна енергія, Ада Буст, 

випадковий ліс, дерева прийняття рішень, наука про дані, аналіз даних, інтелектуальний аналіз даних, 

великі дані, задача регресії. 
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