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Abstract. This study deals with the modelling of NiTi shape memory alloy dissipated energy by means of
supervised machine learning methods, considering the loading frequency. Shape memory alloys are materials of
high interest both to science and industry. These materials are enjoying wide popularity due to their two peculiar
properties: unique effect of shape memory and superplasticity, caused by direct austenite-martensite phase
transformation and reverse martensite-austenite transformation. The traditional deterministic methods of
assessment of material properties are often costly, time-consuming, and demand a well-trained workforce and
laboratory equipment. On the contrary, in recent years, the methods of artificial intelligence have gained
widespread attention due to their ability to reveal hidden insights from existing data. Machine learning is a subset
of artificial intelligence. It allows training based on the available data and becomes better with time without the
explicit need to be programmed. The experimental dataset was taken from open scientific sources. It contained the
hysteresis curves for six loading frequencies of 0.1, 0.5, 1, 5, 7, and 10 Hz. The input data consisted of the next
features: stress s (MPa), cycle number N, and loading frequency f (Hz). Based on these data, for each loading
cycle, and for each loading cycle, the dissipated energy was calculated. To remove noise, Locally Weighted
Scatterplot Smoothing (LOWESS) smoother in the nonparametric package of statsmodels was utilized. After that,
the trapezoid numerical integration method was employed to calculate the area enclosed by the hysteresis loop of
the respective cycle, that is, the dissipated energy. To augment the dataset, its points were interpolated using the
modified Akima interpolation method (makima). Four models were built using the methods of Random Forest,
AdaBoost, Gradient Boosting, and Neural Network. The best results were shown by the ensemble methods, such
as AdaBoost, and Random Forest. For instance, the MAPE of AdaBoost was just 0.074, whereas the MAPE of
Random Forest was 0.144. It was found that the Gradient Boosting method and Neural Network are not suitable
for such a dataset, since the errors are quite large and, therefore, these methods are not good enough to be
employed for solving such a problem.
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1. INTRODUCTION

Traditional, so-called classical materials, such as various metals and alloys, played
a key role as the structural elements for quite a long time [1]. Engineers of the past designed
the devices and chose the alloys by employing the classical engineering approach to
comprehend the macroscopic properties of the materials and select the appropriate ones that
allowed them to provide the required functionality for certain applications [2]. With the
advances in material science as well as with the increase in structure size and logistic
limitations, scientists have continuously invented new high-quality materials for numerous
practical needs [2]. The eternal and unchanged aim of the engineers in most cases is the
improvement of structures' efficiency and decreasing their weight without loss of costs or
technical properties. To achieve this goal, the change of multicomponent systems for a
smaller number of lightweight, highly productive components is quite promising [2, 3].
Such modern materials played a dominant role in the development of numerous engineering
innovations and achievements, such as Airbus A380, Boeing 787 Dreamliner, reliable cars
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with low consumption of fuel, better methods of drug delivery, etc [4]. Ingenious
commercial products in various areas of engineering science correspond to all the
requirements, due to the advancements of numerous latest technologies and satisfying the
challenges of tomorrow's needs [4].

Shape memory alloys (SMAs) are materials of high interest both to science and
industry [5]. These materials are enjoying wide attention due to their two peculiar properties:
unique effect of shape memory and superplasticity, caused by direct austenite-martensite phase
transformation and reverse martensite-austenite transformation [6, 7]. A lot of types of SMAs
are already known, for instance, the most ubiquitous are alloys based on Ni, Fe, Cu, and
magnetic SMAs [1]. One of the examples of magnetic SMA is Ni-Mn-Ga.

The examples of commercially available SMAs are alloys based on Co-Al-Ni,
Fe-Mn-Si, Co-Zn-Al, and Ni-Ti, the latter of which is the most widespread due to its best
replication thermomechanical characteristics, the higher strength, big hysteresis loops, and
biocompatibility [8, 9]. Also, the two-component (binary) NiTi SMA is the material that is most
widely used among the already known SMAs, since it can recover after the strains that reach
up to 8% [10]. The binary NiTi shows not only one-way SMA, but also the superplasticity and
two-way shape memory effect, which can be altered by changing the amount of Ni in the alloy
and using the thermomechanical treatment [11].

SMAs can recover their initial shape by memorising it between two transformation
phases, which depend on external factors, such as temperature, loading, or magnetic
field. There are two known phases of SMA: parent phase (austenite), which is stable
under high temperatures, and the derived phase (martensite), which is stable at low
temperatures. Due to its relative softness, SMA is easily deformed in the martensite
phase. Austenite phase is a well-formed body-centered cubic structure with one
variant. Martensite phase is characterized by low symmetry, and, depending on phase
transition, can exist in various configurations (monoclinic, orthorhombic, and
rhombohedral structures) [12].

The classical deterministic methods of assessment of the material properties are
often costly and time-consuming, and require a well-trained workforce and laboratory
equipment. On the contrary, in recent years, the methods of artificial intelligence (AI) have
gained widespread attention due to their abilities to reveal hidden insights from a large
amount of existing data of various natures. Machine learning (ML) is a subset of Al
It allows training based on the available data and becomes better with time without
the explicit need to be programmed. Methods of ML allow us to find dependencies that exist
in the available datasets, and based on them, perform the predictions or take certain
decisions [13].

In recent decades, ML has become one of the main trends and cutting-edge information
technologies, and a basic and integral attribute of everyday life. The amount of information is
being increased exponentially, and there emerges the requirement to analyse it to get the hidden
and non-obvious dependencies among the data [13].

ML has found its application in various fields of science and technology. It is the
number of algorithms that allow us to understand data and their nature [14]. In general,
these algorithms can be divided into the following: supervised learning and
unsupervised learning. Overall, methods of ML are based on the construction of a
statistical model for the prediction or estimation of the target based on at least one
input variable, also known as a feature. Such problems often emerge in business,
medicine, finance, psychology, engineering, and other areas of human activity. On the
contrary, unsupervised learning utilizes the input variables, or features, but the target is not
given. In this case, it is possible to study the dependencies and structure of the data of such
nature.
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Therefore, due to SMAs unique properties and their practical use in science and
technology, it is of high importance to investigate the functional and structural properties of
SMAss, considering the effect of loading frequency.

There are quite a lot of studies that deal with the SMAs, modelling of their functional
and structural properties of SMA using various methods of ML [15-18].

However, as far as the authors knowledge goes, the study of the loading frequency
effect on the dissipated energy of NiTi SMA by means of supervised ML methods remains
unaddressed.

This work focuses on the investigation of the effect of test loading frequency on the
functional properties, namely, on the dissipated energy of loading cycle based on various
supervised learning methods.

2. EXPERIMENTAL METHODS

The experimental dataset was taken from the study [19]. It contained the hysteresis
curves for six loading frequencies of 0.1, 0.5, 1, 5, 7 and 10. The input data consisted
of the next features: stress [J (MPa), cycle number N, and loading frequency /' (Hz). Based
on these data, for each test frequency, and for each loading cycle, the dissipated energy
was calculated using the following procedure. At first, each loading cycle was divided
into loading and unloading part. Since the experimental data are often noisy, an
additional smoothing was employed. The preprocessing script was written in Python 3.10
programming language. Namely, to remove the noise in experimental data, Locally
Weighted Scatterplot Smoothing (LOWESS) smoother in the nonparametric package
of statsmodels was utilized [20]. LOWESS performs weighted local linear fits.
LOWESS is a non-parametric regression method used to create a smooth line or curve
through a scatterplot of data. It visually represents the general trends and patterns in a
dataset without making strong assumptions about the data underlying structure. The locally
weighted means that a regression is performed on small subsets of the data, with points
closer to the central point of that subset receiving more weight in the calculation of the
smoothed value.

Instead of fitting a single line or curve to the entire dataset, LOWESS fits a series of
regression models to small, localized portions of the data. For each point on the resulting
smooth curve, a regression is performed using the surrounding data points. Points closer to the
point being smoothed are given higher weights than those further away. The weighted
regressions are combined to create a smooth, flexible curve that passes through the data,
revealing underlying trends and minimizing noise. LOWESS can be made more resistant to
outliers by using a robust weighting function, which further downweights extreme data points
that might distort the trend.

After that, the trapezoid numerical integration method was employed to calculate
the area enclosed by the hysteresis loop of the respective cycle, that is, the dissipated
energy Wiis.

Afterwards, to augment the dataset, the points of the dataset were interpolated
using the modified Akima interpolation method (makima) [21]. This method efficiently
eliminates overshoot and avoids edge cases of both numerator and denominator being
equal to 0.

3. RESULTS AND DISCUSSION

After the experimental data were preprocessed, a dataset was obtained that contained 2
input features and one target. The input features were the frequency f(Hz) and the number of
loading cycles N. The target was dissipated energy Wais(MJ/m?). The dataset had 10761 samples
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and comprised data for six test frequencies, namely, 0.1, 0.5, 1, 5, 7, and 10 Hz. The data were
also normalised to the interval [0,1].

To build the prediction regression models, the Orange 3.38 Data Mining software was
utilized.

To train the models, £-fold cross-validation method was employed. In the present study,
k was chosen as 5.

In general, 4 models were built using the methods of Random Forest, AdaBoost,
Gradient Boosting, and Neural Network. The training of the models was performed on a laptop
with a 13th-generation Intel Core 17-1365U, with a frequency of 1800 MHz, that has ten cores
and twelve logical processors, and 32 GB of RAM.

The flowchart of the model built in Orange Data Mining software is shown
on Fig. 1
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Figurel. Flowchart of the model built in Orange Data Mining Software
Table 1 shows the performance of models, and running time of the corresponding methdos.
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Table 1

The performance of the models

Model Train time [s]| Test time [s] MSE RMSE | MAE | MAPE
AdaBoost 2413 0.108 10816.392 | 104.002 | 1.698 0.074
Random Forest 0.833 0.026 13377.201 | 115.660 | 2.476 0.144
Gradient Boosting 2.546 0.014 13826.829 | 117.588 | 5.595 | 47.103
Neural Network 17.234 0.021 13902.953 | 117.911 | 18.427 | 222.660

As can be seen from Table 1, the best results were shown by the ensemble methods,
such as AdaBoost, Random Forest. For instance, the MAPE of AdaBoost was just 0,074,
whereas the MAPE of Random Forest was 0.144. It was found that the Gradient Boosting
method and Neural network are not suitable for such a dataset, since the errors are quite large
and are not good enough to be employed for solving such a problem.

4. CONCLUSIONS

In the current study, the modelling of dissipated energy of NiTi shape memory alloy
was performed by means of supervised machine learning methods, taking into account the test
loading frequency.

The dataset contained the hysteresis curves for six loading frequencies of 0.1, 0.5, 1, 5,
7, and 10 Hz. The input data consisted of the next features: stress s (MPa), cycle number N, and
loading frequency f (Hz). Based on these data, for each loading cycle, and for each loading
cycle, the dissipated energy was calculated.

To remove noise, Locally Weighted Scatterplot Smoothing (LOWESS) smoother in the
nonparametric package of statsmodels was utilized. After that, the trapezoid numerical
integration method was employed to calculate the area enclosed by the hysteresis loop of the
respective cycle, that is, the dissipated energy Wais.

To augment the dataset, its points were interpolated using the modified Akima
interpolation method (makima). Four models were built using the methods of Random Forest,
AdaBoost, Gradient Boosting, and Neural Network.

It was found that the Gradient Boosting method and Neural Network are not suitable for
such a dataset, since the errors are quite large and, therefore, these methods are not good enough
to be employed for solving such a problem.

The best results were shown by the ensemble methods, such as AdaBoost, and Random
Forest. For instance, the MAPE of AdaBoost was just 0.074, whereas the MAPE of Random
Forest was 0.144.
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MOJIEJIOBAHHS ® YHKIIIOHAJIBHUX BJIACTUBOCTEM SMA 3A
JOIIOMOI'OI0O METOIIB MAHIMHHOI'O HABYAHHA

Baaguciaas Jemuunk; OJger Schii

TepHoninbcokuul HAYIOHAILHUU MeXHIYHUL YHigepcumem imeni leana [lynios,
Tepnonins, Ykpaina

Pe3rome. Jlocnioscennss cmocyemvcsi Mooentogamnts poscianoi enepeii NiTi cniagy 3 nam ssmmio mMemooamu
MAWUHHO20 HABYAHHA 3 YUUmMeNeM, 8paxoeyouu yacmonty Haganmaicenus. Cnaagu 3 nam ammio gopmu —mamepian,
KL CMAHOGIAMb 8AJCIUBUIL THMeEpec K OA HAYKU, max i 01 npomuciosocmi. i mamepianu xopucmyromocs
WUPOKOIO NONYIAPHICMIO 3 0270y HA iXHI 08I 0COOIUEI 61ACTMUBOCMI. VHIKATbHULL epekm nam’smi gopmu ma
NCEBOONPYIHCHICHIb, CHPUYUHEHT NPSIMUM AYCMEHIMHO-MAPMEHCUMHUM NePemeopPeHHIM I 360POMHUM MAPMEHCUNHO-
aycmeHimuum nepemeopertsm. Tpaouyitini OemepminO8aHi Memoou OYiHIOBAHH GIACMUBOCTEL MAMEPIALy Yacmo €
00pPOCOBAPMHICHUMY, BUMALAIOMb 3HAYHUX YACOGUX SUMPAM, 6UMA2aroms 000pe MpPeHO8AHO20 NEPCOHALY Mmd
nabopamoprozo obnaduanns. Ha npomueazy ybomy, 3a oCmanti poku Memoou WmyyHo20 iHMeNeKny 3a60106au
WUPOKY Y6azy uepe3 iXHI0 30AMHICMb 3HAXOOUMU NPUX08aHi iHcatmu 3 icnylouux oamux. Mawunne nasyauus €
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YACMUHOIO WIMYYHO20 THMeneKmy. Bona 0036074€ 84umucs Ha OCHO8I HAABHUX OAHUX | CMAE JINUIOI0 3 Yacom 6e3 A8HOT
sumoeu npozpamyseanns. Excnepumenmanvui Oami 635mo 3 GIOKpUMUX HAYKOBUX Odceper. Bonu micmunu Kpusi
eicmepesucy ons wecmu yacmom nHaeanmadxcenns 0,1; 0,5; 1; 5; 7 ma 10 Hz. BXioui dani cknadanucs 3 HACMynHux
osnax: nanpyocenns 1 (MPa), yuxny naeanmagicennst N, i uacmomu naeanmagicenns [ (Hz). Ipynmyrouuce na
EKCNEPUMEHMATLHUX OAHUX, OJIl KOJICHOI 4aCmOMu HABAHMANCEHHSL | O KOJCHO20 YUKTY, OOUUCTIEHO PO3CISHY
enepeiro. /[ moeo, abu sudanumu wiym, ckopucmanucs Jlokanwro 3easicenum 3enaoxcyeanns I pagpiva (JI33[) 3
nakemy nonparametric Mmooy statsmodels. Iicns yboeo niowyy nio nemieio icmepesucy, mobmo po3CIIHOI eHepeito
Wdis, obuucnrosanu uuciogo, inmezpyrouu memooom mpaneyii . [{ia moeo, abu 36iibuumu Ha0ip OaHUX, 11020 MOYKU
inmepnomosanu moougikosanum memooom inmepnoaayii Akima (makima). Ilobyoosano yomupu mooeni memooamu
sunaoxosux nicie, Aoa Bycm, I'padiecumnum Bycmineom i uetiponHoio mepeoscero. Havininwi pesynomamu nokasaiu
ancamonesi memoou, maxi, ax Aoa Bycm i eunaokosuii nic. Ilpumipom, MAPE memooy Ada Bycm cknadana mineku
0,074, mooi ax MAPE sunaoxogoeo nicy cmanosuna 0,144. Busenero, ujo memoou epadicHmno2o Oycminzy i HelpoHHI
Mepedci He nioxo0sams 01 MAKo20 HAOOPY OAHUX, OCKLIbKU NOMUIKU € 00CUMb 8enurumu. Takum yuHom, yi Memoou
HedoCcmamuvo 000pi 0Jisl 3acMOCY8aAHHsL 00 PO36 13Y6AHHL MAKOI 3a0aul.

Knrouosi cnosa: cnias 3 nam’smmio opmu, MauwuHHe HAGUAHHs, po3ciana enepeis, Ada bBycm,
BUNAOKOBULL JiC, 0epe6a NPUUHAMMS PIUEeHb, HAYKa NPo OaHi, aHAli3 OAHUX, [HMENeKMyalbHUull AHAi3 OaHUx,
6enuKi 0ami, 3a0aya peepecii.
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