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Abstract. This study presents an algorithmic framework for tremor classification and differential
diagnosis based on multimodal analysis of electroencephalographic (EEG) signals and graphomotor activity
recorded during a spiral drawing task on a graphics tablet. Motor deviations were quantified using the AR metric,
defined as the difference between the actual radial trajectory and its smoothed reference obtained via parametric
curve fitting. EEG and graphomotor signals were synchronized and preprocessed through normalization and
interpolation. All available EEG channels were included in the analysis to comprehensively capture cortical
activity patterns. The method centers on cross-correlation analysis between AR and individual EEG channels to
reveal spatiotemporal brain activity patterns associated with tremor, and introduces a sinusoidality index of cross-
correlation curves as an indicator of cortical synchrony under different clinical conditions. Experimental results
from patients with Parkinson’s disease (medicated and unmedicated) and tremor of undetermined origin showed
that pronounced tremor corresponds to higher inter-channel synchronization, whereas symptom reduction is
marked by more independent EEG activity. The proposed approach combines quantitative computation with
adaptability to individual patient profiles, and can serve as the basis for portable or cloud-based systems for
automated tremor analysis and monitoring, expanding the capabilities of telemedicine and personalized
neurodiagnostics. The proposed algorithmic approach integrates advanced software engineering techniques for
multimodal signal synchronization, numerical analysis, and feature extraction, representing an applied solution
at the intersection of biomedical data processing and computer science.
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1. INTRODUCTION

Tremor is one of the most common and visible symptoms of a wide range of
neurological disorders, including Parkinson’s disease (PD), essential tremor (ET), dystonic
tremor, and other movement disorders [11]. While tremor can often be observed during a
clinical examination, its objective classification, quantitative assessment, and differential
diagnosis remain challenging tasks in clinical neurophysiology. This is especially true in the
early stages of disease, when motor disturbances are subtle, and visual inspection alone may
not be sufficiently informative. In such cases, even experienced neurologists may need to rely
on subjective judgments, which increases the risk of misdiagnosis or delayed intervention.
From a software engineering perspective, the proposed framework demonstrates the
implementation of a modular architecture for multimodal data acquisition, preprocessing, and
cross-correlation computation, which aligns with current trends in intelligent information
systems development.

Over the last two decades, advances in motion-tracking technologies and
electroencephalography (EEG) have opened new opportunities for quantitative tremor
assessment [12, 13] (see also [14]). High-resolution graphics tablets, wearable sensors, and
portable EEG systems can now record precise hand movement trajectories, stylus pressure,
tremor frequency and amplitude, as well as simultaneous cortical activity patterns. This
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convergence enables a multimodal approach, combining motor output analysis with brain
activity monitoring in a unified diagnostic framework.

Previous studies have shown that graphomotor analysis using the so-called AR index —
the radial deviation from an ideal Archimedean spiral — can serve as a robust quantitative
marker of motor instability. Frequency-domain analysis of AR makes it possible to identify
characteristic spectral peaks corresponding to typical tremor frequency ranges: 4—6 Hz for
Parkinson’s disease tremor at rest [11], 6-10 Hz for essential tremor [12], and below ~4 Hz for
various atypical or secondary tremors (including post-encephalitic and certain extrapyramidal
forms) [14, 17]. In our dataset, active PD cases fell within the expected 4—6 Hz range, while
other tremor types exhibited either no dominant peak or low-frequency oscillations
(0.2—1 Hz), outside the classical PD/ET bands. These methods have already been validated in
both research and clinical settings.

a b C

Figure 1. Spiral drawing: P1 medicated — a; P1 unmedicated — b; P2 unmedicated — c

However, analyzing the motor signal alone does not capture the full neurophysiological
context of tremor. Tremor is the result of complex interactions between the cerebral cortex,
subcortical structures, cerebellum, and the peripheral nervous system [19]. Identifying temporal
and spatial patterns in brain activity that precede or accompany tremor episodes offers a more
complete understanding of its pathophysiology.

One promising way to investigate such relationships is through cross-correlation
analysis [18]. Cross-correlation measures the similarity between two signals as a function of
temporal lag, making it particularly useful for detecting delays between neural activity onset
and observable motor output. In this work, AR is treated as a motor marker, while EEG channels
provide time-resolved information on cortical processes.

The novel contribution of our study lies in introducing a quantitative sinusoidality
index computed for cross-correlation curves obtained between AR and each EEG channel.
The reasoning is as follows: if a patient with tremor exhibits cross-correlation curves
of similar shape across multiple EEG channels, this suggests that these cortical areas
are participating in a coordinated, resonance-like neural pattern driving the tremor.
Conversely, when tremor is absent or suppressed, the cross-correlation curves become
less synchronized, reflecting more independent neural activity across cortical
regions.

By calculating the sinusoidality index (SI) for cross-correlation curves of EEG channels,
a single interpretable measure of the global sinusoidal tendency of cortical synchrony
associated with tremor is obtained. This metric can then be compared across patient states — for
example, before and after pharmacological treatment — to objectively quantify therapeutic
effects. In our experiments, high Sinusoidality Index (SI) values (=0.15-0.40) were observed
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during active tremor, while significantly lower values (=0.05-0.10) were found after
medication-induced tremor suppression.

This approach offers several important advantages:

— Interpretability — The method produces visual outputs such as cross-correlation
overlays that are intuitive for clinicians.

— Non-invasiveness — It uses existing non-invasive recordings (tablet and EEQG)
without additional procedures.

Compatibility with classical and Al-based methods — The SI metric can be used both in
rule-based classification and as a feature for machine learning algorithms.

Sensitivity to pre-tremor activity — Changes in cortical synchrony may be detectable
before tremor becomes visually apparent.

While machine learning approaches have been explored for tremor classification [1, 5]
(see also [2-4, 6-10]), they often require large datasets, are sensitive to preprocessing
variations, and lack transparency in clinical interpretation. The proposed rule-based
framework, centered on cross-correlation and SI, strikes a balance between objectivity,
reproducibility, and interpretability — making it suitable for both clinical application and
further research integration.

The present study builds on earlier work in three ways:

It incorporates AR computation and frequency analysis as established markers of tremor
presence and type.

It extends these methods with cross-correlation analysis between AR and EEG channels
to capture temporal brain—motor relationships.

It introduces average pairwise cross-correlation similarity between EEG channels as a
novel metric of tremor-related cortical synchrony.

Objective of the study: To develop and validate an algorithmic framework for tremor
classification that combines motor deviation analysis (AR), spectral features, and a novel EEG
synchrony metric (Sinusoidality Index, SI) derived from cross-correlation. This framework
aims to improve differential diagnosis, enable monitoring of therapeutic effects, and serve as a
foundation for portable or cloud-based tremor assessment systems.

In the following sections, we describe the experimental setup, data acquisition and
synchronization process, signal preprocessing pipeline, cross-correlation analysis procedure,
and the derivation of the Sinusoidality Index (SI). We then present results from patients with
varying clinical profiles — including Parkinson’s disease, medication-compensated tremor, and
tremor of undetermined origin — and discuss the diagnostic implications and potential
applications of the method.

2. MATERIALS AND METHODS, PROCESSING, AND RESULTS

This study examined four recording scenarios: Parkinson’s disease (PD) without
medication, the same patient after pharmacological treatment, PD with stable medication and
minimal tremor, and tremor of undetermined origin. Each recording session consisted of a
spiral-drawing task performed on a Huion Kamvas Pro 16 graphics tablet (sampling rate
250 Hz, sub-millimeter resolution) while EEG was simultaneously acquired from 16 scalp
electrodes (Fp1-02) at 500 Hz. The tablet application, implemented in Java using the JPen
library [17], provided raw stylus coordinates (X, Y), pressure, and high-precision timestamps.
EEG was recorded from 16 channels at a 500 Hz sampling rate, with electrodes positioned to
emphasize the occipital region, which plays a key role in visual processing and motor
coordination.

Tablet and EEG data were synchronized by aligning absolute timestamps to a common
relative time base (t = 0 at trial start). EEG data were time-aligned to the tablet recordings using
a common relative time axis.
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The planar coordinates from the tablet were transformed into polar coordinates R(t) and
6(t). A smooth fitted spiral model was obtained by curve fitting:

Remootn(0) = a+bOB + ¢ - cos(6) +d - sin(8) (D

The radial deviation signal was defined as:

AR(t) = R(t) — Rsmooth(g(t)) (2)

This AR isolates involuntary oscillations from the intended drawing path. All EEG
channels were normalized by their maximum absolute value; NaN and infinite values were
removed before cross-correlation analysis.

For reference, AR underwent frequency analysis using the Fast Fourier Transform
(FFT). Peaks at 4-6 Hz are typically associated with Parkinson’s disease tremor, while
~6—10 Hz suggests essential tremor according to established literature [12, 14]. In our dataset,
PD cases without medication showed frequencies consistent with this range, whereas other
tremor types — including extrapyramidal tremor of unspecified etiology and post-encephalitic
choreiform hyperkinesia — exhibited either no dominant peak or low-frequency oscillations
outside the classical PD/ET bands. Although useful for characterizing tremor type, frequency
analysis in this study served as a baseline feature, while the novelty lies in the subsequent cross-
correlation analysis.
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Figure 2. Patient 1 without medication: frequency spectrum of AR with a clear peak in the 4—6 Hz tremor
band — a; measured radial trajectory vs. fitted spiral, showing larger deviations (AR) due to tremor — b
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Figure 3. Patient 2 without medication: frequency spectrum of AR with a clear peak in the 4—-6 Hz tremor
band — a; measured radial trajectory vs. fitted spiral, showing larger deviations (AR) due to tremor — b
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Compared to the medicated state, the presence of a dominant 46 Hz peak and higher
AR amplitude indicates active Parkinsonian tremor.
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Figure 4. Patient 1 under medication: frequency spectrum of AR without a peak in the 4—6 Hz tremor band — a;
measured radial trajectory vs. fitted spiral, where their difference defines AR — b

This representation illustrates how AR is derived as the deviation between the actual
and fitted spiral, and how frequency analysis of AR confirms the absence of pathological tremor
oscillations under medication.

The cross-correlation between the AR(t) signal and the signal of a single EEG channel
e;(t) is defined as:

XCorrpge, (T) = Z AR(t) - e;(t + 1) (3)
t

where:
T — time shift (lag),
AR(t) — time series of radial deviations, defined as the difference between the actual radius
and the smoothed (model-fitted) radius of the drawing trajectory,
e;(t) — EEG signal from a specific channel.

This produced a cross-correlation curve for each channel, capturing both the strength
and temporal offset of brain—motor coupling.

a b

Figure 5. Cross-correlation between AR and EEGs (—600 to +200 ms) under active tremor:
P1 unmedicated — b; P2 unmedicated — ¢
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The negative lag range in the cross-correlation indicates that EEG activity
precedes tremor fluctuations (AR), reflecting cortical processes that may drive motor
oscillations.

a b

Figure 6. Cross-correlation between AR and EEGs (—600 to +200 ms) without tremor:
P1 medicated — a; P3 medicated — b
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Figure 7. Patient 4 (Extrapyramidal tremor, unspecified etiology): cross-correlation between AR
and EEGs (—600 to +200 ms) spectral analysis shows no clear 4—6 Hz peak,
only low-frequency components — a; cross-correlation curves resemble those of
patients without tremor — b

This suggests that the tremor in this patient may arise from mechanisms different from
typical Parkinsonian tremor, where strong 4—6 Hz oscillations and synchronized cross-
correlation patterns are usually observed.

During visual inspection of the cross-correlation curves, a clear difference
was observed between conditions with and without tremor. In the tremor state, multiple
EEG channels exhibited highly similar oscillatory profiles, often with synchronized
peaks, which can be interpreted as resonance-like coordinated activity across distributed
cortical regions. In contrast, under pharmacological suppression of tremor the cross-
correlation curves appeared more irregular, with channels showing independent and
unsynchronized patterns. To capture this difference quantitatively, a sinusoidality index (SI)
was introduced, providing a single measure of the global sinusoidal tendency of cortical
synchrony.
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For each EEG channel e; the index was calculated as
SI; = 1 — Hpz7)(XCorrage, ) 4)

where XCorrpge, denotes the cross-correlation curve between the radial deviation signal AR
and the EEG channel e;.

The term H[3 7] represents the normalized spectral entropy of the curve, computed only
within the frequency band of 3—7 Hz. This restricted band was chosen because pathological
tremor in Parkinson’s disease typically exhibits peaks around 4-6 Hz, and the slightly wider
window (3—7 Hz) ensures that inter-patient variability and noise are adequately captured while
avoiding irrelevant frequencies.

This measure reflects the degree to which the curve approximates a pure sinusoid, with
lower entropy corresponding to a stronger sinusoidal tendency.

The overall index for a patient was obtained by averaging across all EEG channels:

1
Slavg = ﬁzliv=151ia (5)

where N is the number of EEG channels.

This formulation ensures that the SI reflects how strongly the energy of cross-correlation
curves is concentrated within the tremor band, with higher values indicating resonance-like
sinusoidal synchrony across cortical regions.

The resulting scalar value characterizes the global sinusoidal tendency of cortical
synchrony associated with tremor.

Table 1

Patient conditions. Tremor frequency (3—7 Hz range) and Sinusoidality Index (SI) across conditions

. .. Sinusoidality Index
Patient Condition Tremor Frequency (Hz) (SL, repeated measurements)
P1 PD, no medication 4.5-5.8 0.215, 0.147
Pl-med PD, medicated None/weak 0.061, 0.067, 0.095
P2 PD, no medication 42-52 0.400, 0.281, 0.251
P3 PD, medicated None/weak 0.065, 0.061, 0.050
P4 Extrapyr.am1dal.tremor, No domlna}nt peak N 0.120, 0.098, 0.104
unspecified etiology (low-frequency irregularities)
. . o 0.2-1.0
P5  |Post-encephalitic choreiform hyperkinesial (low-frequency oscillations) 0.129, 0.133, 0.060

During active tremor (P1 without medication), cross-correlation curves from multiple
EEG channels showed highly similar shapes and synchronized peaks, resulting in elevated
Sinusoidality Index (SI) values across repeated measurements (0.215, 0.147). In another
unmedicated PD case (P2), the tremor frequency was 4.2-5.2 Hz, and SI values from three
recording sessions reached 0.400, 0.281 and 0.251, indicating very strong cortical synchrony.
When tremor was suppressed pharmacologically (P1-med), cross-correlation curves lost their
alignment, producing lower SI values in repeated recordings (0.061, 0.067, 0.095). A similar
pattern was observed for medicated PD in P3, where no clear tremor frequency was detected
and SI dropped to 0.065, 0.061 and 0.050. In the case of extrapyramidal tremor of unspecified
etiology (P4), SI values across three measurements were low (0.120, 0.098, 0.104), reflecting
partial synchrony. Despite the slow oscillatory pattern (0.2—1 Hz) in post-encephalitic
choreiform hyperkinesia (P5), SI remained relatively high across sessions (0.129, 0.133, 0.060),
indicating strong cortical synchrony.
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These results indicate that Sinusoidality Index (SI), as a single interpretable metric,
complements spectral AR analysis by reflecting network-level cortical dynamics associated
with tremor. Its non-invasive, reproducible nature and clear visual interpretability make it
suitable for clinical use and for integration into automated classification systems.

3. CONCLUSIONS AND FUTURE WORK

This study presents an algorithmic framework for tremor assessment that integrates
graphomotor and neurophysiological data into a single, interpretable analysis pipeline. The core
novelty lies in combining radial deviation analysis (AR) from spiral drawing with
cross-correlation between AR and multiple EEG channels, and in introducing the Sinusoidality
Index (SI) to quantify the global sinusoidal tendency of cortical synchrony associated with
tremor.

The results across six recording conditions indicate that SI effectively differentiates
between active PD tremor, pharmacologically compensated tremor, and certain non-PD tremor
types. High SI values (=0.15-0.40) were consistently observed during active PD tremor (P1, P2)
and also in the post-encephalitic choreiform hyperkinesia case (P5) despite its low-frequency
nature (0.2-1 Hz). Low SI values (=0.05-0.10) were characteristic of pharmacologically
suppressed PD tremor (P1-med, P3) and extrapyramidal tremor of unspecified etiology (P4).
These findings support the hypothesis that pathological tremor — regardless of frequency — can
involve a resonance-like, coordinated activation pattern across distributed cortical regions,
which becomes desynchronized when tremor subsides or originates from less synchronized
neural generators.

Compared with purely spectral AR analysis [16] (see also [19]), which captures the
presence and frequency of motor oscillations, cross-correlation analysis provides a direct view
of the temporal relationship between EEG activity and tremor dynamics. Building on this
foundation, the Sinusoidality Index (SI) offers a complementary, scalar measure of the
sinusoidal structure in cross-correlation curves, reflecting network-level brain dynamics. This

dual view — oscillatory motor features revealed by cross-correlation and cortical synchrony
quantified by SI — offers a richer diagnostic picture and a potential basis for more precise tremor
classification.

From a practical standpoint, the method is non-invasive, relies on affordable hardware
(graphics tablet and EEG), and produces visual outputs (cross-correlation overlays,
sinusoidality profiles) that are intuitive for clinicians. It is reproducible across sessions and can
be adapted for rule-based diagnostic tools as well as hybrid approaches.

Potential avenues for further research in this field include:

1. Expanding participant cohorts to include healthy controls, early-stage PD, and other
tremor syndromes such as dystonic or cerebellar tremor.

2. Automating the analysis pipeline for real-time or near-real-time monitoring,
including portable and cloud-based solutions.

3. Extending the cross-correlation framework to sliding-window analyses, enabling
detection of transient changes in brain-motor coupling.

4. Exploring integration with advanced pattern-recognition methods, while retaining SI
as an interpretable feature.

5. Longitudinal validation to assess sensitivity to treatment effects and disease
progression.

In summary, combining AR-based motor analysis with EEG-derived synchrony metrics
provides an objective, explainable, and scalable approach to tremor assessment. Its simplicity,
interpretability, and adaptability suggest strong potential for future diagnostic systems in both
clinical and remote healthcare contexts.
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The study’s results contribute to the development of high-performance

software tools for multimodal signal analysis and pattern recognition, reinforcing
the applied dimension of computer science and software engineering in neurodiagnostic
systems.
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Tepnoninbcokuu Hayionanrbhuu mexuivHuu ynigepcumem imeni leana 1lynios,
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Pestome. [Ipeocmasneno ancopummiunui nioxio 0o xiacugixayii ma ougepenyilinoi diacHoCMUuKu
mpemopy, Wo TPYHMYEMbCA HA MYTbMUMOOANIbHOMY aHanizi enekmpoenyegpanocpagiunux (EEG) cuenanie ma
epagomomoproi axmueHocmi, 3apeccmposanoi nio 4ac 6UKOHAHH NAYIEHMAMU 3A80AHHA MANIOBANHS CRIPANI HA
epagiunomy naanwemi 3i cminycom. s KitbKiCHO20 OYIHIO8AHHS MOMOPHUX 8IOXUIEHb 3ACMOCOBAHO NOKAZHUK
AR — pisHuyto Midc pealbHO MpAEKmopicio pyxy cminyca ma il 321addxceHolo (pegepenmuoio) eepcicio,
OMPUMAHOI0  WLIAXOM NapamempuyHoi Kpueonriniunoi anpoxcumayii. EEG-cuenanu cuHxpouizosamo 3
epagomomoprumy  OaHuMU ma nNi0OAHO NONEPeOHbOMY ONPaAYlo8aAHHIO, GKIIOYHO 3 HopManisayiclo ma
inmepnonayicro. [na nooanvuio2o ananizy euxkopucmano eci Haaewi kaumamu EEG 3 memoio noenoco
8I000OPAdNCEHHS NPOCMOPOBO-HACOBUX NAMEPHIE MO3K060T akmuerocmi. OCHOBY Memody CMAHOBUMb AHAI3 KPOC-
kopensayii miowe AR ma xoxcnum kananom EEG, wo 0o36onse usagiamu npocmoposo-4acosi namepHu Mo3K0801
AKMUBHOCMI, ACOYITIOBAHT 3 MPEMOPOM, A MAKOHC O0CAIOHCYBAMU CIYNIH IXHbOI CUHXPOHHOCHI. 3aNPONOHOBAHO
iHOdekc cunyconodionocmi (SI), Axuil 06uUCIIOEMBCA 0151 KPOC-KOPENAYIUHUX KPUBUX MA BUCIMYNAE THMESPATbHUM
NOKA3HUKOM 27100a1bHOT CUHYCONOO0IOHOT meHOeHyil KOPMUKANbHOI CUHXPOHI3aYIl Y PI3HUX KAIHIYHUX CIAHAX.
Excnepumenmanvui 0ocnioscenns nposedeHo HA OAHUX, OMPUMAHUX BI0 NAYIEHMIE 3 PISHUM KLIHIYHUM
cmamycom, ekmodarouu xeopoby Ilapkincona y cmaui MeouxameHmo3Hoi komnencayii ma 6e3 Hel, a maxooic
mpemop He8CcmaHoeneHozo 2ene3y. Pezynbmamu nokazanu, wo eupadiceHuil mpemop CYnpO800*CYEMbCA
nioguwenolo cunxpouizayieto misxc xanaramu EEG, mooi sax y cmani komnencayii abo 3HUINICEHHA CUMNINOMIB
aKmMueHicmsb KAHANié € OLIbW He3aNedCHOI. 3anponoHoganutl nioxio Mac 3HAYHY OideHOCMUYHY YIHHICMb,
OCKIbKU NOEOHYE KINbKICHI 0OYUCTIOBANbHI MEMOOU 3 MOANCIUBICMIO adanmayii nio iHougioyaivhi 0coonusocmi
nayienma, i mModxce Oymu GUKOPUCMAHUL AK OCHO8A Ol PO3POOJIEHHSA NOPMAMUBHUX AOO XMAPHUX CUcmem
ABMOMAMU308AHO20 AHANIZY MA MOHIMOPUHSY MPEMOPY, WO POZULUPIOE MONCIUBOCI menemMeOuyuHu ma
NepcoHaNi308aH0i HelpoOdiacHOCMUKY. 3anponoHO8AHUL AN2OPUMMIYHUL RIOXIO [HMe2pYe CYYAcHI Memoou
iHoHCenepii npoepamHo2o 3abe3neuenHs: 0 MYIbMUMOOAIbHOI CUHXPOHIZAYTI CUCHANIG, YUCI08020 AHANIZY MA
BUOLIEHHSl O3HAK, WO SA6IAE NPUKIAOHE GUDIUEHHS HA NepemuHi ONpayro8anHs OIioMeOudHUx OaHux i
KOMN 10MepHUX HayK.
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