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Abstract. This study presents an algorithmic framework for tremor classification and differential 

diagnosis based on multimodal analysis of electroencephalographic (EEG) signals and graphomotor activity 

recorded during a spiral drawing task on a graphics tablet. Motor deviations were quantified using the ΔR metric, 

defined as the difference between the actual radial trajectory and its smoothed reference obtained via parametric 

curve fitting. EEG and graphomotor signals were synchronized and preprocessed through normalization and 

interpolation. All available EEG channels were included in the analysis to comprehensively capture cortical 

activity patterns. The method centers on cross-correlation analysis between ΔR and individual EEG channels to 

reveal spatiotemporal brain activity patterns associated with tremor, and introduces a sinusoidality index of cross-

correlation curves as an indicator of cortical synchrony under different clinical conditions. Experimental results 

from patients with Parkinson’s disease (medicated and unmedicated) and tremor of undetermined origin showed 

that pronounced tremor corresponds to higher inter-channel synchronization, whereas symptom reduction is 

marked by more independent EEG activity. The proposed approach combines quantitative computation with 

adaptability to individual patient profiles, and can serve as the basis for portable or cloud-based systems for 

automated tremor analysis and monitoring, expanding the capabilities of telemedicine and personalized 

neurodiagnostics. The proposed algorithmic approach integrates advanced software engineering techniques for 

multimodal signal synchronization, numerical analysis, and feature extraction, representing an applied solution 

at the intersection of biomedical data processing and computer science. 
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1. INTRODUCTION 
 

Tremor is one of the most common and visible symptoms of a wide range of 

neurological disorders, including Parkinson’s disease (PD), essential tremor (ET), dystonic 

tremor, and other movement disorders [11]. While tremor can often be observed during a 

clinical examination, its objective classification, quantitative assessment, and differential 

diagnosis remain challenging tasks in clinical neurophysiology. This is especially true in the 

early stages of disease, when motor disturbances are subtle, and visual inspection alone may 

not be sufficiently informative. In such cases, even experienced neurologists may need to rely 

on subjective judgments, which increases the risk of misdiagnosis or delayed intervention. 

From a software engineering perspective, the proposed framework demonstrates the 

implementation of a modular architecture for multimodal data acquisition, preprocessing, and 

cross-correlation computation, which aligns with current trends in intelligent information 

systems development. 

Over the last two decades, advances in motion-tracking technologies and 

electroencephalography (EEG) have opened new opportunities for quantitative tremor 

assessment [12, 13] (see also [14]). High-resolution graphics tablets, wearable sensors, and 

portable EEG systems can now record precise hand movement trajectories, stylus pressure, 

tremor frequency and amplitude, as well as simultaneous cortical activity patterns. This 
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convergence enables a multimodal approach, combining motor output analysis with brain 

activity monitoring in a unified diagnostic framework. 

Previous studies have shown that graphomotor analysis using the so-called ΔR index – 

the radial deviation from an ideal Archimedean spiral – can serve as a robust quantitative 

marker of motor instability. Frequency-domain analysis of ΔR makes it possible to identify 

characteristic spectral peaks corresponding to typical tremor frequency ranges: 4–6 Hz for 

Parkinson’s disease tremor at rest [11], 6–10  Hz for essential tremor [12], and below ~4 Hz for 

various atypical or secondary tremors (including post-encephalitic and certain extrapyramidal 

forms) [14, 17]. In our dataset, active PD cases fell within the expected 4–6 Hz range, while 

other tremor types exhibited either no dominant peak or low-frequency oscillations  

(0.2–1  Hz), outside the classical PD/ET bands. These methods have already been validated in 

both research and clinical settings. 

 

   

 

a 

 

 

b 

 

 

c 

 

Figure 1. Spiral drawing: P1 medicated – a; P1 unmedicated – b; P2 unmedicated – c 

 

However, analyzing the motor signal alone does not capture the full neurophysiological 

context of tremor. Tremor is the result of complex interactions between the cerebral cortex, 

subcortical structures, cerebellum, and the peripheral nervous system [19]. Identifying temporal 

and spatial patterns in brain activity that precede or accompany tremor episodes offers a more 

complete understanding of its pathophysiology. 

One promising way to investigate such relationships is through cross-correlation 

analysis [18]. Cross-correlation measures the similarity between two signals as a function of 

temporal lag, making it particularly useful for detecting delays between neural activity onset 

and observable motor output. In this work, ΔR is treated as a motor marker, while EEG channels 

provide time-resolved information on cortical processes. 

The novel contribution of our study lies in introducing a quantitative sinusoidality 

index computed for cross-correlation curves obtained between ΔR and each EEG channel. 

The reasoning is as follows: if a patient with tremor exhibits cross-correlation curves 

of similar shape across multiple EEG channels, this suggests that these cortical areas 

are participating in a coordinated, resonance-like neural pattern driving the tremor. 

Conversely, when tremor is absent or suppressed, the cross-correlation curves become 

less synchronized, reflecting more independent neural activity across cortical  

regions. 

By calculating the sinusoidality index (SI) for cross-correlation curves of EEG channels, 

a single interpretable measure of the global sinusoidal tendency of cortical synchrony 

associated with tremor is obtained. This metric can then be compared across patient states – for 

example, before and after pharmacological treatment – to objectively quantify therapeutic 

effects. In our experiments, high Sinusoidality Index (SI) values (≈0.15–0.40) were observed 
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during active tremor, while significantly lower values (≈0.05–0.10) were found after 

medication-induced tremor suppression. 

This approach offers several important advantages: 

– Interpretability – The method produces visual outputs such as cross-correlation 

overlays that are intuitive for clinicians. 

– Non-invasiveness – It uses existing non-invasive recordings (tablet and EEG) 

without additional procedures. 

Compatibility with classical and AI-based methods – The SI metric can be used both in 

rule-based classification and as a feature for machine learning algorithms. 

Sensitivity to pre-tremor activity – Changes in cortical synchrony may be detectable 

before tremor becomes visually apparent. 

While machine learning approaches have been explored for tremor classification [1, 5] 

(see also [2–4, 6–10]), they often require large datasets, are sensitive to preprocessing 

variations, and lack transparency in clinical interpretation. The proposed rule-based 

framework, centered on cross-correlation and SI, strikes a balance between objectivity, 

reproducibility, and interpretability – making it suitable for both clinical application and 

further research integration. 

The present study builds on earlier work in three ways: 

It incorporates ΔR computation and frequency analysis as established markers of tremor 

presence and type. 

It extends these methods with cross-correlation analysis between ΔR and EEG channels 

to capture temporal brain–motor relationships. 

It introduces average pairwise cross-correlation similarity between EEG channels as a 

novel metric of tremor-related cortical synchrony. 

Objective of the study: To develop and validate an algorithmic framework for tremor 

classification that combines motor deviation analysis (ΔR), spectral features, and a novel EEG 

synchrony metric (Sinusoidality Index, SI) derived from cross-correlation. This framework 

aims to improve differential diagnosis, enable monitoring of therapeutic effects, and serve as a 

foundation for portable or cloud-based tremor assessment systems. 

In the following sections, we describe the experimental setup, data acquisition and 

synchronization process, signal preprocessing pipeline, cross-correlation analysis procedure, 

and the derivation of the Sinusoidality Index (SI). We then present results from patients with 

varying clinical profiles – including Parkinson’s disease, medication-compensated tremor, and 

tremor of undetermined origin – and discuss the diagnostic implications and potential 

applications of the method. 
 

2. MATERIALS AND METHODS, PROCESSING, AND RESULTS 
 

This study examined four recording scenarios: Parkinson’s disease (PD) without 

medication, the same patient after pharmacological treatment, PD with stable medication and 

minimal tremor, and tremor of undetermined origin. Each recording session consisted of a 

spiral-drawing task performed on a Huion Kamvas Pro 16 graphics tablet (sampling rate 

250 Hz, sub-millimeter resolution) while EEG was simultaneously acquired from 16 scalp 

electrodes (Fp1–O2) at 500 Hz. The tablet application, implemented in Java using the JPen 

library [17], provided raw stylus coordinates (X, Y), pressure, and high-precision timestamps. 

EEG was recorded from 16 channels at a 500 Hz sampling rate, with electrodes positioned to 

emphasize the occipital region, which plays a key role in visual processing and motor 

coordination. 

Tablet and EEG data were synchronized by aligning absolute timestamps to a common 

relative time base (t = 0 at trial start). EEG data were time-aligned to the tablet recordings using 

a common relative time axis. 
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The planar coordinates from the tablet were transformed into polar coordinates 𝑅(𝑡) and 

𝜃(𝑡). A smooth fitted spiral model was obtained by curve fitting: 
 

𝑅𝑠𝑚𝑜𝑜𝑡ℎ(𝜃) = 𝑎 + 𝑏𝜃 + 𝑐 ∙ 𝑐𝑜𝑠(𝜃) + 𝑑 ∙ 𝑠𝑖𝑛(𝜃) (1) 

 

The radial deviation signal was defined as: 
 

Δ𝑅(𝑡) = 𝑅(𝑡) − 𝑅𝑠𝑚𝑜𝑜𝑡ℎ(𝜃(𝑡)) (2) 

 

This ΔR isolates involuntary oscillations from the intended drawing path. All EEG 

channels were normalized by their maximum absolute value; NaN and infinite values were 

removed before cross-correlation analysis. 

For reference, ΔR underwent frequency analysis using the Fast Fourier Transform 

(FFT). Peaks at 4–6 Hz are typically associated with Parkinson’s disease tremor, while  

~6–10 Hz suggests essential tremor according to established literature [12, 14]. In our dataset, 

PD cases without medication showed frequencies consistent with this range, whereas other 

tremor types — including extrapyramidal tremor of unspecified etiology and post-encephalitic 

choreiform hyperkinesia — exhibited either no dominant peak or low-frequency oscillations 

outside the classical PD/ET bands. Although useful for characterizing tremor type, frequency 

analysis in this study served as a baseline feature, while the novelty lies in the subsequent cross-

correlation analysis. 
 

  

 

a 

 

 

b 

 

Figure 2. Patient 1 without medication: frequency spectrum of ΔR with a clear peak in the 4–6 Hz tremor 

band – a; measured radial trajectory vs. fitted spiral, showing larger deviations (ΔR) due to tremor – b 

 

  

 

a 

 

 

b 

 

Figure 3. Patient 2 without medication: frequency spectrum of ΔR with a clear peak in the 4–6 Hz tremor 

band – a; measured radial trajectory vs. fitted spiral, showing larger deviations (ΔR) due to tremor – b 
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Compared to the medicated state, the presence of a dominant 4–6 Hz peak and higher 

ΔR amplitude indicates active Parkinsonian tremor. 

 

  

 

a 

 

 

b 

 

Figure 4. Patient 1 under medication: frequency spectrum of ΔR without a peak in the 4–6 Hz tremor band – a; 

measured radial trajectory vs. fitted spiral, where their difference defines ΔR – b 

 

This representation illustrates how ΔR is derived as the deviation between the actual 

and fitted spiral, and how frequency analysis of ΔR confirms the absence of pathological tremor 

oscillations under medication. 

The cross-correlation between the ΔR(t) signal and the signal of a single EEG channel 

ei(𝑡) is defined as: 
 

XCorrΔR,e𝑖
(τ) = ∑ ΔR(𝑡) ∙ e𝑖(𝑡 + τ)

𝑡

 (3) 

 

where: 

τ – time shift (lag), 

ΔR(𝑡) – time series of radial deviations, defined as the difference between the actual radius 

and the smoothed (model-fitted) radius of the drawing trajectory, 

ei(𝑡) – EEG signal from a specific channel. 

This produced a cross-correlation curve for each channel, capturing both the strength 

and temporal offset of brain–motor coupling. 

 

 
 

 
 

 

a 

 

 

b 

 

Figure 5. Cross-correlation between ΔR and EEGs (–600 to +200 ms) under active tremor: 

P1 unmedicated – b; P2 unmedicated – c 
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The negative lag range in the cross-correlation indicates that EEG activity 

precedes tremor fluctuations (ΔR), reflecting cortical processes that may drive motor 

oscillations. 

 

  

 

a 

 

 

b 

 

Figure 6. Cross-correlation between ΔR and EEGs (–600 to +200 ms) without tremor: 

P1 medicated – a; P3 medicated – b 

 

  

 

a 

 

 

b 

 

Figure 7. Patient 4 (Extrapyramidal tremor, unspecified etiology): cross-correlation between ΔR 

and EEGs (–600 to +200 ms) spectral analysis shows no clear 4–6 Hz peak, 

only low-frequency components – a; cross-correlation curves resemble those of 

patients without tremor – b 

 

This suggests that the tremor in this patient may arise from mechanisms different from 

typical Parkinsonian tremor, where strong 4–6 Hz oscillations and synchronized cross-

correlation patterns are usually observed. 

During visual inspection of the cross-correlation curves, a clear difference 

was observed between conditions with and without tremor. In the tremor state, multiple 

EEG channels exhibited highly similar oscillatory profiles, often with synchronized  

peaks, which can be interpreted as resonance-like coordinated activity across distributed 

cortical regions. In contrast, under pharmacological suppression of tremor the cross -

correlation curves appeared more irregular, with channels showing independent and 

unsynchronized patterns. To capture this difference quantitatively, a sinusoidality index (SI) 

was introduced, providing a single measure of the global sinusoidal tendency of cortical 

synchrony. 
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For each EEG channel ei the index was calculated as 
 

𝑆𝐼𝑖 = 1 − 𝐻[3,7](XCorrΔR,e𝑖
), (4) 

 

where XCorrΔR,ei
 denotes the cross-correlation curve between the radial deviation signal ΔR 

and the EEG channel e𝑖. 

The term 𝐻[3,7] represents the normalized spectral entropy of the curve, computed only 

within the frequency band of 3–7 Hz. This restricted band was chosen because pathological 

tremor in Parkinson’s disease typically exhibits peaks around 4–6 Hz, and the slightly wider 

window (3–7 Hz) ensures that inter-patient variability and noise are adequately captured while 

avoiding irrelevant frequencies. 

This measure reflects the degree to which the curve approximates a pure sinusoid, with 

lower entropy corresponding to a stronger sinusoidal tendency. 

The overall index for a patient was obtained by averaging across all EEG channels: 
 

𝑆𝐼𝑎𝑣𝑔 =
1

𝑁
∑ 𝑆𝐼𝑖

𝑁
𝑖=1 , (5) 

 

where N is the number of EEG channels. 

This formulation ensures that the SI reflects how strongly the energy of cross-correlation 

curves is concentrated within the tremor band, with higher values indicating resonance-like 

sinusoidal synchrony across cortical regions. 

The resulting scalar value characterizes the global sinusoidal tendency of cortical 

synchrony associated with tremor. 
 

Table 1 

 

Patient conditions. Tremor frequency (3–7 Hz range) and Sinusoidality Index (SI) across conditions 

 

Patient Condition Tremor Frequency (Hz) 
Sinusoidality Index 

(SI, repeated measurements) 

P1 PD, no medication 4.5–5.8 0.215, 0.147 

P1-med PD, medicated None/weak 0.061, 0.067, 0.095 

P2 PD, no medication 4.2–5.2 0.400, 0.281, 0.251 

P3 PD, medicated None/weak 0.065, 0.061, 0.050 

P4 
Extrapyramidal tremor, 

unspecified etiology 

No dominant peak 

(low-frequency irregularities) 
0.120, 0.098, 0.104 

P5 Post-encephalitic choreiform hyperkinesia 
0.2–1.0 

(low-frequency oscillations) 
0.129, 0.133, 0.060 

 

During active tremor (P1 without medication), cross-correlation curves from multiple 

EEG channels showed highly similar shapes and synchronized peaks, resulting in elevated 

Sinusoidality Index (SI) values across repeated measurements (0.215, 0.147). In another 

unmedicated PD case (P2), the tremor frequency was 4.2–5.2 Hz, and SI values from three 

recording sessions reached 0.400, 0.281 and 0.251, indicating very strong cortical synchrony. 

When tremor was suppressed pharmacologically (P1-med), cross-correlation curves lost their 

alignment, producing lower SI values in repeated recordings (0.061, 0.067, 0.095). A similar 

pattern was observed for medicated PD in P3, where no clear tremor frequency was detected 

and SI dropped to 0.065, 0.061 and 0.050. In the case of extrapyramidal tremor of unspecified 

etiology (P4), SI values across three measurements were low (0.120, 0.098, 0.104), reflecting 

partial synchrony. Despite the slow oscillatory pattern (0.2–1 Hz) in post-encephalitic 

choreiform hyperkinesia (P5), SI remained relatively high across sessions (0.129, 0.133, 0.060), 

indicating strong cortical synchrony. 
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These results indicate that Sinusoidality Index (SI), as a single interpretable metric, 

complements spectral ΔR analysis by reflecting network-level cortical dynamics associated 

with tremor. Its non-invasive, reproducible nature and clear visual interpretability make it 

suitable for clinical use and for integration into automated classification systems. 
 

3. CONCLUSIONS AND FUTURE WORK 
 

This study presents an algorithmic framework for tremor assessment that integrates 

graphomotor and neurophysiological data into a single, interpretable analysis pipeline. The core 

novelty lies in combining radial deviation analysis (ΔR) from spiral drawing with 

cross-correlation between ΔR and multiple EEG channels, and in introducing the Sinusoidality 

Index (SI) to quantify the global sinusoidal tendency of cortical synchrony associated with 

tremor. 

The results across six recording conditions indicate that SI effectively differentiates 

between active PD tremor, pharmacologically compensated tremor, and certain non-PD tremor 

types. High SI values (≈0.15–0.40) were consistently observed during active PD tremor (P1, P2) 

and also in the post-encephalitic choreiform hyperkinesia case (P5) despite its low-frequency 

nature (0.2–1 Hz). Low SI values (≈0.05–0.10) were characteristic of pharmacologically 

suppressed PD tremor (P1-med, P3) and extrapyramidal tremor of unspecified etiology (P4). 

These findings support the hypothesis that pathological tremor – regardless of frequency – can 

involve a resonance-like, coordinated activation pattern across distributed cortical regions, 

which becomes desynchronized when tremor subsides or originates from less synchronized 

neural generators. 

Compared with purely spectral ΔR analysis [16] (see also [19]), which captures the 

presence and frequency of motor oscillations, cross-correlation analysis provides a direct view 

of the temporal relationship between EEG activity and tremor dynamics. Building on this 

foundation, the Sinusoidality Index (SI) offers a complementary, scalar measure of the 

sinusoidal structure in cross-correlation curves, reflecting network-level brain dynamics. This 

dual view – oscillatory motor features revealed by cross-correlation and cortical synchrony 

quantified by SI – offers a richer diagnostic picture and a potential basis for more precise tremor 

classification. 

From a practical standpoint, the method is non-invasive, relies on affordable hardware 

(graphics tablet and EEG), and produces visual outputs (cross-correlation overlays, 

sinusoidality profiles) that are intuitive for clinicians. It is reproducible across sessions and can 

be adapted for rule-based diagnostic tools as well as hybrid approaches. 

Potential avenues for further research in this field include: 

1. Expanding participant cohorts to include healthy controls, early-stage PD, and other 

tremor syndromes such as dystonic or cerebellar tremor. 

2. Automating the analysis pipeline for real-time or near-real-time monitoring, 

including portable and cloud-based solutions. 

3. Extending the cross-correlation framework to sliding-window analyses, enabling 

detection of transient changes in brain-motor coupling. 

4. Exploring integration with advanced pattern-recognition methods, while retaining SI 

as an interpretable feature. 

5. Longitudinal validation to assess sensitivity to treatment effects and disease 

progression. 

In summary, combining ΔR-based motor analysis with EEG-derived synchrony metrics 

provides an objective, explainable, and scalable approach to tremor assessment. Its simplicity, 

interpretability, and adaptability suggest strong potential for future diagnostic systems in both 

clinical and remote healthcare contexts. 
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The study’s results contribute to the development of high-performance 

software tools for multimodal signal analysis and pattern recognition, reinforcing 

the applied dimension of computer science and software engineering in neurodiagnostic 

systems. 
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АЛГОРИТМІЧНИЙ ПІДХІД ДО КЛАСИФІКАЦІЇ ТРЕМОРУ ЗА EEG 

І ГРАФОМОТОРНИМИ СИГНАЛАМИ 
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Резюме. Представлено алгоритмічний підхід до класифікації та диференційної діагностики 

тремору, що ґрунтується на мультимодальному аналізі електроенцефалографічних (EEG) сигналів та 

графомоторної активності, зареєстрованої під час виконання пацієнтами завдання малювання спіралі на 

графічному планшеті зі стілусом. Для кількісного оцінювання моторних відхилень застосовано показник 

ΔR – різницю між реальною траєкторією руху стілуса та її згладженою (референтною) версією, 

отриманою шляхом параметричної криволінійної апроксимації. EEG-сигнали синхронізовано з 

графомоторними даними та піддано попередньому опрацюванню, включно з нормалізацією та 

інтерполяцією. Для подальшого аналізу використано всі наявні канали EEG з метою повного 

відображення просторово-часових патернів мозкової активності. Основу методу становить аналіз крос-

кореляції між ΔR та кожним каналом EEG, що дозволяє виявляти просторово-часові патерни мозкової 

активності, асоційовані з тремором, а також досліджувати ступінь їхньої синхронності. Запропоновано 

індекс синусоподібності (SI), який обчислюється для крос-кореляційних кривих та виступає інтегральним 

показником глобальної синусоподібної тенденції кортикальної синхронізації у різних клінічних станах. 

Експериментальні дослідження проведено на даних, отриманих від пацієнтів з різним клінічним 

статусом, включаючи хворобу Паркінсона у стані медикаментозної компенсації та без неї, а також 

тремор невстановленого генезу. Результати показали, що виражений тремор супроводжується 

підвищеною синхронізацією між каналами EEG, тоді як у стані компенсації або зниження симптомів 

активність каналів є більш незалежною. Запропонований підхід має значну діагностичну цінність, 

оскільки поєднує кількісні обчислювальні методи з можливістю адаптації під індивідуальні особливості 

пацієнта, і може бути використаний як основа для розроблення портативних або хмарних систем 

автоматизованого аналізу та моніторингу тремору, що розширює можливості телемедицини та 

персоналізованої нейродіагностики. Запропонований алгоритмічний підхід інтегрує сучасні методи 

інженерії програмного забезпечення для мультимодальної синхронізації сигналів, числового аналізу та 

виділення ознак, що являє прикладне вирішення на перетині опрацювання біомедичних даних і 

комп’ютерних наук. 

Ключові слова: тремор, електроенцефалографія, електроенцефалографічний сигнал, ЕЕГ, 

графомоторні сигнали, ΔR, хвороба Паркінсона, частотний аналіз, крос-кореляція, класифікація, 

програмне забезпечення, комп'ютерна діагностика, медична діагностика, інформаційна система, набори 

даних, часові ряди, алгоритм, адаптивне програмне забезпечення, адаптивна система, цифрова 

платформа, обробка сигналів, оцінювання, нормалізація, автоматизація. 
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