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Abstract. The present study considers a mode Il interface crack in a one-dimensional (1D) piezoelectric
quasicrystal subjected to antiplane phonon and phason loading, as well as an in-plane electric field. Due to the
complex function approach, all required electromechanical parameters are presented through vector-functions
analytic in the entire complex plane, except in the crack region. The cases of electrically impermeable (insulated)
and electrically limited permeable conditions on the crack faces are considered. In the first case, a vector Hilbert
problem in the complex plane is formulated and solved exactly. In the second case, the quadratic equation with
respect to the electric flux through the crack region is also obtained. Its solution enables the determination of
phonon and phason stresses, displacement jumps (sliding), and also electric characteristics along the material
interface. Analytical formulas are also derived for the corresponding stress intensity factors associated with each
field. Numerical computations for three selected variants of the loading conditions were conducted, and the
resulting field distributions are visualised to show crack continuation beyond the crack and also inside the crack
region.

Key words: interface crack, stress, quasicrystal, antiplane loading, limited electric permeability, problem
of linear relationship
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1. INTRODUCTION

Quasicrystals (QCs) are distinguished by their long-range orientation order and
quasiperiodic translational symmetry, endowing them with exceptional mechanical and
functional properties compared to conventional crystalline materials. The seminal discovery by
Shechtman et al. (1984) of metallic alloys exhibiting non-periodic long-range order and high
hardness stimulated extensive investigation into the elasticity and fracture behaviour of these
materials [1].

The foundational continuum theory of QC elasticity incorporates coupled phonon
and phason displacement fields. In pioneering work, Ding et al. (1993) formulated the
generalized elastic constitutive relations for quasicrystals, deriving the full electro-elastic
coupling between phonon and phason modes [2]. Building on this framework, Fan (2011)
provided a comprehensive mathematical treatment of QC elasticity and its applications,
including explicit solutions for fundamental boundary-value problems [3]. Fracture
mechanics of QCs under anti-plane shear (Mode III) has been addressed in several studies.
Shi et al. (2007) analysed interfacial cracks between conventional elastic materials and
quasicrystals, highlighting the role of phason fields in crack tip stress singularities [4]. Zhou
and Li (2018) derived exact solutions for two collinear cracks normal to a 1D hexagonal
piezoelectric QC boundary, obtaining closed-form expressions for stress intensity factors
and displacement fields [5].

A non-uniformly loaded anti-plane crack embedded in a half-space of a one-
dimensional piezoelectric quasicrystal was studied in [6], and two collinear electrically
permeable anti-plane cracks of equal length lying at the mid-plane of a one-dimensional
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hexagonal piezoelectric quasicrystal strip were investigated in [7]. Two thin strips with a
microcrack at the interface were studied in paper [8]. Piezoelectric coupling in QCs
introduces additional complexity. Hu et al. (2019) reduced the mixed electro-mechanical
boundary-value problem for an interface crack in dissimilar 1D hexagonal piezoelectric
QCs to singular integral equations via Riemann-Hilbert methods, yielding full-field
solutions for phonon, phason, and electric quantities along the crack faces [9]. Govorukha
and Kamlah (2024) extended these results by considering mixed electric boundary
conditions, combining conducting and permeable crack face segments, demonstrating how
partial electrical contact modulates crack-tip intensity factors [10]. Loboda et al. further
generalized to multiple collinear interface cracks in layered piezoelectric QCs, revealing
interaction effects on stress intensity factors and energy release rates under coupled
electromechanical loading [11].

An electrically limited permeable interface crack model was proposed by Hao and
Shen [12] for the plane problem of a homogeneous piezoelectric material. To date, an exact anti-
plane analytical solution for an electrically limited permeable interface crack between dissimilar
piezoelectric QCs has not been presented. The present study addresses this gap by (i) formulating
the coupled phonon-phason-electric field equations for a bimaterial QC plate, (ii) reducing the
interface crack boundary-value problem to a vector Hilbert problem, (iii) deriving closed-form
expressions for crack-face opening displacement and electric potential jump, and (iv) obtaining
analytical formulas for the stress intensity factors associated with each field. Numerical validation
and visualization of field distributions in the crack-continuation region complete the solution,
offering a practical tool for design and optimization of QC-based electromechanical systems.

2. FORMULATION OF THE BASIC RELATIONS

For the linear elastic theory of QCs, the constitutive relations, equilibrium equations and
geometric equations of a 1D piezoelectric hexagonal QC with point group 6 mm without body
forces and free charges can be expressed in the following form [13]

Oy = iy — CLly + Rys Wy ()

D =eu 6, +5E +é,my, (2)

Hy, =R 6, —e B + Kyywy 3)
0,;=0,D,=0,H,,=0, 4)

& = %(ui,j + uj,i) , E = _¢,i » Wy =W, (5)

where i, j, k,s =1, 2, 3, and the denotation, represents the derivative operation for the space
variables;

u,, wy and @ are the phonon displacements, phason displacement, and electric potential,
respectively, and the atom arrangement is periodic in the X, — X, plane and quasi-periodic in
the X, -axis;

0, and &, are the phonon stresses and strains, respectively; H,, and w;; are the phason stresses

)

and strains, respectively;
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D, and E. are the electric displacements and electric fields, respectively, and the polarization
direction is along the X, -axis;

i, and K,  are the elastic constants in the phonon and phason fields, respectively;

ijks
ka represent the phonon—phason coupling elastic constants;

e,, and e,

A

s are the piezoelectric constants in the phonon and phason fields, respectively;
&, are the permittivity constants.

Here, a comma in subscript denotes differentiation with respect to the following spatial
variable.
For the case of antiplane mechanical loading and an in-plane electric loading with

reference to the X,0x,-plane all fields are independent of the variable X;. Therefore, the

problem under consideration is a so-called anti-plane shear problem or mode-III crack problem.
In this case

u =u, =0, Uy = Uy (xvxz)o w; :Wz(x1’x2)7 »= (D(xwxz)s (6)

and the constitutive relations take the form:

O-j3 uij
H,r=Ryw;, (j=1,2), (7
Dj (DJ
where
cy Ry e
R = R3 Kz élS 5 (8)
€5 élS _gll

and ¢,,,K,,R; stand for the phonon elastic modulus, phason elastic modulus and phonon-
phason coupling modulus, respectively, which are written in the simplified index notation. Also
€5, €sare the piezoelectric constants of the phonon and phason fields and &, is the
permittivity. Introducing the vectors

”:[”3’W3’¢]T’ z =[O-3j’H3j’Dj:|T’ ©)
one can write
t,=Ru, (j:1,2). (10)
For the considered anti-plane problem, the equilibrium equations (4) take the form

80'31+80'32=0 8D1+8D2=O %4-%

ox,  Ox, " Ox,  Ox, " Ox, ox,

=0,
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Substituting (7) in the last equation, we get that the functions u,, ¢ and w; satisfy the
equations Au; =0, Ap =0, Aw; =0, respectively, i.e. they are harmonic. Therefore, present

the vector ,, composed of these functions, as real parts of some analytic vector-function

u=2Re®(z)=®(z)+®(Z) (2is introduced for convenience), (11)

where @ (z) = [cpl (z), @,(2), D, ( Z)]T is an arbitrary analytic vector-function of the complex
variable z =X, +1ix,.
Substituting (11) in (10), one gets
t,=-iB®'(z)+iB®'(Z), t,= B®'(z)+ B®'(Z), (12)
where B =iR.
Bimaterial plane. Suppose that the plane (x,,x,) is composed of two half-planes x, >0

andx, <0. Different cracks, inclusions and other defects can take place on the axis X,. The

presentation (11), (12) can be written for regions X, >0 and x, <0 which in this case takes the form
W =0 (2)+@"(Z), £ =B"®"" (2)+B"d'" (7), (13)

where m =1 for area 1 and m =2 for the area 2;
B" are the matrices B for areas 1 and 2, respectively;

" (z) are the arbitrary vector functions, analytic in the areas 1 and 2, respectively.

Next, we require that the equality t;l) = t;z) holds true on the entire axis X, . Then it
follows from (13)

B 0" (x, +i0)+ B ®" (x, -i0) = BY®" (x, - i0) + BY®" (x, +0). (14)

Here, we have used the first form of designation F(x, £i0)=F i(xl) , which refers to the
limit value of a function F(z) at y —» 0 from above or below, respectively.
The equation (14) can be written as

BY®'"(x, +i0)— BY®'? (x, +i0) = BY®'? (x, -i0) - B"®"" (x, - i0).

The left and right sides of the last equation can be considered as the boundary values of
the functions

B (2)- BY®"?(z) and BY®"?(z)- B ®""(z), (15)

which are analytic in the upper and lower planes, respectively. But it means that there is a
function M(z), which is equal to the mentioned functions in each half-plane and is analytic in
the entire plane. This function is the following:
BO®'D (2)— BOP'?® >0
M(z) = 2 2(z) Pen (z) forx,
BP®'?(2)-B®""(z) forx,<0

ISSN 2522-4433. Bicnux THTY, Ne 3 (119), 2025 https://doi.org/10.33108/visnyk tntu2025.03 .......cccccovvviieiieainnnn, 15



An interface crack in 1D piezoelectric quasicrystal under antiplane mechanical loading and electric field

Assuming that M(Z)|Hw — 0, on the basis of the Liouville theorem, we find that each of

the functions (15) is equal to 0 for each - from the corresponding half-plane. Hence, we obtain

B (2)=(B*)" BO® (2) for x,>0, (16)

®V(z)=(B") BY@(z) for x,<0. (17)
Further, we find the jump of the following vector-function
(u'(x)y=u""(x, +i0)—u"? (x,—i0), (18)
when passing through the interface. Finding from the first formula (13)
u'™(z)=@""(z)+®"(7)
or
u'" (x,£i0)=@"" (x, £i0)+®"" (x, Fi0)
and substituting in (18), one gets
<u'(x] )> =@ (x, +i0)+ o' (x,—i0)-®"* (x,-i0) - o' (x,+i0).
Finding further of (17) @®"® (x, —i0)= (30’ )71 BY®'" (x,—i0) and substituting this
expression together with (16), atx, = +0 | in the latest formula, leads to

<u'(x1)> =D (x, +i0)+ D' (x, —i0)

b

where D=1- (E(z) )7 BY, I =diag [1, 1,1] — the identity matrix.

Introducing a new vector-function

n po'V(z), x>0
Wiz)=1 ——q ; (19)
—ch’()(z), x, <0

2

the expression for the derivative of the displacement jump can be written as
(W' (x))=w"(x)-w (x). (20)
From the second relation (13), we have
£ (x,,0) = BU®" (x, +10)+ B®"" (x, -i0). @1
Given that on the basis of (19)

@' (x,+i0)=D"'W (x,+i0),
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&'V (x,~i0)=—(D") W (x, —i0)
and substituting these relations in (21) leads to
£ (x,0)=GW" (x)-GW (x,), (22)

where G =B" D™ . Simple calculations show that

1 1!
a-|(") +(8”)"| (23)
moreover, G = —G . Then the equation (22) takes the form
17 (x,0)=G(W" (x)+W (x)). (24)

The representations (20) and (24) are very convenient for solving antiplane problems
for bimaterial piezoelectric QCs with cracks and inclusions at the interface.

3. AN ELECTRICALLY INSULATED CRACK BETWEEN TWO
PIEZOELECTRIC QUASICRYSTALS

Consider a crack |x]| < a with mechanically free and electrically-insulated faces at the
interface x, =0 (fig. 1).

The shear phonon o5, and phason H;, stresses and electric flux are prescribed at

infinity and are designated by the vector ¢, = [a; JHY, D;’] .

and b6 b L LD

I_ __________________________ A

>
[ >

Figure 1. The crack between two piezoelectric quasicrystals

The boundary conditions at the interface are of the form

o _ <2 _ M _ n@ _ @O _ g2 _
0, =05 =0,D,"=D,"=0, H;, = H;;” =0 for |xl|<a, (25)

32
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(03,)=0,(D,)=0,(H,,)=0,(¢,)=0,(E)=0, (w,)=0 for|x|>a, (26)

where (*) means a jump of the corresponding function when passing through the axis X, .

The first three conditions (26) are satisfied based on (14). From the satisfaction of the
last three conditions (26), the analyticity of the vector function W (z) in the whole plane, except

for the crack area, follows due to (20). Also, the fulfilment of the conditions (25) using (24)
leads to the vector Hilbert problem of linear relationship

W (x1)+W7 (xl) =0 for x, € (_a°a)' (27)

Taking into account that W' (x)=W (x)=W(x) for x ¢(-a,a) and

wi(x)  =w( Z)|Hw we get by using (24) the following condition at infinity

1 —1 0
W(z)|Hw =EG - (28)

The solution of the problem (27) under the condition at infinity (28) has the form [14]

| z
W(Z)ZEG L —. (29)
zZ —a
Substituting (29) in (24), we obtain:
£ (x,,0) = 17 ——— for ¥, £[-a.a]. (30)

X, —a

Considering that W (x)=-W"(x)=W(x,) for x € (—a,a) , one gets from
relations (20), (29)

<u’(x] )>=GIt;0'ajﬁ for x, e(—a,a)_ 31)
1

1

Integrating the last relation leads to the following formula for the jump in displacement
of the crack faces

<u (x, )> =iG 't]\Ja’ —x . (32)

4. THE CASE OF PRESCRIBED ELECTRICAL DISPLACEMENTS AT THE
CRACK FACES

Let’s assume that a nonzero electric displacement D;l) = Déz) =D, is prescribed at the
crack faces. In this case, one has in the crack region:

t;l) (xl,O) = t;o) forx, € (—a,a)

where 7 ={0,0,D,}"
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Then, from the last equation and (24), we have
w (x1)+W7 (xl)szltgo) for x, e(—a,a) (33)
Introducing a new vector-function Y(z) by means of the formula

W(z)=Y() +%G’1t§°), (34)

we get from (33):
Y'(x,)+Y (x,)=0 for x, (-a,a). (35)
Condition at infinity (28) transforms into the form
Y(2), = %G” (£ -t). (36)

The solution of the problem (35), (36) takes the form:

z

1 -1 [o4]
Y(Z) :EG (t2 —t;o))ﬁ (37)
z —a

Using further (24), (34) and (37), we get
t;l) (xl,O) = G(Y+ ()c1 ) +Y" (x1 )) + t(20) R

Taking into account that Y'(x,)=Y (x,)=Y(x,) for x, ¢ (—a,a) one obtains
£ (x.0)=26 Y(x, )+t = (£ -1")

%Hf) for x, &(-a,a). (38)
zZ —da

Equation (38) in the complete form can be written as

o0 z o0
s H,, (x,,0)=H, » D, (x,.0) = (D5 - D,) +D,

w z z
st(XI:O)ZGnW NEmya = (39

The stress and electric displacement intensity factors (SIF) at the point @ can be
introduced in the following vector form:

K= lim 27(x,—a)£"(x,,0), (40)

x;—>a-0

where K =[K,_,K,,,K,]
Substituting the expressions (38), (39) into (40), we get

K, :*/Eo-;;a Ky :‘/EH;Z’ Ky :%(D; _DO) (41)

On the basis of (20), (34) and (35), we arrive at the formula

ISSN 2522-4433. Bicnux THTY, Ne 3 (119), 2025 https://doi.org/10.33108/visnyk tntu2025.03 .......cccccovvviieiieainnnn, 19



An interface crack in 1D piezoelectric quasicrystal under antiplane mechanical loading and electric field

u'(x)=6" (-1 — 5 forx e(—a,a),

{w'(x)) (4 Z)im ! (42)
which gives after integration

(u(x))=iG" (17 —£)Ja* —x for x, €(-a.a). 43)

Expression (43) in the complete form is the following

(1) o5,
(w)p=M< Hj, a’—x} (44)
<§0> D; - D,

where M=iG™".
5. ELECTRICALLY LIMITED PERMEABLE CRACK

Consider now another crack model in which the relation between the electric potential
and displacement jumps along the crack region is taken into account. We assume now that the
crack filler has the dielectric permittivity

£,=&8,,

where &, is the relative dielectric permittivity and &, =8.85x10"2C/Vm is the dielectric

constant of a vacuum. We also assume that the crack faces are free of prescribed mechanical
loading and electric charges. Moreover, similarly to [12], we consider that the electric field
inside the crack can be found as

E = —g for x, e(—a,a).
Uy — Uy

where the superscripts «+» and «-» indicate the upper and lower faces of the interface,
respectively.

Taking into account that D, =& E_ and designating D, at the crack faces as D, one
arrives at the following electric condition

=—¢, <(p>> for x, € (—a,a) (45)

T
Uy — Uy Uy

D 90

0 a

along the crack region. It is worth mentioning that we use the same designation for the electric

displacement on the crack faces as in the previous section, but in this case D, is unknown and

should be found from Eq. (45).
Taking into account that Eq. (44) remains valid in this case, Eq. (45) can be written in
the following form

20 ............. ISSN 2522-4433. Scientific Journal of the TNTU, No 3 (119), 2025 https://doi.org/10.33108/visnyk_tntu2025.03


https://doi.org/10.33108/visnyk_tntu2025.0

Mohammed Altoumaimi, Volodymyr Loboda

M310-;02+M32H; +M33 (D; _Do)

D0=_8a 0 0 )
Moy, +M,H;, + M, (Dz _Do)

(46)

Equation (46) represents the quadratic equation with respect to the electric displacement
D, . After simplification, it can be written as

2
Dy =Dy =1, =0 (47)
where
X :(Mllo-;oz +M12H;;+M13D2m_5a)/M13> X, = ¢, (Myo_;g +M,HS, +M33D;)/M13

The analysis of the solution of Eq. (47) shows that one of the two roots is physically
unacceptable; therefore, in the following, we’ll pay our attention only to the physically
acceptable root of this equation.

6. NUMERICAL ILLUSTRATION AND DISCUSSION

In this section, the main attention will be devoted to the electrically limited permeable
crack model, which best reflects the physical peculiarities of the crack deformation. Consider for
the analysis the piezoelectric QCs with the following values of the required parameters [15, 16]:

cl) =5.0x10"Pa, e} =-0.318C/m*, K" =0.3x10’ Pa, R\" =1.2x10’ Pa,
ey =-0.16C/m*, & =8.25x10""C*/(Nm?®) for the upper material,
¢ =355x10"Pa, P =17C/m*, K =0.15x10’ Pa,
él(SZ) =17C/m*, &P =15.1x107 C* / (Nm®) for the lower one.

It is worth mentioning that the matrix M in this case is the following

R® =1.765x10" Pa,

5.3090x107""  —9.8852x107" 0.03892
M =|-9.8852x10""" —1.9204x10"° —3.2408
0.03892 —3.2408 -5.8781x10°

For the illustration, we’ll choose a=0.01 m and the cases of the external loading given
in Table 1. In the last column of this Table, the corresponding values of electric flux D,,
obtained from Eq. (47), are given.

Table 1

Load cases and corresponding electric flux DO

Case 10° 67 [Pa] 10°H?, [Pa] 100D;" [C/m?] 100D, [c/m?]
Case | 6.0 7.0 0.5 0.9506
Case 2 8.0 9.0 0.75 1.1982
Case 3 10.0 11.0 1.0 1.5651
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It is evident from Table 1 that relatively close values of external loading
result in significantly different magnitudes of the electric flux through the crack
region.

The graphs of phonon, phason and electric quantities along the material interface are

given in Figures 2-4. Particularly phonon shear stress 05, (x,,0) [Pa] at the right crack
continuation and the phonon crack faces jump (crack sliding) <u3 (x1)> [m] are shown in Fig. 2

(a) and (b), respectively. Here and in the following figures, the solid, dashed, and dotted lines
represent cases 1, 2, and 3, respectively.

023(x4,0) for 0.01003 < x4 < 0.02 m

023(x1,0)
20x107}
15x107f

10x107F N T

0.016 0.018 0.020%1 (m)

0.012 0.014

(@) (b)

Figure 2. Phonon shear stress at the right crack continuation (a)
and the phonon crack faces jump (b) for three cases of the loading

Phason stress H,(x,,0) [Pa] at the right crack continuation and the phason crack faces

jump <w3 (x, )> [m] are shown in Fig. 3 (a) and (b), respectively.

H23(x4,0) for 0.01003 < x4 £ 0.02 m (Wg(X1 )) (m)
H23(X1,O)

2.0x10°F
15x107f ™

1.0x107F

0.012 0.014 0.016 0.018

(a) (b)

Figure 3. Phason stress at the right crack continuation (a)
and the phonon crack faces jump (b)

The electric displacement D,(x,,0) [C/m?] at the right crack continuation and the

electric field jump over the crack faces <qo(x1)> [V] are shown in Fig. 4 (a) and (b),

respectively.
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D2(x1,0) for 0.01003 < x, < 0.02 m (@(x1))
Da(x4,0)

0.008

0.006
0.004 o

0.0025"

ooz oo oo oo oozt (M)

() (b)

Figure 4. Electric displacement at the right crack continuation
and the electric field jump through the crack faces

As can be seen from formulas (38) and (39), phonon and phason stresses, as well as the
electric displacement, exhibit a square root singularity at the crack tips. For this reason, their
graphs in Figures 2 (a), 3 (a), and 4 (a) are drawn only in the interval (0.01003 m <x1< 0.02
m), i.e. at some distance from the crack tip.

The SIFs for the three selected cases of loading were calculated using the formulas (41)
and are presented in Table 2.

Table 2

Stress Intensity Factors (SIF) for three selected cases

Case K30 [Pavm] K3H [Pavm] KD [Cm*]
Case 1 1.504x107 1.755%107 0.02211
Case 2 2.005%107 2.256x107 0.03110
Case 3 2.507x107 2.757%107 0.04010
7. CONCLUSIONS

A Mode III interface crack in a one-dimensional quasicrystal with piezoelectric
effect is considered under anti-plane mechanical and in-plane electric loading. The complex
function method was used, and all electromechanical parameters are presented through
vector-functions that are analytic in the entire complex plane, except in the crack region, as
given by Equations (20) and (24). Electrically impermeable and electrically limited
permeable crack models are assumed for analysis. The first case leads to the vector Hilbert
problem (27) with the condition at infinity (28), and the second one requires the additional
solution of the quadratic equation (47) with respect to the electric flux through the crack
region. The case of a nonzero prescribed electric displacement on the crack faces is also
considered in Section 4. For all considered types of electrical conditions, analytical
formulas for phonon and phason stresses, displacement jumps, electric components along
the material interface, and the corresponding stress intensity factors at the crack tip are
derived.

Three variants of the loading given in Table 1 were chosen for the numerical illustration.

The corresponding values of electric flux D, are also given in this table. Other numerical results
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are summarised in Figures 2—4 and Table 2. Particularly, phonon shear stress 0;,(x,,0), phason
stress H,(x,,0) and the electric displacement D,(x,,0) along the right crack continuation are

given in Figures 2 (a) — 4 (a), respectively. Phonon <u3 (x1)> and phason <w3 (x1)> crack faces

displacement jumps are shown in Figures 2 (b) and 3 (b), respectively, and the
electric potential jump is given in Fig. 4 (b). It follows from the obtained results that
along the crack-continuation region beyond the crack, the phonon and phason shear
stresses decay proportionally to the inverse square root of the distance from the tip,
whereas the electric displacement converges more gradually to its remote value.
Besides, rather close values of external loading lead to very different magnitudes
of the electric flux through the crack region, and both kinds of crack faces displacement
and electric potential jumps maintain the square root parabolic behavior along the crack
region.
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YK 539.3

MIZK®A3ZHA TPIIUHA B 1/1 I'€30EJIEKTPUYHOI'O
KBA3IKPUCTAJIY I AI€IO AHTUITJIOCKOI'O MEXAHIYHOT'O
HABAHTAKEHHSA TA EJIEKTPUYHOT O 110JIAA

Myxamen Aabrymaiimi; Boaoaumup Jlodboaa

ninpoescwvkuti Hayionanvuut yHieepcumem imeni Onecs I onuapa,
Jninpo, Ykpaina

Pestome. Poszenanymo mpiwuny muny III Ha medxci po3diny 080X OOHOBUMIDHUX KBASIKPUCMATIE 3
n'esoenekmpuunum eexmom nio Oico AHMUNIOCKO20 (PA30HHO2O | (POHOHHO2O MEXAHIUHO20 HABAHMANCEHHS Md
NIOCK020 eNeKMPUUHO20 HABAHMANCEHHS 8 NIOWUHI, WO aHANIZYEMbCA. Bukopucmanuo memoo KOMAIEKCHUX NomeH-
yianie. Yci enexmpomexaniuui napamempu npedcmasieti uepes 6ekmop-QyHKYil, QHAIMUYHI HA 6CIl KOMIIEKCHIU N0~
wuHi, Kpim obnacmi mpiwunu. J[na ananizy 8 aKOCmi OCHOGHUX NPULHAMO MOOeTi eNeKMPUYHO HeNnPOHUKHOT mpiuguHu
ma mpiwuHU 3i CKIHYEeHHOIO eleKmpuiHoo nporuxkicmio. Ilepuiuil sunadok npuzeooums 00 6éekmopHoi 3adaui I inbbep-
ma 3 Gi0NOBIOHOI0 YMOBOIO HA HECKIHYEeHHOCI, A Opyeuti 000amKo80 UMALAE PO36'A3aHHSA KEAOPAMHO20 DIGHAHMHS
BIOHOCHO eeKMmpPU4HO20 NOMOKY yepes obaacmv mpiwunu. OKpemo po3SIsHymMO MAKONC BUNAOOK HEHYIbOBO2O
eNeKMPUYHO20 3MIWEHHS, 3A0aH020 HA Oepe2ax mpiwuHu. /{1 6CiX NPOAHANI308AHUX BUOIE €IeKMPUYHUX YMOS8 Hd
bepezax mpiuuHu 3HAUOEHO AHATIMUYHI POpMYIU Ol POHOHHUX T PABOHHUX HANPYICEHb MA CMPUOKIE nepemilyetsb, a
MaKo;c OJisl eeKMPUYHUX CKIAO0BUX Y3008 Medici po30iny mamepianie. Kpivm moeo, ompumano ananimuyni popmynu
07151 BIONOBIOHUX KoeqhiyieHmie IHMEeHCUBHOCTI HaNpYJiceHb Y eepuunax mpiwunu. /s uucnosol inlocmpayii 06paro
Mpu 8aPIAHMU HABAHMANCEHHS, WO BKTIOUAIU PI3HI 3HAYEHHS (DOHOHHO20 MA (DA30HHO20 HANPYIHCEHb I eNeKMPUUHO20
BMIUWEHHS, 3A0aHUX HA BI00AIeHH] 6I0 mpiuyunu. /sl KOJCHO20 3 BKA3AHUX 8aPIAHMIE 3HAU-0EHO GIONOGIOHI 3HAUEHHS
eNeKMPUYHO20 NOMOKY Hepe3 obnacmv mpiwunu. I[nwi uucnosi pesynbmamu npedcmaeneno y epagiuHomy i
mabuuHOMy 8u2iIA0i. 30Kpema, npeocmasneno epapixu 3minu QOHOHHORO | PA30HHOLO 3CYBHO20 HANPYIICEHb MA ENeK-
MPULHO20 3MIWEHHS 830089IC NPABO20 NPOOVBICeHHs: mpiuunu. Kpiv mozo, nasedeno makooic sapiayii pononHux ma
@azonHux cmpubKis 3miugery bepezie mpiuunu i Cmpubox eeKmpusHo20 nomeHyiany 6 obaacmi mpiwunu. Ha ocrnosi
AHATIZY AHATIMUYHUX MA YUCETLHUX Pe3YTbIMamia 3p001eHO BUCHOBKU CIMOCOBHO SIKICHUX 0COOIUBOCHEN OedhopMy6aHHs
1 €30€1eKMPUYHO20 K8AZIKPUCMATTYHO20 KOMRO3UmY i3 mpiwunoro muny 11 na medxci nodiny mamepianis.

Knrouosi cnosa: misxxcgasna mpiwuna, HAnpyjiceHHs, KEAIKPUCMAL, AHMUNIOCKE HABAHMANCEHHS,
00MedCeHa eNeKMPUYHA NPOHUKHICIb, 3A0ayd JIHIUHO20 CAPSJICEHHS.

https://doi.org/10.33108/visnyk_tntu2025.03.012 Ompumano 11.08.2025

ISSN 2522-4433. Bicnux THTY, Ne 3 (119), 2025 https://doi.org/10.33108/visnyk tntu2025.03 .......cccccovvviieiieainnnn, 25


https://doi.org/10.33108/visnyk_tntu2025.03.012

