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Abstract. The present study considers a mode III interface crack in a one-dimensional (1D) piezoelectric 

quasicrystal subjected to antiplane phonon and phason loading, as well as an in-plane electric field. Due to the 

complex function approach, all required electromechanical parameters are presented through vector-functions 

analytic in the entire complex plane, except in the crack region. The cases of electrically impermeable (insulated) 

and electrically limited permeable conditions on the crack faces are considered. In the first case, a vector Hilbert 

problem in the complex plane is formulated and solved exactly. In the second case, the quadratic equation with 

respect to the electric flux through the crack region is also obtained. Its solution enables the determination of 

phonon and phason stresses, displacement jumps (sliding), and also electric characteristics along the material 

interface. Analytical formulas are also derived for the corresponding stress intensity factors associated with each 

field. Numerical computations for three selected variants of the loading conditions were conducted, and the 

resulting field distributions are visualised to show crack continuation beyond the crack and also inside the crack 

region. 

Key words: interface crack, stress, quasicrystal, antiplane loading, limited electric permeability, problem 

of linear relationship 
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1. INTRODUCTION 
 

Quasicrystals (QCs) are distinguished by their long-range orientation order and 

quasiperiodic translational symmetry, endowing them with exceptional mechanical and 

functional properties compared to conventional crystalline materials. The seminal discovery by 

Shechtman et al. (1984) of metallic alloys exhibiting non-periodic long-range order and high 

hardness stimulated extensive investigation into the elasticity and fracture behaviour of these 

materials [1]. 

The foundational continuum theory of QC elasticity incorporates coupled phonon 

and phason displacement fields. In pioneering work, Ding et al. (1993) formulated the 

generalized elastic constitutive relations for quasicrystals, deriving the full electro-elastic 

coupling between phonon and phason modes [2]. Building on this framework, Fan (2011) 

provided a comprehensive mathematical treatment of QC elasticity and its applications, 

including explicit solutions for fundamental boundary-value problems [3]. Fracture 

mechanics of QCs under anti-plane shear (Mode III) has been addressed in several studies. 

Shi et al. (2007) analysed interfacial cracks between conventional elastic materials and 

quasicrystals, highlighting the role of phason fields in crack tip stress singularities [4]. Zhou 

and Li (2018) derived exact solutions for two collinear cracks normal to a 1D hexagonal 

piezoelectric QC boundary, obtaining closed-form expressions for stress intensity factors 

and displacement fields [5].  

A non-uniformly loaded anti-plane crack embedded in a half-space of a one-

dimensional piezoelectric quasicrystal was studied in [6], and two collinear electrically 

permeable anti-plane cracks of equal length lying at the mid-plane of a one-dimensional 
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hexagonal piezoelectric quasicrystal strip were investigated in [7]. Two thin strips with a 

microcrack at the interface were studied in paper [8]. Piezoelectric coupling in QCs 

introduces additional complexity. Hu et al. (2019) reduced the mixed electro-mechanical 

boundary-value problem for an interface crack in dissimilar 1D hexagonal piezoelectric 

QCs to singular integral equations via Riemann-Hilbert methods, yielding full-field 

solutions for phonon, phason, and electric quantities along the crack faces [9]. Govorukha 

and Kamlah (2024) extended these results by considering mixed electric boundary 

conditions, combining conducting and permeable crack face segments, demonstrating how 

partial electrical contact modulates crack-tip intensity factors [10]. Loboda et al. further 

generalized to multiple collinear interface cracks in layered piezoelectric QCs, revealing 

interaction effects on stress intensity factors and energy release rates under coupled 

electromechanical loading [11].  

An electrically limited permeable interface crack model was proposed by Hao and 

Shen [12] for the plane problem of a homogeneous piezoelectric material. To date, an exact anti-

plane analytical solution for an electrically limited permeable interface crack between dissimilar 

piezoelectric QCs has not been presented. The present study addresses this gap by (i) formulating 

the coupled phonon-phason-electric field equations for a bimaterial QC plate, (ii) reducing the 

interface crack boundary-value problem to a vector Hilbert problem, (iii) deriving closed-form 

expressions for crack-face opening displacement and electric potential jump, and (iv) obtaining 

analytical formulas for the stress intensity factors associated with each field. Numerical validation 

and visualization of field distributions in the crack-continuation region complete the solution, 

offering a practical tool for design and optimization of QC-based electromechanical systems.  
 

2. FORMULATION OF THE BASIC RELATIONS 
 

For the linear elastic theory of QCs, the constitutive relations, equilibrium equations and 

geometric equations of a 1D piezoelectric hexagonal QC with point group 6 mm without body 

forces and free charges can be expressed in the following form [13] 
 

3 3ij ijks ks sij s ij s s
c e E R w = − + , (1) 

  

3 3
ˆ

i iks ks is s i s s
D e E e w = + + , (2) 

  

3 3 3 3 3 3
ˆ

i ks i ks s i s i s s
H R e E K w= − + , (3) 

  

,
0

ij j
 = , ,

0
i i

D = , 3 ,
0

i i
H = , (4) 

  
1

, ,2
( )

ij i j j i
u u = + , ,i i

E = − , 3 3,i i
w w= , (5) 

 

where , , , 1, 2, 3i j k s = , and the denotation, represents the derivative operation for the space 

variables; 

i
u , 3

w  and   are the phonon displacements, phason displacement, and electric potential, 

respectively, and the atom arrangement is periodic in the 1 2
x x−  plane and quasi-periodic in 

the 3
x -axis; 

ij
  and ks

  are the phonon stresses and strains, respectively; 3i
H  and 3i

w  are the phason stresses 

and strains, respectively; 
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i
D  and i

E  are the electric displacements and electric fields, respectively, and the polarization 

direction is along the 3
x -axis; 

ijks
c  and 3 3j s

K  are the elastic constants in the phonon and phason fields, respectively; 

3ij k
R  represent the phonon–phason coupling elastic constants; 

jks
e  and ˆ jks

e  are the piezoelectric constants in the phonon and phason fields, respectively; 

is
  are the permittivity constants. 

Here, a comma in subscript denotes differentiation with respect to the following spatial 

variable. 

For the case of antiplane mechanical loading and an in-plane electric loading with 

reference to the 1 2
x Ox -plane all fields are independent of the variable 3

x . Therefore, the 

problem under consideration is a so-called anti-plane shear problem or mode-III crack problem. 

In this case 
 

1 2
0u u= = , ( )3 3 1 2

,u u x x= , ( )3 3 1 2
,w w x x= , ( )1 2

= x ,x  , (6) 

 

and the constitutive relations take the form: 
 

3

3

j 3, j

j 3, j

j , j

u

H w

D





   
   

=   
   
   

R  ( )1,2j = , (7) 

 

where 
 

44 3 15

3 2 15

15 15 11

ˆ

ˆ

c R e

R K e

e e 

=

 
 
 
 − 

R , (8) 

 

and 44 2 3
, ,c K R  stand for the phonon elastic modulus, phason elastic modulus and phonon-

phason coupling modulus, respectively, which are written in the simplified index notation. Also 

15
e , 15

ê are the piezoelectric constants of the phonon and phason fields and 11
  is the 

permittivity. Introducing the vectors 
 

 3 3
, ,

T
u w =u , 

3 3
, ,

T

j j j j
H D =  t , (9) 

 

one can write 
 

j , j
=t Ru  ( )1,2j = . (10) 

 

For the considered anti-plane problem, the equilibrium equations (4) take the form 
 

31 32

1 2

0
x x

  
+ =

 
, 

1 2

1 2

0
D D

x x

 
+ =

 
, 

31 32

1 2

0
H H

x x

 
+ =

 
. 
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Substituting (7) in the last equation, we get that the functions 3
u ,   and 3

w  satisfy the 

equations 3
0u = , 0 = , 3

0w = , respectively, i.e. they are harmonic. Therefore, present 

the vector u , composed of these functions, as real parts of some analytic vector-function 
 

( ) ( ) ( )2Re z z z= = +Ф Ф Фu  (2 is introduced for convenience), (11) 

 

where ( ) ( ) ( ) ( )1 2 3
Ф Ф Ф

T

z z , z , z=   Ф  is an arbitrary analytic vector-function of the complex 

variable 1 2
z x ix= + . 

Substituting (11) in (10), one gets 
 

( ) ( )1
' 'i iz z+= − Ф Фt B B , ( ) ( )2

' 'z z+= Ф Фt B B , (12) 

 

where i=B R . 

Bimaterial plane. Suppose that the plane ( )1 2
,x x  is composed of two half-planes 2

0x   

and 2
0x  . Different cracks, inclusions and other defects can take place on the axis 1

x . The 

presentation (11), (12) can be written for regions 2
0x   and 2

0x   which in this case takes the form 

 

( ) ( ) ( )
( ) ( )

m m m
z z= +Ф Фu ,    

( ) ( ) ( ) ( ) ( )

2
( ) ( )

m m m m m
z z = +Ф Фt B B , (13) 

 

where 1m =  for area 1 and 2m =  for the area 2; 
( )m
B are the matrices B  for areas 1 and 2, respectively; 

( )
( )

m
zФ  are the arbitrary vector functions, analytic in the areas 1 and 2, respectively. 

Next, we require that the equality 
(1) (2)

2 2
=t t  holds true on the entire axis 1

x . Then it 

follows from (13) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 21 1 2 2

1 1 1 1
0 0 0 0x i x i x i x i   + + − = − + +Φ Φ Φ ΦB B B B . (14) 

 

Here, we have used the first form of designation 1 1
( 0) ( )F x i F x


 = , which refers to the 

limit value of a function ( )F z  at 0y →  from above or below, respectively. 

The equation (14) can be written as 
 

(1) (1) (2) (2) (2) (2) (1) (1)

1 1 1 1
( 0) ( 0) ( 0) ( 0)' x i ' x i ' x - i ' x - i+ − + = −Ф Ф Ф ФB B B B . 

 

The left and right sides of the last equation can be considered as the boundary values of 
the functions 

 

(1) (1) (2) (2)
( ) ( )' z ' z−Ф ФB B  and 

(2) (2) (1) (1)
( ) ( )' z ' z−Ф ФB B , (15) 

 

which are analytic in the upper and lower planes, respectively. But it means that there is a 
function (z)M , which is equal to the mentioned functions in each half-plane and is analytic in 

the entire plane. This function is the following: 
 

2

2

(1) (1) (2) (2)

(2) (2) (1) (1)

( ) ( ) 0

( ) ( ) 0

x

x

' z ' z for
(z)=

' z ' z for

 − 


− 

Ф Ф
M

Ф Ф

B B

B B
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Assuming that 0
z

(z)
→

→M , on the basis of the Liouville theorem, we find that each of 

the functions (15) is equal to 0 for each z  from the corresponding half-plane. Hence, we obtain 
 

( )
1

(2) (2) (1) (1)
( ) ( )' z ' z

−

=Ф ФB B  for 2
0x  , (16) 

  

( )
1

(1) (1) (2) (2)
( ) ( )' z ' z

−

=Ф ФB B  for 2
0x  . (17) 

 

Further, we find the jump of the following vector-function 
 

( ) ( )(1) (2)

1 1 1
( ) 0 0' x ' x i ' x i= + − −u u u , (18) 

 

when passing through the interface. Finding from the first formula (13)  
 

( )( ) ( ) ( )
( ) ( )

m m m
' z ' z ' z= +Ф Фu  

 

or 
 

( ) ( ) ( )( ) ( ) ( )

1 1 1
0 0 0

m m m
' x i ' x i ' x i =  +Ф Фu  

 

and substituting in (18), one gets 
 

( ) ( ) ( ) ( )(1) (1) (2) (2)

1 1 1 1 1
( ) 0 0 0 0' x ' x i ' x i ' x i ' x i= + + − − − − +Ф Ф Ф Фu . 

 

Finding further of (17) ( ) ( ) ( )
1

(2) (2) (1) (1)

1 1
0 0' x i ' x i

−

− = −Ф ФB B  and substituting this 

expression together with (16), at 2
0x →+ , in the latest formula, leads to 

 

( ) ( )(1) (1)

1 1 1
( ) 0 0' x ' x i ' x i= + + −Ф Фu D D , 

 

where 
( )

( ) ( )
1

2
1

−

= −ID B B ,  1,1,1diag=I  – the identity matrix. 

Introducing a new vector-function 
 

( )

( ) ( )
( )

( )

1

2

1

2

 ,     0

      0,

z x
z

z x

 
=

− 





Φ

Φ

D
W

D
, (19) 

 

the expression for the derivative of the displacement jump can be written as 
 

( ) ( ) ( )1 1 1
x x x

+ −
= −u W W . (20) 

 

From the second relation (13), we have 
 

( ) ( ) ( )(1) (1) (1) (1) (1)

2 1 1 1
,0 0 0x ' x i ' x i= + + −Ф Фt B B . (21) 

 

Given that on the basis of (19) 
 

( ) ( )(1) 1

1 1
0 0' x i x i

−
+ = +Ф D W , 
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( ) ( ) ( )
1

(1) 1

1 1
0 0' x i x i

−
−

− = − −Ф D W  

 

and substituting these relations in (21) leads to 
 

( ) ( ) ( )1 1 1

(1)

2
, 0x x x

+ −
= −GGW Wt , (22) 

 

where ( )1 1−
=G B D . Simple calculations show that 

 

( ) ( )
1

1 1
(1) (2)

−
− − = +

  
G B B , (23) 

 

moreover, = −G G . Then the equation (22) takes the form 
 

( ) ( ) ( )( )1 1 1

(1)

2
, 0x x x

+ −
= +G W Wt . (24) 

 

The representations (20) and (24) are very convenient for solving antiplane problems 

for bimaterial piezoelectric QCs with cracks and inclusions at the interface. 
 

3. AN ELECTRICALLY INSULATED CRACK BETWEEN TWO 

PIEZOELECTRIC QUASICRYSTALS 
 

Consider a crack 1
x a  with mechanically free and electrically-insulated faces at the 

interface 2
0x =  (fig. 1). 

The shear phonon 32
 

 and phason 32
H


 stresses and electric flux are prescribed at 

infinity and are designated by the vector  
2 32 32 2

, ,H D    =  t . 

 

 
 

Figure 1. The crack between two piezoelectric quasicrystals 

 

The boundary conditions at the interface are of the form 
 

(1) (2)

32 32
0 = = ,

(1) (2)

2 2
0D D= = , 

(1) (2)

32 32
0H H= =  for 1

x a , (25) 
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32
0 = , 2

0D = , 32
0H = , 31

0 = , 1
0E = , 31

0w =   for 1
x a , (26) 

 

where *  means a jump of the corresponding function when passing through the axis 1
x . 

The first three conditions (26) are satisfied based on (14). From the satisfaction of the 

last three conditions (26), the analyticity of the vector function ( )zW  in the whole plane, except 

for the crack area, follows due to (20). Also, the fulfilment of the conditions (25) using (24) 

leads to the vector Hilbert problem of linear relationship  
 

( ) ( )1 1
0x x

+ −
+ =W W  for ( )1

,x a a − . (27) 

 

Taking into account that ( ) ( ) ( )1 1 1
x x x

+ −
= =W W W  for ( )1

,x a a −  and 

( ) ( )
1

1 x z
x z

→ →
=W W  we get by using (24) the following condition at infinity 

 

( ) 1

2

1

2
z

z
−

→


=W G t . (28) 

 

The solution of the problem (27) under the condition at infinity (28) has the form [14] 
 

( ) 1

2 2
2

1

2

z
z

z a

− 
=

−
W G t . (29) 

 

Substituting (29) in (24), we obtain: 
 

( ) 1

1
2 2

1

(1)

2 2
, 0

x
x

x a


=

−
t t  for  1

,x a a − . (30) 

 

Considering that ( ) ( ) ( )1 1 1
x x x

− +
= − =W W W  for ( )1

,x a a − , one gets from 

relations (20), (29)  
 

( ) 1

1
2

1

2
2

1

x
x

ai x

− 
=

−
u G t  for ( )1

,x a a − . (31) 

 

Integrating the last relation leads to the following formula for the jump in displacement 

of the crack faces 
 

( ) 1

1

2 2

2 1
x i a x

− 
= −u G t . (32) 

 

4. THE CASE OF PRESCRIBED ELECTRICAL DISPLACEMENTS AT THE 

CRACK FACES 
 

Let’s assume that a nonzero electric displacement 
(1) (2)

2 2 0
D D D= =  is prescribed at the 

crack faces. In this case, one has in the crack region: 
 

( )1

(1) (0)

2 2
, 0x =t t  for ( )1

,x a a −  

 

where  (0)

2 0
0,0,

T
D=t   
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Then, from the last equation and (24), we have 
 

( ) ( ) 1 (0)

1 1 2
x x

+ − −
+ = tGW W  for ( )1

,x a a −  (33) 

 

Introducing a new vector-function ( )zY  by means of the formula 

 

( ) 1 (0)

2

1
( )

2
z z

−
= +Y tW G , (34) 

we get from (33): 
 

( ) ( )1 1
0x x

+ −
+ =Y Y  for ( )1

,x a a − . (35) 

 

Condition at infinity (28) transforms into the form 
 

( ) ( )1 (0)

2 2

1

2
z

z
−

→


= −Y tG t . (36) 

 

The solution of the problem (35), (36) takes the form: 
 

( ) ( )1

2 2

(0)

2 2

1

2

z
z

z a

− 
=

−
−Y G t t  (37) 

 

Using further (24), (34) and (37), we get  
 

( ) ( ) ( )( )1 1 1

(1) (0)

2 2
, 0x x x

+ −
+= +Y Y tGt , 

 

Taking into account that ( ) ( ) ( )1 1 1
x x x

+ −
= =Y Y Y  for ( )1

,x a a −  one obtains 

 

( ) ( ) ( )1
2 2

(1) (0) (0) (0)

2 1 2 2 2 2
, 0 2

z
x

z a
x



−
= + = − +Y t tG t tt  for ( )1

,x a a − . (38) 

 

Equation (38) in the complete form can be written as  
 

( )1
2 2

23 32
, 0

z
x

z a
  

−
= , ( )1

2 2
23 32

, 0
z

x
z a

H H


−
= , ( ) ( )1

2 2
2 2 0 0

, 0
z

x
z a

D D D D


−
= − +  (39) 

 

The stress and electric displacement intensity factors (SIF) at the point a can be 

introduced in the following vector form: 
 

( )
1

1

(1)

1 2
0

, 0lim 2 ( )
x a

xx a
→ −

= −K t , (40) 

 

where  3 3
, ,

T

H D
K K K=K  

Substituting the expressions (38), (39) into (40), we get 
 

3 32
K a   

= , 3 32H
K aH 

= , ( )2 0D
K a D D 

= −  (41) 

On the basis of (20), (34) and (35), we arrive at the formula 
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( ) ( )1

1
2

(0) 1

2 2
2

1

x
x

ai x

− 
= −

−
u G t t  for ( )1

,x a a − , (42) 

 

which gives after integration 
 

( ) ( )1

1

(0) 2 2

2 2 1
x i a x

− 
= − −u G t t  for ( )1

,x a a − . (43) 

 

Expression (43) in the complete form is the following 
 

3 32

2 2

3 32 1

2 0

u

w H a x

D D











  
  

= −   
   −   

M  (44) 

 

where 
1

i
−

=M G . 

 

5. ELECTRICALLY LIMITED PERMEABLE CRACK 
 

Consider now another crack model in which the relation between the electric potential 

and displacement jumps along the crack region is taken into account. We assume now that the 

crack filler has the dielectric permittivity 
 

0a r
  = , 

 

where r
  is the relative dielectric permittivity and 

12

0
8.85 10 /C Vm −

=   is the dielectric 

constant of a vacuum. We also assume that the crack faces are free of prescribed mechanical 

loading and electric charges. Moreover, similarly to [12], we consider that the electric field 

inside the crack can be found as 
 

3 3

a
E

u u

 + −

+ −

−
= −

−
 for ( )1

,x a a − . 

 

 

where the superscripts «+» and « −» indicate the upper and lower faces of the interface, 

respectively. 

Taking into account that 2 a a
D E=  and designating 2

D  at the crack faces as 0
D , one 

arrives at the following electric condition  
 

0

3 3 3

a a
D

u u u

 
 

+ −

+ −

−
= − = −

−
 for ( )1

,x a a −  (45) 

 

along the crack region. It is worth mentioning that we use the same designation for the electric 

displacement on the crack faces as in the previous section, but in this case 0
D  is unknown and 

should be found from Eq. (45).  

Taking into account that Eq. (44) remains valid in this case, Eq. (45) can be written in 

the following form 
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( )
( )

31 32 32 32 33 2 0

0

11 32 12 32 13 2 0

a

M M H M D D
D

M M H M D D






  

  

+ + −
= −

+ + −
 (46) 

 

Equation (46) represents the quadratic equation with respect to the electric displacement 

0
D . After simplification, it can be written as 

 
2

0 1 0 2
0D D − − =  (47) 

 

where  
 

( )1 11 32 12 32 13 2 13
/

a
M M H M D M    

= + + − , ( )2 31 32 32 32 33 2 13
/

a
M M H M D M     

= + +  

 

The analysis of the solution of Eq. (47) shows that one of the two roots is physically 
unacceptable; therefore, in the following, we’ll pay our attention only to the physically 
acceptable root of this equation. 
 

6. NUMERICAL ILLUSTRATION AND DISCUSSION 
 

In this section, the main attention will be devoted to the electrically limited permeable 
crack model, which best reflects the physical peculiarities of the crack deformation. Consider for 
the analysis the piezoelectric QCs with the following values of the required parameters [15, 16]: 

(1) 10

44
5.0 10c Pa=  , 

(1) 2

15
0.318 /e C m= − , 

(1) 9

2
0.3 10K Pa=  , 

(1) 9

3
1.2 10R Pa=  , 

(1) 2

15
ˆ 0.16 /e C m= − ,  

(1) 11 2 2

11
8.25 10 / ( )C Nm −

=  for the upper material, 
 

(2) 10

44
3.55 10c Pa=  , 

(2) 2

15
17 /e C m= , 

(2) 9

2
0.15 10K Pa=  , 

(2) 9

3
1.765 10R Pa=  , 

(2) 2

15
ˆ 17 /e C m= , 

(2) 9 2 2

11
15.1 10 / ( )C Nm −

=   for the lower one. 

It is worth mentioning that the matrix M  in this case is the following 
 

11 11

11 9

9

5.3090 10 9.8852 10 0.03892

9.8852 10 1.9204 10 3.2408

0.03892 3.2408 5.8781 10

− −

− −

  − 
 

= −  −  − 
 − −  

M . 

 

For the illustration, we’ll choose 0.01a =  m and the cases of the external loading given 

in Table 1. In the last column of this Table, the corresponding values of electric flux 0
D , 

obtained from Eq. (47), are given. 
 

Table 1 

 

Load cases and corresponding electric flux 0
D  

 

Case 
6

32
10 − 

 [Pa] 
6

32
10 H

− 
 [Pa] 2

100D


 [C/m2] 0
100D  [C/m2] 

Case 1 6.0 7.0 0.5 0.9506 

Case 2 8.0 9.0 0.75 1.1982 

Case 3 10.0 11.0 1.0 1.5651 
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It is evident from Table 1 that relatively close values of external loading 
result in significantly different magnitudes of the electric flux through the crack 
region. 

The graphs of phonon, phason and electric quantities along the material interface are 

given in Figures 2–4. Particularly phonon shear stress 32 1
( ,0)x  [Pa] at the right crack 

continuation and the phonon crack faces jump (crack sliding) 3 1
( )u x  [m] are shown in Fig. 2 

(a) and (b), respectively. Here and in the following figures, the solid, dashed, and dotted lines 
represent cases 1, 2, and 3, respectively.  

 

  

 

(а) 
 

 

(b) 
 

Figure 2. Phonon shear stress at the right crack continuation (a) 
and the phonon crack faces jump (b) for three cases of the loading 

 

   

Phason stress 32 1
( ,0)H x  [Pa] at the right crack continuation and the phason crack faces 

jump 3 1
( )w x  [m] are shown in Fig. 3 (a) and (b), respectively. 

 

  

 

(а) 
 

 

(b) 
 

Figure 3. Phason stress at the right crack continuation (a) 
and the phonon crack faces jump (b) 

 

The electric displacement 2 1
( ,0)D x  [C/m2] at the right crack continuation and the 

electric field jump over the crack faces 1
( )x  [V] are shown in Fig. 4 (a) and (b), 

respectively. 
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(а) 
 

 

(b) 
 

Figure 4. Electric displacement at the right crack continuation 

and the electric field jump through the crack faces 

 

As can be seen from formulas (38) and (39), phonon and phason stresses, as well as the 

electric displacement, exhibit a square root singularity at the crack tips. For this reason, their 

graphs in Figures 2 (a), 3 (a), and 4 (a) are drawn only in the interval (0.01003 m <x1< 0.02 

m), i.e. at some distance from the crack tip. 

The SIFs for the three selected cases of loading were calculated using the formulas (41) 

and are presented in Table 2.  
 

Table 2 

 

Stress Intensity Factors (SIF) for three selected cases 

 

Case 
3

K  [Pa√m] 3H
K  [Pa√m] D

K  [C
3/2

m ] 

Case 1 1.504×107 1.755×10⁷ 0.02211 

Case 2 2.005×107 2.256×10⁷ 0.03110 

Case 3 2.507×107 2.757×107 0.04010 

  

7. CONCLUSIONS 
 

A Mode III interface crack in a one-dimensional quasicrystal with piezoelectric 

effect is considered under anti-plane mechanical and in-plane electric loading. The complex 

function method was used, and all electromechanical parameters are presented through 

vector-functions that are analytic in the entire complex plane, except in the crack region, as 

given by Equations (20) and (24). Electrically impermeable and electrically limited 

permeable crack models are assumed for analysis. The first case leads to the vector Hilbert 

problem (27) with the condition at infinity (28), and the second one requires the additional 

solution of the quadratic equation (47) with respect to the electric flux through the crack 

region. The case of a nonzero prescribed electric displacement on the crack faces is also 

considered in Section 4. For all considered types of electrical conditions, analytical 

formulas for phonon and phason stresses, displacement jumps, electric components along 

the material interface, and the corresponding stress intensity factors at the crack tip are 

derived.  

Three variants of the loading given in Table 1 were chosen for the numerical illustration. 

The corresponding values of electric flux 0
D  are also given in this table. Other numerical results 
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are summarised in Figures 2–4 and Table 2. Particularly, phonon shear stress 32 1
( ,0)x , phason 

stress 32 1
( ,0)H x  and the electric displacement 2 1

( ,0)D x  along the right crack continuation are 

given in Figures 2 (a) – 4 (a), respectively. Phonon 3 1
( )u x  and phason 3 1

( )w x  crack faces 

displacement jumps are shown in Figures 2 (b) and 3 (b), respectively, and the 

electric potential jump is given in Fig. 4 (b). It follows from the obtained results that 

along the crack-continuation region beyond the crack, the phonon and phason shear 

stresses decay proportionally to the inverse square root of the distance from the tip,  

whereas the electric displacement converges more gradually to its remote value. 

Besides, rather close values of external loading lead to very different magnitudes 

of the electric flux through the crack region, and both kinds of crack faces displacement  

and electric potential jumps maintain the square root parabolic behavior along the crack 

region. 
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УДК 539.3 
 

МІЖФАЗНА ТРІЩИНА В 1Д П'ЄЗОЕЛЕКТРИЧНОГО 

КВАЗІКРИСТАЛУ ПІД ДІЄЮ АНТИПЛОСКОГО МЕХАНІЧНОГО 

НАВАНТАЖЕННЯ ТА ЕЛЕКТРИЧНОГО ПОЛЯ 
 

Мухамед Альтумаймі; Володимир Лобода 
 

Дніпровський національний університет імені Олеся Гончара, 

Дніпро, Україна 
 

Резюме. Розглянуто тріщину типу ІІІ на межі розділу двох одновимірних квазікристалів з 

п'єзоелектричним ефектом під дією антиплоского фазонного і фононного механічного навантаження та 

плоского електричного навантаження в площині, що аналізується. Використанио метод комплексних потен- 

ціалів. Усі електромеханічні параметри представлені через вектор-функції, аналітичні на всій комплексній пло- 

щині, крім області тріщини. Для аналізу в якості основних прийнято моделі електрично непроникної тріщини 

та тріщини зі скінченною електричною проникністю. Перший випадок призводить до векторної задачі Гільбер- 

та з відповідною умовою на нескінченності, а другий додатково вимагає розв'язання квадратного рівняння 

відносно електричного потоку через область тріщини. Окремо розглянуто також випадок ненульового 

електричного зміщення, заданого на берегах тріщини. Для всіх проаналізованих видів електричних умов на 

берегах тріщини знайдено аналітичні формули для фононних і фазонних напружень та стрибків переміщень, а 

також для електричних складових уздовж межі розділу матеріалів. Крім того, отримано аналітичні формули 

для відповідних коефіцієнтів інтенсивності напружень у вершинах тріщини. Для числової ілюстрації обрано 

три варіанти навантаження, що включали різні значення фононного та фазонного напружень і електричного 

зміщення, заданих на віддаленні від тріщини. Для кожного з вказаних варіантів знай-дено відповідні значення 

електричного потоку через область тріщини. Інші числові результати представлено у графічному й 

табличному вигляді. Зокрема, представлено графіки зміни фононного і фазонного зсувного напружень та елек- 

тричного зміщення вздовж правого продовження тріщини. Крім того, наведено також варіації фононних та 

фазонних стрибків зміщень берегів тріщини і стрибок електричного потенціалу в області тріщини. На основі 

аналізу аналітичних та чисельних результатів зроблено висновки стосовно якісних особливостей деформування 

п’єзоелектричного квазікристалічного композиту із тріщиною типу ІІІ на межі поділу матеріалів. 

Ключові слова: міжфазна тріщина, напруження, квазікристал, антиплоске навантаження, 

обмежена електрична проникність, задача лінійного спряження. 
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