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Abstract. Accurate classification of electrophysiological signals, particularly electromyographic (EMG) is
essential for the development of advanced systems in sports medicine, biomechanical prosthetics, and neurocomputer
interfaces. However, challenges such as signal noise, device portability, and real-time processing constraints limit the
practical deployment of EMG-based interfaces. In this paper, we present a custom wearable device for EMG data
acquisition and real-time classification of muscle activity. The device integrates an ESP32C6 microcontroller for
wireless data transmission, an AD8232 analog sensor module for electrophysiological signal capture, and Ag/AgCl
electrodes placed on antagonist muscles of the hand. EMG signals are sampled at 1000 Hz, preprocessed by
normalization and filtering, and then classified using a two-layer feedforward neural network trained with the ADAM
optimization algorithm. The dataset contains 4000 consecutive time series that reflect the dynamics of EMG signals
across three thumb motor states: rest, abduction, and adduction. The neural network achieved a classification accuracy
0f 94% in real time, with high stability and minimal delay, demonstrating reliable detection of muscle activity patterns.
The integration of low-cost hardware with an adaptive neural classifier enables efficient real-time EMG signal
interpretation. The use of ADAM optimization ensures stable convergence and robustness to signal variability. This
work contributes a compact and effective solution for real-time EMG classification, paving the way for its application
in wearable rehabilitation systems, neuro-controlled prosthetics, and intelligent human—machine interfaces.

Key words: data analysis, electrophysiological signals, EMG, wearable sensing, classification, neural
network, optimization algorithm, pattern.
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1. INTRODUCTION

In recent years there has been rapid development of technologies in the field of neuro
prosthesis, exoskeletons and systems for the restoration and rehabilitation of patients with
neurological disorders resulting from injuries to the brain and spinal cord, strokes and paralysis. At
the same time, there is growing interest in creating the next generation of robotic prostheses capable
of adapting to the individual characteristics of the user. The use of bioelectric signals, in particular
electroencephalography (EEG), electrocardiography (ECG) and electromyography (EMG) [1, 2],
is becoming increasingly important for building effective human-machine interfaces.

EMG, as a method of recording the electrical activity of muscles, plays a key role in
monitoring muscle activity as well as studying neuromuscular connections. It allows not only the
assessment of the functional state of muscles but also the indirect examination of nerve-cell activity.
During muscle contraction, its cells generate electrical impulses that can be recorded using surface
electrodes. The main characteristics of an EMG signal are intensity (amplitude), which reflects the
force of contraction, and frequency, which characterizes the level of muscle activation. However,
despite significant scientific progress, accurate and reliable classification of EMG signals in real
time remains a challenge. This is hindered by signal instability, noise, limited hardware resources
in portable devices and the complexity of interpreting signals across different motor states.

In this context, it is relevant to develop simple, reliable and accessible solutions that provide
automatic recognition of muscle-activity patterns with high accuracy and minimal delay, for
subsequent use in rehabilitation systems, sports medicine and neurocomputer interfaces.
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The process of classifying electrophysiological signals and extracting vital information
must be reliable, automatic and highly accurate, which is why many current studies are focused on
finding methods that improve the results of data analysis and processing, including EMG [3-6].

In the paper [7], a two-layer Feedforward ANN was used to reproduce the activity of
shoulder muscles; the RMSE was 0.33—0.84 for unreported data. The authors of the work [8]
proposed a method for classifying multichannel EMG signals using DBN, which outperforms
LDA and SVM by ~7.5% and ~2.9%, respectively. At the same time, a wavelet-based DBN
was applied in the research [9] to recognize upper-limb movements. In the paper [10], a method
for classifying multichannel neurosignals to improve the detection of brain diseases was proposed
using the E-DBN architecture together with the Adam-COA method. The CNN model [11]
analyses ECG representations where the Adam optimizer provided better accuracy and training
stability compared with an optimizer such as SGD. The authors of work [12] compared several
DNN architectures for classifying gestures from EMG signals, with the Adam optimizer
providing the best results (~94% accuracy versus ~88% for other optimizers).

The analyzed studies demonstrate the scientific community’s ongoing interest in improving
the accuracy and stability of electrophysiological-signal classification, particularly EMG. The main
trends include the use of deep neural networks (DBN, CNN, DNN) and optimizers such as ADAM,
which provide better convergence and high accuracy. However, most work focuses either on
multichannel data or on complex architectures that are not always compatible with real usage
conditions, notably in portable or low-power devices for rehabilitation. Furthermore, there are no
examples of complete integration of systems for real-time collection, processing and classification
of signals on low-cost embedded solutions. This defines the relevance of the proposed approach,
which combines compact hardware with an adaptive neural network optimized using the ADAM
algorithm for practical use in sports medicine, prosthetics and neurointerfaces.

2. MAIN PART
2.1. Statement of the problem

The aim of the work is to develop a test device for collecting EMG data and classifying
muscle activity in real time through an adaptive ADAM algorithm used to optimize the weights
of a two-layer feed-forward neural network using the gradients of neuronal activation functions.
This study aims to develop a compact system that would provide:

1. Collecting EMG signals using a low-cost and energy-efficient microcontroller-based
device.

2. Primary processing and filtering of signals taking account the noise and movement
artefacts.

3. Real-time classification of muscle states.

4. Ensuring the stability and accuracy of classification is suitable for further
implementation in practical medical-rehabilitation or sports systems.

The research task includes not only the development of a hardware-software
complex but also testing its ability to accurately classify the main states of muscle activity
(rest, abduction, adduction) based on a single-person collected EMG dataset. Particular
attention should be paid to ensuring the stable operation of the classifier under conditions
of limited resources and potential use in mobile or portable devices.

2.2. Hardware part of the development

The following components were used in developing the test device for collecting and
analyzing EMG data (Fig. 1):
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1. The ESP32C6 microcontroller providing wireless data transmission such as Wi-Fi
and Bluetooth and supporting numerous sensors, due to which it is often used in Internet of
Things (IoT) technology [13—15].

2. The integrated ADS8232 chip designed for reading electrophysiological
signals, suitable for use in portable devices, health monitors and telemedicine
systems.

3. Ag/AgCl electrodes used for reading electrical activity; they contact the skin and
transmit electrophysiological signals to the sensor module.

Figure 1. Test device for collecting EMG data

2.3. Data collection and processing

For EMG data collection, Ag/AgCl electrodes are preliminarily placed on
antagonist muscles of the hand. Analogue-to-digital conversion (ADC) converts
analogue electrophysiological signals into a digital format for further processing. An ADC
with a high sampling frequency of 1 kHz ensures accurate reproduction of muscle
activity, preserving high-frequency components necessary for correct reconstruction
of contraction amplitude. The ADS8232 module acts as a differential amplifier/filter,
allowing digital filtering at 10-450 Hz. Once the signal enters the ESP32C6
microcontroller, it undergoes normalization, which brings the signal values to the standard
range [0, 1], thereby facilitating further processing and avoiding the influence of absolute
amplitudes. All these steps reduce noise and artefacts that may arise due to electrode
movement or electrical interference. The microcontroller transmits the already aggregated
data to the computer via wireless communication (Fig. 2). The Wi-Fi 6 (802.11ax)
communication standard is used, offering improved bandwidth and speed in congested
networks in the 2.4 GHz range, providing greater range and signal stability even through
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interference, which is important for continuous transmission of electrophysiological
signals.
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Figure 2. The working principle of the test device for collecting and analyzing EMG data
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2.4. Data classification

A model based on a two-layer feed-forward neural network (FFNN) is used for
EMG-signal classification. The network learns to recognize different muscle states/actions. The
model training process includes data preparation: EMG data are split into training and test sets.
The model is trained for 50 epochs; the size of the hidden layer in the model is set to 64 neurons.
During training the ADAM (Adaptive Moment Estimation) algorithm is used, combining
gradient descent with adaptive learning-rate correction. This is a key element in training the
model because these gradients indicate the direction in which the weights need to be adjusted
to reduce the loss, allowing greater accuracy and stable and fast convergence even for large and
complex datasets. To update the parameters 8, the ADAM algorithm uses the following
equations:

my = Bimer + (1 - B1)g,

vi = Baver + (1 - B2)gd,
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where g; are the gradients, m, is the exponentially weighted moving average of the gradients
and v, is the exponentially weighted moving average of the squared gradients. The default
values for f8; and [3,, which are exponential decay rates for moment estimation, are 0.9 and
0.99 respectively. mf and v} are the bias-corrected estimates of m; and v;; e=le-8 is a
parameter to avoid division by zero; 7 is the learning rate.

After training, the model is evaluated on the test set; accuracy is calculated as the
proportion of correctly predicted classes, which is an important indicator of its
effectiveness. To reduce the impact of random fluctuations in the predicted values, a
function is used that «activates» a neuron if the input value is greater than zero and returns
zero if the input value is equal to or less than zero. This smooths the data, allowing more
stable results. The model saves the learned weights, allowing them to be used further
without retraining. During the prediction of new data, the model returns not only the
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predicted classes but also probabilities, which helps to assess the degree of confidence in
each prediction.
2.5. Testing of the developed device

During the experiment, a dataset of EMG signals collected with the developed test device
was gathered consisting of 4 000 consecutive time series representing the variability of electrode
signals. The collected set was used to test the developed EMG-data classifier based on the ADAM
algorithm used to optimize the two-layer feed-forward neural-network model (80 % for training
and 20 % for testing). Figure 3 visualizes the classification results of EMG data obtained from the
test device in real time. The graphs demonstrate the processing and recognition of muscle activity
in three states: rest (1), abduction (0) and adduction of the thumb (2):

— EMG HAND (top graph) displays the normalized EMG signal read from the
antagonist muscles. Clear amplitude fluctuations corresponding to muscle activity during motor
actions can be observed;

— state displays the real (reference) muscle-activity states recorded during the
experiment;

— predicted shows the predicted classes generated by the model. With a predominant
majority of correctly classified states, the results correspond to the reference values;

— smoothed predicted is the model’s prediction smoothed by a moving average
(reducing fluctuations between state transitions, increasing the model’s resistance to noise and
short bursts);

— probabilities illustrate the prediction probabilities for each class: the orange line
corresponds to the model’s confidence in the rest state; the green line the confidence in thumb
adduction; and the blue line the confidence in thumb abduction.

The last metric is used to convert the raw model outputs into probability distributions,
interpreting each result as belonging to the corresponding pattern. Clear dominance of one of
the lines in each segment of the signal indicates a high degree of differentiation between states.

AT
R

Figure 3. EMG data classification results

The test results for the participant’s dataset achieved a classification accuracy of
94% in real time. Based on the visualization of the EMG-signal classification results, we
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can conclude that the developed model shows high accuracy in recognizing thumb states in
real time. The model’s predictions closely match the reference values, indicating correct
training and adaptation of the model to the signal characteristics. The probability
distributions confirm the confidence of the classifier: only one of the curves clearly
dominates in each time window, indicating effective differentiation between classes. The
applied smoothing further improves the stability of predictions, reducing the impact of
single errors or noise in the signal. Thus, the presented classifier demonstrates significant
potential for use in biomedical diagnostic and rehabilitation technologies that require
accurate and rapid identification of muscle states/actions.

3. CONCLUSION

During the study, a test device for collecting and classifying EMG data was developed,
designed to determine the states of hand muscles. Its principle of operation ensures the
acquisition of EMG signals, their primary processing and wireless transmission of data via
Wi-Fi for further analysis on a computer. The proposed classification model uses the ADAM
algorithm to optimize the weights of a two-layer feed-forward neural network using the
gradients of neuronal activation functions, enabling efficient determination of functional
muscle states/actions with high accuracy, namely 94 % based on the test dataset of the
experiment participant. Among the strengths of the proposed approach are the compactness of
the device, stable data transmission via Wi-Fi and the adaptive operation of the neural network.
Well-implemented stages of filtering, normalization and signal processing contribute to
improving classification quality. At the same time, a limitation of this study is the use of data
from only one participant, which does not allow the model’s generalized capability to be tested
on other users. Other neural-network architectures or alternative optimizers were not tested for
comparison with Adam. In future work it is planned to expand the experiment to a larger
number of participants, use multichannel EMG recording and test the model under dynamic
conditions, for example during movement or sporting loads. It would also be advisable to create
an interface for visual feedback or integrate it into a neuroprosthesis or rehabilitation trainer.
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PO3III3HABAHHSA EMI'-ITATEPHIB CTAHIB M'A3IB
BEJIMKOI'O HAJIbISI 3 BHKOPUCTAHHAM HOCUMHUX
CEHCOPIB 1 AJAIITUBHOI HEUPOHHOI MEPEKI

Nanuiao Mariok'; Inna Ckapra-bangyposa'*; Mapuna Jlepkay’

I Tepuoninvcoxuii nayionansnutl mexuiunuti yrnisepcumem imeni leana Iynios,
Tepnoninw, Yxpaina
2Oxfom’ Brookes University, Oxford, UK

Pestome. Touna kracugixayis enekmpoghiziolociunux cueHanie, 30kpema erekmpomiozpagpiunux (EMT),
€ 8aXCUB0I0 O PO3POONEHHA CYYACHUX CUCMeEM ) CHOPMUBHILl MeOuyuHi, OioMexaHiunux npome3ax ma
Hetipokomn tomeprux inmepgeticax. OOHaK maxi npooaemu, K Uym CUSHALY, NOPMAMUBHICIb NPUCMPOI8 ma
00MENCEHHS ONPAYIOBAHHS 8 PEATbHOMY 4aCi 0OMeNCYIOmb NPAKMUYHE 8NPOBAONCEHHS, IHMeppelicié Ha OCHOGI
EMTI. Y ecmammi npeocmasneno cneyianizosanuil Hocumuil npucmpitl 015 3oupanns oanux EMI™ ma knacugbixayii
Mm'a3e60i axmusnocmi 6 pedcumi peanvrozo uacy. Ilpucmpii inmezpye mixpoxoumponep ESP32C6 oas
b6e30pomosoco  nepedasanwHs — OAQHUX,  AHANO208UL  CEHCOpHUU  MmoOyib ADS8232  Ons  3axonnenus
enekmpodhizionoziunux cuenanie ma enexkmpoou Ag/AgCl, posmiweni na m'azax-anmazouicmax Kucmi pyKu.
Cuenanu EMI ouckpemusytomocs 3 yacmomoro 1000 I'y, nonepednvo onpaybo8yiomscsi WiAXOM HOpMAanizayii
ma @irempayii, a nomim Kiacugikyromscs 3a O0ONOMO20K0 0B80WAPOBOT HEUPOHHOI MepexCci NpsAMo2o
PO3NOBCIOOJICEeHH s, HagueHol 3a donomozoio anzopummy onmumizayii ADAM. Ha6ip oanux micmums 4000
NOCAI00BHUX HACOB8UX Ps0i8, AKI 8idoOpadicaiomb ounamiky cuenanie EMI y mpvox cmamax pyxie eenuxozo
nanysa: cnokoi, 8iogedenns ma npusedenns. Hetliponna mepesica docsena mounocmi knacugixayii 94% 6 peacumi
PeanbHO20 4acy 3 8UCOKOI0 CMADINbHICMIO MA MIHIMATbHUM 3AMPUMAHHAM, 0eMOHCIMPYIOUU HAOIlIHe BUABIEHHS
namephie m'azegoi axmusenocmi. Inmezpayis HeO0po2oco 00AAOHAHHA 3 AOANMUGHUM  HEUPOHHUM
Kaacugixamopom 0o3eonae egexmusHo inmepnpemyeamu cucnaiu EMI" y peanvnoco uacy. Bukopucmanusa
onmumizayii ADAM 3abe3neuye cmabinbhy Konsepeenyio ma cmilukicms 00 gapiabenvrocmi cuenany. Ll poboma
NPONOHYE KOMNAKMHe ma epekmugHe piwenns 0 kiacugixayii EMI y peoicumi peanvromy uaci, wo 8iokpusae
wisax Onsi 1020 3ACMOCY8AHHS 6 HOCUMUX pedbiiimayitiHux CcUucmemax, HelpoKeposanux npome3ax ma
iHmeneKxmyanbHux iHmepgeicax I1r0OUHA—MAUUHA.

Knrwuosi cnosa: ananiz oanux, enexkmpodizionociuni cuenanu, EMI, nocumi damuuku, kiacugixayis,
HeUpoOHHA Mepedca, ONMUMIZAYIUHUL AeOPUMM, HAMEPH.
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