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Abstract. Accurate classification of electrophysiological signals, particularly electromyographic (EMG) is 

essential for the development of advanced systems in sports medicine, biomechanical prosthetics, and neurocomputer 

interfaces. However, challenges such as signal noise, device portability, and real-time processing constraints limit the 

practical deployment of EMG-based interfaces. In this paper, we present a custom wearable device for EMG data 

acquisition and real-time classification of muscle activity. The device integrates an ESP32C6 microcontroller for 

wireless data transmission, an AD8232 analog sensor module for electrophysiological signal capture, and Ag/AgCl 

electrodes placed on antagonist muscles of the hand. EMG signals are sampled at 1000 Hz, preprocessed by 

normalization and filtering, and then classified using a two-layer feedforward neural network trained with the ADAM 

optimization algorithm. The dataset contains 4000 consecutive time series that reflect the dynamics of EMG signals 

across three thumb motor states: rest, abduction, and adduction. The neural network achieved a classification accuracy 

of 94% in real time, with high stability and minimal delay, demonstrating reliable detection of muscle activity patterns. 

The integration of low-cost hardware with an adaptive neural classifier enables efficient real-time EMG signal 

interpretation. The use of ADAM optimization ensures stable convergence and robustness to signal variability. This 

work contributes a compact and effective solution for real-time EMG classification, paving the way for its application 

in wearable rehabilitation systems, neuro-controlled prosthetics, and intelligent human–machine interfaces. 

Key words: data analysis, electrophysiological signals, EMG, wearable sensing, classification, neural 

network, optimization algorithm, pattern.  
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1. INTRODUCTION 
 

In recent years there has been rapid development of technologies in the field of neuro 

prosthesis, exoskeletons and systems for the restoration and rehabilitation of patients with 

neurological disorders resulting from injuries to the brain and spinal cord, strokes and paralysis. At 

the same time, there is growing interest in creating the next generation of robotic prostheses capable 

of adapting to the individual characteristics of the user. The use of bioelectric signals, in particular 

electroencephalography (EEG), electrocardiography (ECG) and electromyography (EMG) [1, 2], 

is becoming increasingly important for building effective human-machine interfaces. 

EMG, as a method of recording the electrical activity of muscles, plays a key role in 

monitoring muscle activity as well as studying neuromuscular connections. It allows not only the 

assessment of the functional state of muscles but also the indirect examination of nerve‑cell activity. 

During muscle contraction, its cells generate electrical impulses that can be recorded using surface 

electrodes. The main characteristics of an EMG signal are intensity (amplitude), which reflects the 

force of contraction, and frequency, which characterizes the level of muscle activation. However, 

despite significant scientific progress, accurate and reliable classification of EMG signals in real 

time remains a challenge. This is hindered by signal instability, noise, limited hardware resources 

in portable devices and the complexity of interpreting signals across different motor states. 

In this context, it is relevant to develop simple, reliable and accessible solutions that provide 

automatic recognition of muscle‑activity patterns with high accuracy and minimal delay, for 

subsequent use in rehabilitation systems, sports medicine and neurocomputer interfaces. 
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The process of classifying electrophysiological signals and extracting vital information 
must be reliable, automatic and highly accurate, which is why many current studies are focused on 
finding methods that improve the results of data analysis and processing, including EMG [3–6]. 

In the paper [7], a two‑layer Feedforward ANN was used to reproduce the activity of 

shoulder muscles; the RMSE was 0.33–0.84 for unreported data. The authors of the work [8] 
proposed a method for classifying multichannel EMG signals using DBN, which outperforms 
LDA and SVM by ~7.5% and ~2.9%, respectively. At the same time, a wavelet‑based DBN 

was applied in the research [9] to recognize upper‑limb movements. In the paper [10], a method 

for classifying multichannel neurosignals to improve the detection of brain diseases was proposed 
using the E-DBN architecture together with the Adam-COA method. The CNN model [11] 
analyses ECG representations where the Adam optimizer provided better accuracy and training 
stability compared with an optimizer such as SGD. The authors of work [12] compared several 
DNN architectures for classifying gestures from EMG signals, with the Adam optimizer 
providing the best results (~94% accuracy versus ~88% for other optimizers). 

The analyzed studies demonstrate the scientific community’s ongoing interest in improving 

the accuracy and stability of electrophysiological‑signal classification, particularly EMG. The main 

trends include the use of deep neural networks (DBN, CNN, DNN) and optimizers such as ADAM, 
which provide better convergence and high accuracy. However, most work focuses either on 
multichannel data or on complex architectures that are not always compatible with real usage 

conditions, notably in portable or low‑power devices for rehabilitation. Furthermore, there are no 

examples of complete integration of systems for real‑time collection, processing and classification 

of signals on low‑cost embedded solutions. This defines the relevance of the proposed approach, 

which combines compact hardware with an adaptive neural network optimized using the ADAM 
algorithm for practical use in sports medicine, prosthetics and neurointerfaces. 
 

2. MAIN PART 
 

2.1. Statement of the problem 
 

The aim of the work is to develop a test device for collecting EMG data and classifying 
muscle activity in real time through an adaptive ADAM algorithm used to optimize the weights 

of a two‑layer feed‑forward neural network using the gradients of neuronal activation functions. 

This study aims to develop a compact system that would provide: 
1. Collecting EMG signals using a low‑cost and energy‑efficient microcontroller‑based 

device. 
2. Primary processing and filtering of signals taking account the noise and movement 

artefacts. 
3. Real-time classification of muscle states. 
4. Ensuring the stability and accuracy of classification is suitable for further 

implementation in practical medical‑rehabilitation or sports systems. 

The research task includes not only the development of a hardware-software 
complex but also testing its ability to accurately classify the main states of muscle activity 
(rest, abduction, adduction) based on a single-person collected EMG dataset. Particular 
attention should be paid to ensuring the stable operation of the classifier under conditions 
of limited resources and potential use in mobile or portable devices. 

 

2.2. Hardware part of the development 
 

The following components were used in developing the test device for collecting and 
analyzing EMG data (Fig. 1): 
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1. The ESP32C6 microcontroller providing wireless data transmission such as Wi‑Fi 
and Bluetooth and supporting numerous sensors, due to which it is often used in Internet of 
Things (IoT) technology [13–15]. 

2. The integrated AD8232 chip designed for reading electrophysiological 

signals, suitable for use in portable devices, health monitors and telemedicine 

systems. 

3. Ag/AgCl electrodes used for reading electrical activity; they contact the skin and 

transmit electrophysiological signals to the sensor module. 
 

 

 

Figure 1. Test device for collecting EMG data 
 

2.3. Data collection and processing  
 

For EMG data collection, Ag/AgCl electrodes are preliminarily placed on 

antagonist muscles of the hand. Analogue‑to‑digital conversion (ADC) converts 

analogue electrophysiological signals into a digital format for further processing. An ADC 

with a high sampling frequency of 1 kHz ensures accurate reproduction of muscle 

activity, preserving high‑frequency components necessary for correct reconstruction 

of contraction amplitude. The AD8232 module acts as a differential amplifier/filter, 

allowing digital filtering at 10–450 Hz. Once the signal enters the ESP32C6 

microcontroller, it undergoes normalization, which brings the signal values to the standard 

range [0, 1], thereby facilitating further processing and avoiding the influence of absolute 

amplitudes. All these steps reduce noise and artefacts that may arise due to electrode 

movement or electrical interference. The microcontroller transmits the already aggregated 

data to the computer via wireless communication (Fig. 2). The Wi‑Fi 6 (802.11ax) 

communication standard is used, offering improved bandwidth and speed in congested 

networks in the 2.4 GHz range, providing greater range and signal stability even through 
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interference, which is important for continuous transmission of electrophysiological 

signals. 

 

 

Figure 2. The working principle of the test device for collecting and analyzing EMG data 

 

2.4. Data classification 
 

A model based on a two‑layer feed‑forward neural network (FFNN) is used for 

EMG‑signal classification. The network learns to recognize different muscle states/actions. The 

model training process includes data preparation: EMG data are split into training and test sets. 

The model is trained for 50 epochs; the size of the hidden layer in the model is set to 64 neurons. 

During training the ADAM (Adaptive Moment Estimation) algorithm is used, combining 

gradient descent with adaptive learning‑rate correction. This is a key element in training the 

model because these gradients indicate the direction in which the weights need to be adjusted 

to reduce the loss, allowing greater accuracy and stable and fast convergence even for large and 

complex datasets. To update the parameters 𝜃𝑡  the ADAM algorithm uses the following 

equations: 
 

mt = β1mt-1 + (1 – β1)gt, 

  

vt = β2vt-1 + (1 – β2)gt
2, 

  

𝑚𝑡
⋀ =

𝑚𝑡

1− 𝛽1
𝑡, 𝑣𝑡

⋀ =
𝑣𝑡

1− 𝛽2
𝑡 , 

 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡
⋀ + 𝜖

𝑚𝑡
⋀, 

(1) 

 

where gt are the gradients, 𝑚𝑡 is the exponentially weighted moving average of the gradients 

and 𝑣𝑡 is the exponentially weighted moving average of the squared gradients. The default 

values for 𝛽1 and 𝛽2, which are exponential decay rates for moment estimation, are 0.9 and 

0.99 respectively. 𝑚𝑡
∧ and 𝑣𝑡

∧ are the bias‑corrected estimates of 𝑚𝑡 and 𝑣𝑡; є=1е-8 is a 

parameter to avoid division by zero; 𝜂 is the learning rate. 

After training, the model is evaluated on the test set; accuracy is calculated as the 

proportion of correctly predicted classes, which is an important indicator of its 

effectiveness. To reduce the impact of random fluctuations in the predicted values, a 

function is used that «activates» a neuron if the input value is greater than zero and returns 

zero if the input value is equal to or less than zero. This smooths the data, allowing more 

stable results. The model saves the learned weights, allowing them to be used further 

without retraining. During the prediction of new data, the model returns not only the 
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predicted classes but also probabilities, which helps to assess the degree of confidence in 

each prediction. 

2.5. Testing of the developed device 
 

During the experiment, a dataset of EMG signals collected with the developed test device 

was gathered consisting of 4 000 consecutive time series representing the variability of electrode 

signals. The collected set was used to test the developed EMG‑data classifier based on the ADAM 

algorithm used to optimize the two‑layer feed‑forward neural‑network model (80 % for training 

and 20 % for testing). Figure 3 visualizes the classification results of EMG data obtained from the 

test device in real time. The graphs demonstrate the processing and recognition of muscle activity 

in three states: rest (1), abduction (0) and adduction of the thumb (2): 

− EMG_HAND (top graph) displays the normalized EMG signal read from the 

antagonist muscles. Clear amplitude fluctuations corresponding to muscle activity during motor 

actions can be observed; 

− state displays the real (reference) muscle‑activity states recorded during the 

experiment; 

− predicted shows the predicted classes generated by the model. With a predominant 

majority of correctly classified states, the results correspond to the reference values; 

− smoothed_predicted is the model’s prediction smoothed by a moving average 

(reducing fluctuations between state transitions, increasing the model’s resistance to noise and 

short bursts); 

− probabilities illustrate the prediction probabilities for each class: the orange line 

corresponds to the model’s confidence in the rest state; the green line the confidence in thumb 

adduction; and the blue line the confidence in thumb abduction. 

The last metric is used to convert the raw model outputs into probability distributions, 

interpreting each result as belonging to the corresponding pattern. Clear dominance of one of 

the lines in each segment of the signal indicates a high degree of differentiation between states. 

 

 
 

Figure 3. EMG data classification results 

 

The test results for the participant’s dataset achieved a classification accuracy of 

94% in real time. Based on the visualization of the EMG‑signal classification results, we 
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can conclude that the developed model shows high accuracy in recognizing thumb states in 

real time. The model’s predictions closely match the reference values, indicating correct 

training and adaptation of the model to the signal characteristics. The probability 

distributions confirm the confidence of the classifier: only one of the curves clearly 

dominates in each time window, indicating effective differentiation between classes. The 

applied smoothing further improves the stability of predictions, reducing the impact of 

single errors or noise in the signal. Thus, the presented classifier demonstrates significant 

potential for use in biomedical diagnostic and rehabilitation technologies that require 

accurate and rapid identification of muscle states/actions. 
 

3. CONCLUSION 
 

During the study, a test device for collecting and classifying EMG data was developed, 

designed to determine the states of hand muscles. Its principle of operation ensures the 

acquisition of EMG signals, their primary processing and wireless transmission of data via 

Wi‑Fi for further analysis on a computer. The proposed classification model uses the ADAM 

algorithm to optimize the weights of a two‑layer feed‑forward neural network using the 

gradients of neuronal activation functions, enabling efficient determination of functional 

muscle states/actions with high accuracy, namely 94 % based on the test dataset of the 

experiment participant. Among the strengths of the proposed approach are the compactness of 

the device, stable data transmission via Wi‑Fi and the adaptive operation of the neural network. 

Well‑implemented stages of filtering, normalization and signal processing contribute to 

improving classification quality. At the same time, a limitation of this study is the use of data 

from only one participant, which does not allow the model’s generalized capability to be tested 

on other users. Other neural‑network architectures or alternative optimizers were not tested for 

comparison with Adam. In future work it is planned to expand the experiment to a larger 

number of participants, use multichannel EMG recording and test the model under dynamic 

conditions, for example during movement or sporting loads. It would also be advisable to create 

an interface for visual feedback or integrate it into a neuroprosthesis or rehabilitation trainer. 
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Резюме. Точна класифікація електрофізіологічних сигналів, зокрема електроміографічних (ЕМГ), 

є важливою для розроблення сучасних систем у спортивній медицині, біомеханічних протезах та 

нейрокомп’ютерних інтерфейсах. Однак такі проблеми, як шум сигналу, портативність пристроїв та 

обмеження опрацювання в реальному часі обмежують практичне впровадження інтерфейсів на основі 

ЕМГ. У статті представлено спеціалізований носимий пристрій для збирання даних ЕМГ та класифікації 

м'язевої активності в режимі реального часу. Пристрій інтегрує мікроконтролер ESP32C6 для 

бездротового передавання даних, аналоговий сенсорний модуль AD8232 для захоплення 

електрофізіологічних сигналів та електроди Ag/AgCl, розміщені на м'язах-антагоністах кисті руки. 

Сигнали ЕМГ дискретизуються з частотою 1000 Гц, попередньо опрацьовуються шляхом нормалізації 

та фільтрації, а потім класифікуються за допомогою двошарової нейронної мережі прямого 

розповсюдження, навченої за допомогою алгоритму оптимізації ADAM. Набір даних містить 4000 

послідовних часових рядів, які відображають динаміку сигналів ЕМГ у трьох станах рухів великого 

пальця: спокої, відведення та приведення. Нейронна мережа досягла точності класифікації 94% в режимі 

реального часу з високою стабільністю та мінімальним затриманням, демонструючи надійне виявлення 

патернів м'язевої активності. Інтеграція недорогого обладнання з адаптивним нейронним 

класифікатором дозволяє ефективно інтерпретувати сигнали ЕМГ у реального часу. Використання 

оптимізації ADAM забезпечує стабільну конвергенцію та стійкість до варіабельності сигналу. Ця робота 

пропонує компактне та ефективне рішення для класифікації ЕМГ у режимі реальному часі, що відкриває 

шлях для його застосування в носимих реабілітаційних системах, нейрокерованих протезах та 

інтелектуальних інтерфейсах людина–машина. 

Ключові слова: аналіз даних, електрофізіологічні сигнали, ЕМГ, носимі датчики, класифікація, 

нейронна мережа, оптимізаційний алгоритм, патерн.  
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