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Abstract. A numerical and analytical investigation of the influence of spatial variation in reinforcement
density on the stress—strain state (SSS) and effective elastic characteristics of unidirectional fibrous composites is
presented. The importance of this work is due to the fact that in modern engineering applications (aerospace,
automotive, and shipbuilding), the reinforcement density often varies along one or several coordinates for
components of complex shape or variable thickness. This affects the stress—strain state and the accuracy of
analytical estimates based on classical averaged models. The objective of the paper is to formulate and analyze
relationships for the effective characteristics of an orthotropic layer with a variable reinforcement coefficient.
Based on the rule of mixtures (Voigt and Reuss estimates), refined relationships for the components of the stiffness
matrix of the orthotropic layer were derived. These relationships take into account the variable reinforcement
coefficient along the height of the cross-section, and a constant coefficient along the width. Verification and
comparison of the obtained relationships with simplified averaged formulas and 3D finite element method (FEM)
calculations performed in Ansys Workbench were carried out. For the FEM modeling, a representative volume of
trapezoidal shape (height 200 mm, bases 30 mm and 90 mm, thickness 30 mm) was considered in the tension problem
(one end fixed, the load of 40 kN applied at the other end). Materials: carbon fiber and matrix. Three models were
constructed: (1) with geometrically separated components, (2) equivalent orthotropic with refined stiffness matrix
components, (3) equivalent orthotropic with simplified formulas. It is shown that taking into account the variability
of reinforcement density in two directions reduces the error in determining displacements and moduli. The refined
formulas demonstrate a significant reduction in errors in the «quasi-homogeneousy interior region of the sample:
the average relative displacement error is about 2% for the refined formulas compared to 5% for the simplified
ones. At the ends of the sample, due to edge effects, the errors reach up to 30%. The limits for the correct
application of averaged relationships in tension problems were determined (for the given sample, the interval is
75—190 mm), and directions for extrapolation to bending were outlined. This requires a separate sensitivity
analysis with respect to shear characteristics.

Key words: fibrous composites, anisotropy, rule of mixtures, stiffness matrix, modulus of elasticity, finite
element method.
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1. INTRODUCTION

Modern engineering applications of fibrous composites (aerospace, automotive,
shipbuilding) rely on the ability to shape desirable mechanical properties by choosing
the reinforcement architecture and the element geometry. The key parameter is the fiber volume
fraction, or reinforcement coefficient, which determines the effective moduli, Poisson’s and
shear ratios. In practice, particularly for components of complex shape or variable thickness,
the reinforcement density varies along one or more coordinates, which affects the stress-strain
state and the accuracy of analytical estimates based on classical averaged models.

The objectives of this paper are: (i) to formulate and analyze relationships for the
effective characteristics of the orthotropic layer with variable reinforcement coefficient along
characteristic coordinate; (i) to verify these relationships using 3D FEM model of
representative volume with variable cross-section; (iii) to determine the limits of correctness of
the averaged formulas in the tension problem.
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1.1. Literature review and problem statement

The theory and engineering models of the effective elastic properties of unidirectional
composites traditionally rely on both macro- and microscopic approaches, ranging from classical
textbooks and monographs to applied developments for structures with variable stiffness [1-7, 9—
15]. Macroscopic approaches (the rule of mixtures and its modifications) provide simple closed
formulae for E;, E,, G1,, V12 assuming homogeneous fiber distribution. Microscopic approaches
and numerical models make it possible to take into account geometry, fiber—matrix contact, and
local effects; however, they are sensitive to discretization and connection conditions.

In products with variable geometry (conical and spherical shells, panels of varying
thickness), the distance between fibers changes systematically, and consequently, the local
fraction of the reinforcing phase varies. This poses the problem of correct transitioning from
local constituents to the effective characteristics of the layer with reinforcement parameter Y
as a function of coordinate, and of estimating the errors associated with the application of
simplified averaged models.

2. METHODOLOGY AND MATHEMATICAL MODEL
2.1. Geometry, materials, and boundary conditions

The representative volume (sample) of trapezoidal shape: top base 30 mm, bottom
base 90 mm, height 200 mm, thickness 30 mm was considered. Reinforcement consists of
carbon fibers with square cross-section, 10 mm on each side.. Mechanical properties: for
fiber, modulus of elasticity is E; = 300 000 MPa, Poisson’s ratio v; = 0.28v; for the matrix,

E, = 4000 MPa,v, = 0.22. FEM mesh is tetrahedra with characteristic size of 2 mm.
Boundary conditions: one end is fixed; uniformly distributed load of 40 kN is applied at the
free end. Along the fiber axis (height), the effective fiber fraction 3(x;) € [0.111, 0.333]
varies; in the width direction, constant coefficient ¥y = 0.333 is assumed.

2.2. Averaged relations and reinforcement variability

For unidirectional layer with regular arrangement of fibers, ideal contact, and small
deformations, Hooke’s law in the plane stress state is expressed as

{o} =[Cl{e},
{0} = (011, 022, T12)",
{e} = (11, €22 ¥12) T
where the stiffness matrix of the orthotropic layer has the following form
[C] = (€11 €12 0 €12 €22 000 o6 ).

The generalized rule of mixtures linearly interpolates the properties of the composite
according to the fiber volume fraction V. For the direction along the fibers (Voigt estimate)

Ei(x1) = Ep V(xiEy [1 -V (xy)],
for the direction across the fibers (Reuss estimate)

1 _ V(x1) n 1-=V(xy)
E;(xq) Er Ey '
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and for the shear modulus in the plane of layer G;,(x;) the shear moduli for the individual
components (fiber and matrix) are determined the first. They are calculated using the general
formula for isotropic material, which relates the shear modulus to the elastic (Young’s) modulus
and Poisson’s ratio:

E

“=2awm

Thus, using the properties of fiber (E,VF) and matrix (E'vy,), we obtain:

Ep Ey

Go =——  TaGy = —o
Fo o0 +ve) 2™ =0 1)

The effective shear modulus of the composite G;,(x;), according to the inverse rule of
mixtures (Reuss estimate), is defined as:

1 . V(xq) n 1-=V(xy)
G12(x1) G Gm

The effective Poisson’s ratios can be estimated as:
Vi2(x1) = Vvp V(x1) + vy [1 =V (x1)],

E
V21(x1) = v12(xq1) Ejg—ii;

In the presence of the variable reinforcement fraction along x; coordinate, a
separate consideration of reinforcement is introduced with two: ¥3(x;) — the variable
reinforcement coefficient along the height of the cross-section, and a constant coefficient Y
along the width of the section. The equivalent parameter for averaging over the cross-
section is: V(x;) = Y Y3(xq).

Refined expressions for ¢y1,C22,C12,C6 as functions Ej, Ep, vy, vy, V(xq)
are obtained by substituting the given relationships into the corresponding equations
for the strain characteristics, followed by the calculation of the stiffness coefficients [8].
For further comparison, simplified formulas are also used to calculate the
modulus of elasticity in the characteristic directions within the plane of the
cross-section:

(smpl) _ El E2
) = Tl Ey @
ES™Y (xy) = By + B, [1 - 9], )

which do not take into account the dependence 15 (x; ), assuming that 1) remains constant along
both axes in the plane of the cross-section.

Three calculation models were constructed:

1. The sample with geometrically separated composite components (fiber + matrix) and
variable cross-section;

2. The equivalent orthotropic model with constant cross-section and refined [C(x;)],
calculated discretely at five sections based on Y5 (x;);
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3. The equivalent orthotropic model with constant cross-section, using the simplified
averaged formulas (1), (2).

For each setup, analysis of the displacement distribution along the sample axis was
carried out, and the relative errors of the results obtained from the simplified models 2
and 3 were evaluated with respect to the sample model with geometrically separated
composite components (model 1).

3. RESULTS
3.1. Effective moduli according to different approaches

Comparative estimates of the moduli (MPa) were obtained for the characteristic sections
of the sample. The table shows the example of the correspondence from five control coordinates
along the axis (40-200 mm) for two approaches: simplified and refined.

Table 1

Calculated elastic moduls results using different methods for determining elastic properties

Coordinate along the rod axis, mm | E3, (2)-(3) E3, (1) E4, (2)-(3) E4, (1)
40 29517 27596 5228 4486
80 23474 22349 4894 4346
120 19745 19011 4703 4277
160 17214 16701 4579 4237
200 15385 15007 4493 4211

3.2. Displacement fields and errors

Figure 1 shows The calculation 3D model with the overall displacement is shown in
Fig. 1. The displacement graphs along the central axis (Fig. 2) demonstrate systematic
difference between the simplified and refined approaches compared to the designed model:

- At the ends of the rod, the relative errors reach approximately 30%.

- Inside the rod, the error does not exceed 20% for the refined formulas and 25% for
the simplified ones.

- The area with the error below 20% covers the part of the sample in the coordinate
range along the rod axis of 75-190 mm, corresponding to values 0,16 < 3(x;) < 0,32.

- The average relative displacement error in this area is approximately 2% for the
refined formulas and 5% for the simplified ones.

60,00 ()

000 3000
I I 1

15,00 45,00

Figure 1. Displacement along the axis for the sample with variable thickness
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Figure 2. Calculation results

3.3. Analysis of the results

The variation in reinforcement density causes fluctuations in local stiffness
and, accordingly, an uneven distribution of deformations. The simplified models
with constant 1 overestimate stiffness in areas with reduced fiber fraction and
underestimate it in areas with increased fraction, which accumulates into global
displacement deviations. The refined formulas that take into account ¥5;(x;) combination
with constant ¥, show a significant reduction in errors in the «quasi-homogeneous» internal
region of the sample.

The largest discrepancies (up to 30 %) are observed at the ends of the sample.. The
central part, where 13(x;). has intermediate values (= 0.16...0.32), is characterized by
smaller deviations — no more than 20 % for the refined formulas and around 25 % for the
simplified ones.

In practice, this means that for elements of variable thickness or shells of variable
thickness, spatially varying effective properties should be used when constructing
orthotropic layers, and the discretization scale should be considered relative to the gradient
P3(x1).

Extending the conclusions to bending requires a separate analysis due to the change in
the ratio of normal to shear strains, as well as the sensitivity to G;,(x;) and interlayer
interactions. As it is expected, the difference between the approaches will be greater in problems
where shear stresses and torsional components dominate.

4. CONCLUSIONS

- The consistent scheme for determining the effective elastic properties of
unidirectional layer with variable reinforcement coetficient along the characteristic coordinate,
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based on the rule of mixtures and the relationships between local stress—strain states has been
formulated. This approachmakes it possible to take into account structural inhomogeneity and
ensures the correct determination of macroscopic elastic moduli and Poisson’s ratios for
subsequent use in the analysis of multilayer composite elements.

- In Ansys Workbench, for the sample with variable cross-section, the refined relations
provide the average displacement error of about 2 % in the internal area, compared to 5 % for
the simplified formulas; at the ends, errors increase to approximately 30 % due to edge effects.

- Consideration of variations in reinforcement density in two directions (height and
width) systematically reduces discrepancies and improves the predictability of the stress-strain
state.

- The operating range of validity for the averaged formulas in the tensile problem
(lengths of 75—-190 mm for the considered sample) has been determined. For bending problems,
additional investigations, focusing on the role of G;,(x;), fiber-matrix contact interactions, and
interlayer stress transfer are required.
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HAINIPYKEHO-JE®OPMOBAHUI CTAH I IIPYKHI BJACTHBOCTI
KOMITIO3UTIB 31 SMIHHOIO CTPYKTYPOIO APMYBAHHSA

Cepriii Ilnckynos; Tumyp baxroBapumoes

Hayionanvnuii mexniunuu ynigepcumem Ykpainu « Kuiecokuii noasimexnivnuu
incmumym imeni Ieops Cikopcvrkozoy, Kuis, Ykpaina

Pe3tome. [looano yucenvre ma ananimuyre OOCTIONCEHH 8NIUBY NPOCMOPOBOT 3MIHHOCMI WiTbHOCMI
apmyeanus Ha  HanpysceHo-oegpopmosanui cman (HIAC) i  egexmusni npyscui  xapaxmepucmuxu
00HOCHPAMOBAHUX GOJOKHUCIUX KOMNO3UMIB. AKmyanbHicme pobomu 3yMoeNieHd MmMuM, Wo 6 CYYACHUX
[HJICEHEPHUX 3ACMOCY8AHHAX (asia-, aemo-, CyOHOOYOY6aHHs) ONsi eleMeHmi6 CKIAOHOI opmu uu 3MIHHOL
MOBWUHU WINTbHICMb aPMYBAHHS YACMO 3MIHIOEMbCA 630061C OOHIEI abo Kinbkox koopounam. Lle eniusae na
HJIC i mounicmv ananimuunux OYIHOK 34 KIACUYHUMU YcepeOHeHuMu mooerimu. Memoio pobomu 6yno
@opmyniosanta ma ananiz cniegioOHOUIeHb 015 eeKMUSHUX XaPAKMEPUCTNUK OPTNOMPONHO20 Wapy 3ad 3MIHHO20
koegiyicuma apmyeanns. Ha ocnosi npasuna cymiwei (oyinox ®otiema ma Poiica) cghopmosano ymouneni
CnigBiOHOUIeHH S 0151 KOMROHEHM MAmMpuyi H#CopcmKocmi opmomponno2o wapy. Lli cniggionouienHs 8paxo8yoms
SMIHHULL KOoepiyicHm apmyeanHs no 6ucomi ma Cmaiuii no wupuui nonepeurozo nepepizy. Ilposedero
sepuikayico ma NOPIGHAHHA OMPUMAHUX CHIBBIOHOUIEHb 31 CHPOWjeHUMU YycepeoneHumu opmynamu ma
3D-pospaxynkom memodom ckinuennux enemenmie (MCE) 6 Ansys Workbench. [Ina MCE-mooentosanus
PO32IIAHYMO NPedCmagHuybKull 00 ’em mpaneyenoodionoi popmu (sucoma 200 mm, ocrnosu 30 i 90 mm, mosuguna
30 mm) y 3a0aui pozmsaey (3amuchents 00H020 KiHys, Hasanmadicenns 40 kH na inwomy). Mamepianu: gyeneyese
6on10kH0 ma mampuys. Ilobyoosano mpu modeni: (1) 3 eeomempuuno posdireHumu KoMnoHeHmamu, (2)
€KGI6ANeHMHA OPMOMPONHA 3 YMOYHEHUMU KOMHOHEHmAaMy mampuyi odicopcmkocmi, (3) exeieanenmua
opmomponna 3i cnpowenumu opmynamu. Iloxasano, wo paxysanns 3SMiHHOCMI WiNTbHOCMI apMySaHHA Y 080X
HANPAMKAX 3MEHULYE NOXUOKY BUSHAYEHHA NepeMilyerd i MoOynis. Ymouneni (popmyau 0eMoHcmpyioms cymmese
3MEHUWEeHH NOXUOOK V «KBA3I00OHOPIOHILLY GHYMpiWHill obaacmi 3paszka: ycepeoneHa 6i0HOCHA NoXubka
nepemiwens mym cmanosums 01u3bk0 2% 01 ymounenux gpopmyn npomu 5% ons cnpowgenux. Ha xinysx spaska,
yepes Kpauiogi egpexmu, noxubxu csearome 30%. Busnaueno meouci xopekmno2o 3acmocysanHs ycepeoHeHux
cnigsionouienb y 3adauax posmsey (01a O0anozo 3paska — iHmepean 75—190 mm) ma okpecieHo Hanpsamu
eKxCmpanonayii Ha 32uH, Wo GUMA2AE OKPEMO20 AHANIZY YYMAUBOCI 00 XAPAKMEPUCTUK 3CYB).

Kniouogi cnosa: sonoxnucmi komMnozumu, aHi3omponis, Npagulo cymiuiet, Mampuys dHcoOpCmKocmi,
MOOYIb RPYIHCHOCHI, MEMOO CKIHUEHHUX eJleMeHMmIs.
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