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Abstract. This work presents a detailed review and analysis of mathematical models and development 

software solutions applicable to the field of electronics of low-dimensional structures. Based on this, the 

architecture and components of a comprehensive software system were developed, intended for mathematical 

modeling of the spectral characteristics of electronic states in quantum wells using various effective potentials. A 

wide range of effective potentials is considered, including: the harmonic oscillator, anharmonic oscillator, 

Pöschl–Teller potential, modified Pöschl–Teller potential, as well as Morse and Lennard-Jones potentials. Each 

component of the software system allows users to modify the input physical and geometrical parameters according 

to the developed mathematical models and the types of functional materials used. In addition, the software enables 

convenient and efficient visualization of the effective potentials applied to potential wells, performs calculations 

of electronic spectra dependencies on input parameters, and generates their graphical representations. Based on 

the developed software modules, a software suite was designed and subsequently constructed in this work for 

direct application in the fields of nano- and microelectronics, addressing both engineering and purely scientific 

purposes. 

Key words: mathematical model, software system, Wolfram Mathematica, quantum well, finite difference 
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1. INTRODUCTION 
 

In modern electronics, over the last two decades, the field concerning the application of 

micro- and nanostructures has become significantly widespread. These structures are 

characterized by their high-tech nature and active connections with other disciplines, especially 

with the tools and methodologies of information technology.  

The aforementioned low-dimensional structures are applied in various human 

engineering and technological activities, for example, in optoelectronic engineering, 

semiconductor electronics, and are also of great importance for technologies used in wartime. 

This is due to the fact that nanodetectors and nanolasers, which are created based on 

 low-dimensional semiconductor structures [1–5], are functional components of equipment 

designed for detecting the flight of enemy military aircraft (airplanes and UAVs) thanks to the 

so-called «anti-stealth» technology [6–8].  

This is extremely important for the development of Ukrainian science and 

technology at this difficult time. Another fundamentally different application of this type 

of structures is found in medicine, where semiconductor lasers are successfully used for 

performing high-precision operations, especially in oncology, and as a means for effective 

drug delivery to the necessary location in the human body (so-called effective 

macromolecules) [9–11]. 

As for the application of software engineering methods, its subject area is one of the crucial 

ones when applied to nanoelectronics tasks. This is because, as an analysis of the current state of 
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technology shows, software systems and complexes support the functioning of electronics 

components throughout all stages of their lifecycle – starting from their creation and fabrication up 

to the moment of their direct implementation into specific devices.  

Furthermore, the direct functioning of electronic devices based on low-dimensional 

systems is absolutely impossible without the use of specialized software, which on the one hand 

ensures the operation itself, and on the other hand, provides the maximum efficiency of these 

devices. 

Software related to nanoelectronics can be categorized into several groups based 

on its purpose. The first group includes control-type software, which completely 

controls the process and timeframes during the creation of low-dimensional systems [12–

15] based on predefined parameters. Examples of such software systems are software 

suites supported by the companies Nextnano.de [12–15]. These software suites are 

multifunctional and are essentially a set of application programs. The complexity of 

working with such software suites lies in the fact that dozens and hundreds of specialists 

from software engineering and mathematical modeling can work on each software package, 

and their subject areas and fields of knowledge may not overlap. This effectively 

necessitates a completely different approach to the management of such software projects, 

primarily in terms of work organization. The disadvantages of this group of software 

systems include the following: their high cost. Even considering the multimillion-dollar 

expenditures on fabricating low-dimensional structures, purchasing software or ordering 

specialized software developments from the mentioned companies requires significant 

financial outlay.  

Furthermore, a user can rarely purchase only a specific, required package 

of programs. Due to the rapid development of this field, the entire software system 

has to be updated several times a year, but in fact, 90–95% of the software 

becomes irrelevant and cannot be used anywhere. This constitutes a serious problem 

and requires a different approach to controlling the development processes of such 

software. 

Thus, for the implementation of such mathematical models, a holistic approach is 

required, which should ultimately be presented in the form of a complex software system. 

Each of its software components is responsible for visualizing the potential and 

implementing the mathematical model itself.  

As a result, the findings representing the practical part of this work are as follows. 

Mathematical models of various effective potentials have been developed, and their 

visualization has been carried out using the Wolfram Mathematica environment with the 

help of software components allowing for the change of their main parameters. These 

software blocks from the first part of the developed software system.  

For the second block of the software system, based on mathematical models of 

boundary value problems with various effective potentials for the Schrödinger equation, 

their finite difference schemes have been constructed and their software implementation has 

been carried out. Each component of this software block provides mathematical modeling 

of the spectrum, localization, and distribution of quasiparticle states by changing the 

parameters of potential wells, all parameters of effective potentials, and the physical 

parameters of the materials used.  

A flexible architecture has been developed for this software system, which provides 

clear and fully visualized access to graphical and numerical information obtained from each 

of the models constructed. By design, the software system will find application both in the 

field of electronics and in related and interdisciplinary fields, such as the use of microporous 

materials in air purification systems and the monitoring of harmful emissions into the 

atmosphere. 
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2. CONSTRUCTION OF A MATHEMATICAL MODEL FOR TASKS 

DESCRIBING THE OPERATION OF NANOELECTRONICS DEVICES, THEIR 

NUMERICAL AND SOFTWARE IMPLEMENTATION 

 

Mathematical models used in nano- and microelectronics tasks are typically based on 

the capability to calculate the electron spectrum. Such models are mainly based on finding 

analytical or numerical solutions to the time-independent or time-dependent Schrödinger 

equation. The adequacy of these mathematical models is determined by the fundamental 

principles of quantum mechanics. 

The non-parabolic stationary Schrödinger equation is used in almost all calculations 

of the band structure of nanodevices with quantum wells. For semiconductor lasers, 

considering deviations of the quantum well profile from rectangular is of great importance, 

because a large band gap in quantum wells leads to states located high above the conduction 

band edge, where this effect becomes noticeable and crucial. This deviation necessitates the 

construction of separate mathematical models for each case. This modification of the 

mathematical model can be introduced by introducing a local effective mass for the electron 

according to relation [16]: 

 

 
1

( , ) ( ) 1 ( )( ( ))m E z m z z E U z
−

= + − , (1) 

 

where m – the effective mass of the electron in the local region, the model fitting parameter, 

E – the electron spectrum energy. Special attention should be paid to the dependence U(z), 

which is a key problem in optimizing the mathematical model and calculating activation 

energies. The better this function is chosen under the given conditions, the more accurately the 

activation energies will be calculated, as well as the wave functions of an electron, another 

quasiparticle or a molecule in general. In the general case, the function U(z) is also called the 

model potential. We use two approaches to describing the model potential outside the local 

region with width w. In the first, simplified approach, the potential outside the region is infinite, 

i.e. (Fig.1 a): 

 

0

( ) ( )
z z w

U z U z
→ →

= → . (2) 

 

In such a case, the Schrödinger equation is significantly simplified, and it is often even 

possible to obtain its analytical solutions. However, such mathematical models provide only 

qualitatively reliable quantitative results. 

In the second approach, the potential outside the local region is considered finite 

(Fig.1b), that is: 

 

0
0

( ) ( )
z z w

U z U z U
→ →

= → , (3) 

 

or 

 

1 2
0

( ) ; ( )
z z w

U z U U z U
→ →

→ → . (4) 

 

Such mathematical models are more realistic. However, they can primarily be 

implemented numerically, and such an implementation itself requires the use of specialized 

software or its custom development for such specific tasks. 
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The initial model considers a single potential well with arbitrary geometric confinement 

of its base. It is assumed that the potential energy of the electron in the 

quantum well is determined by its confinement, which is represented by a coordinate 

dependency ( )U U z= , as shown in Fig. 1 a, b. Accordingly, a simplified model of the local 

region of the potential well can be obtained from the model in Fig. 1 a 

when 0( ) ; ( )z z wU z U z→ →→ → . This model represents a potential well that has 

infinitely high walls. The geometric scheme of such a local region is presented in 

Fig. 1 b. In both possible models, it is assumed that the potential well has the same width 

equal to w. 

For this given local region, the determination of the electron spectrum, activation 

energy, and electron wave functions reduces to finding the solutions of the time-independent 

Schrödinger equation: 
 

 

( ) ( ) ( )H z z E z =  , (5) 

 

where the Hamiltonian for the electron in this mathematical model, in the Luttinger 

modification, is as follows: 

 

  

 

a 

 

 

b 

 

Figure 1. Geometric confinement and energy scheme of a potential well with walls of infinite height (a) 

and with walls of finite height (b) 

 
2

1
( ) ( )

2 ( )

d d
H z U z

dz m z dz
= − + , (6) 

 

In our mathematical model, it is assumed that the electron has different 

effective masses in the studied local region and the surrounding medium. This leads 

to a coordinate dependence of the effective mass m(z) and the electron's potential  

energy, which in our case, taking into account the notations used in Fig. 1a, b, are as 

follows: 
 

0
1

1
2

( ), 0 ,
, 0 ,

( ) ; ( ) , 0,
, 0,

, .

U z z w
m z w

m z U z U z
m z z w

U z w

 
  

= =  
   

 (7) 
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When considering expressions (7), the Schrödinger equation is somewhat simplified, 

and its form for the entire local region will be as follows: 
 

2 2

12
1

2 2

2
0

2 2

22
1

( )
( ) ( ), 0 ,

2

( )
( ) ( ) ( ), 0 ,

2

( )
( ) ( ), .

2

d z
U z E z z

m dz

d z
U z z E z z w

m dz

d z
U z E z z w

m dz

 
− +  =  

 
− +  =   

 
− +  =  


 (8) 

 

The requirement for the wave function to be finite expresses the need for 

the electron to be localized in the studied region with the greatest probability.  

Specifically, for the mathematical model, this is expressed as the wave function 

normalization condition: 
 

2
( , ) 1E z dz

+

−

 =  (9) 

 

and also, its asymptotics at a significant distance from this local region: 
 

( , ) 0
z

E z
→

 →  (10) 

 

Solutions of the Schrödinger equation in the external environment with respect  

to the local region can be obtained in exact analytical form. They have the following 

form: 
 

(𝑧) = 𝐴1𝑒−𝜒1𝑧 + 𝐵2𝑒𝜒1𝑧 , 𝜒1 =
√2𝑚1(𝑈1−𝐸)

ℏ
, 𝑧 < 0 . (11) 

  

(𝑧) = 𝐴3𝑒−𝜒2𝑧 + 𝐵3𝑒𝜒2𝑧 , 𝜒2 =
√2𝑚1(𝑈2 − 𝐸)

ℏ
, 𝑧 > 𝑤 (12) 

 

Considering the asymptotics of the wave function given by relations (8), 

we must consider that the wave function must be finite at 𝑧 < 0and 𝑧 > 𝑤. This leads 

to the fact that in the expressions for the wave function (11), (12), we must accept 

𝐴1 = 0 and 𝐵3 = 0. As a result, finally for the wave functions in the external region 

we have: 
 

(𝑧) = 𝐵2𝑒𝜒1𝑧 , 𝑧 < 0 ;(𝑧) = 𝐴3𝑒−𝜒2𝑧 , 𝑧 > 𝑤 (13) 

 

For the wave function in the local region under study, in both mathematical models, 

which correspond to Fig. 1a, b, boundary conditions must be satisfied, which are responsible 

for the finiteness of the wave function and the continuity of its probability flow. These boundary 

conditions are as follows: 
 

0 0 0 0

0 0 0 0

( ) ( ) ; ( ) ( ) ;

( ) ( ) ( ) ( )
; .

z z z w z w

z z z w z w

z z z z

d z d z d z d z

dz dz dz dz

→− →+ → − → +

→− →+ → − → +

 =   =  
 

    = =
 
 

 (14) 
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Conditions (14) lead to a dispersion equation that has transcendental form. His solutions 

determine the spectrum of an electron, which is in local area is not acquired discrete values: 

, 1,2,3,...nE n = . As a result, the energy value activation is defined as follow: 

,nm m nE E E m n = −  . 

 

3. DEVELOPMENT OF A FINITE DIFFERENCE SCHEME FOR A 

MATHEMATICAL MODEL WITH THE STATIONARY SCHRÖDINGER 

EQUATION AND ITS REPLACEMENT BY A GRID PROBLEM 
 

In quantum mechanics, any equation must be modified to conform to the requirements 

of wave theory, i.e. the electron becomes a wave (particle-wave), so the state of the particle 

must be given by appropriate boundary conditions. Thus, the new representation of the 

Schrödinger equation fully describes the peculiar waves corresponding to the particle. The 

Schrödinger equation, in the one-dimensional case, together with an arbitrary potential V(z) has 

the following form: 
 

2 2

2
( ) ( ) ( ) ( ) ( )

2

d
H z z V z z E z

m dz

 
 = − +  =  

 
, (15) 

 

in this rearrangement it is convenient for us to approach the construction of the difference 

scheme of this equation. In the relation (15) V (z) is the potential in which the wave arises; 

H – is the Hamiltonian of the problem, analogously to (8), and ( )z is the wave function or 

the state of the particle-wave. In the equation (15) the energy E was defined arbitrarily, that is, 

it can be any value. As described above, the wave must satisfy the boundary conditions that 

determine the spectrum of values of E. Such an equation is called we will call it an 

eigenequation. Thus, the wave function obtained as a solution of (15) is the actual eigenstate of 

the particle, respectively, the energy held is the eigenenergy. In matrix terminology, the 

eigenvector and the eigenvalue are often used as corresponding to the eigenstate and the 

eigenenergy, respectively. 

Let us find out how the boundary conditions determine the eigenenergies for the 

one-dimensional Schrödinger equation. Any differential operator can be approximated by a 

finite difference form, so this method is called the finite difference method. For example, 

if a continuous variable x is discretized into a series of uniformly distributed points x i such that 

x i = x 0 + i Δ ( i = 0,1,2, ..., N ; Δ is a constant – the grid step), then the second derivative is 

approximated as follows: 
 

2
1 1

2 2

( ) 2 ( ) ( )
( ) ( ) i i i

i

f x f x f xd
f x f x

dx

− +− +
= 


. (16) 

 

Then, from equation (15 and considering (16), we easily obtain a set of one-dimensional 

equations determined by the grid nodes x i: 
 

( )

( )

( )

2 1 0 1 1 1

3 2 1 2 2 2

1 2 1 1 1

2 ;

2 ;

...

2 ,N N N N N N

a V E

a V E

a V E− − − − −

 −  + +  = 

 −  + +  = 

 −  + +  = 

 (17) 

 

where: ( ), ( )i i i iV V x x=  =  , and 2 2
/ 2a m= −  . 
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For every mathematical model of the local zone, boundary conditions are very 

important. In the simplest mathematical model, we assume that the wave function is zero both 

in the leftmost and rightmost coordinates of the local region, i.e. 0 N = . Then all these 

equations (17) can be directly presented in matrix form as follows: 
 

1 1 1

2 2 2

3 3 3

4 4 4

1 1 1

2 0 0 0 ... 0
2 0 0 ... 0

0 2 0 ... 0
0 0 2 ... 0

0 0 0 0 0 ... 2 N N N

a V a
a a V a

a a V a
E

a a V a

a V − − −

− +      
    − +  
    − +  

=    − +  
    
    − +      

 (18) 

 

Thus, the finite-difference scheme (2.14) for the mathematical model of the Schrödinger 

equation is equivalent to the problem of finding the eigenvalues of the matrix  
 

1

2

3

4

1

2 0 0 0 ... 0
2 0 0 ... 0

0 2 0 ... 0
0 0 2 ... 0

0 0 0 0 0 ... 2

nm

N

a V a
a a V a

a a V a
A

a a V a

a V −

− + 
 − +
 − +

=  − +
 
 − + 

, which uniquely 

determines the spectrum En and the wave function of each state n . 

Let us now consider a more realistic and complex mathematical model corresponding 

to the local region in Fig. 1a. For such a model, consideration of the boundary conditions (14) 

is mandatory. Using the finite-difference approximation for the first derivative in the form: 
 

1( ) ( )
( ) ( ) i i

i

f x f xd
f x f x

dx

−−
= 


 (19) 

 

we will have: 
 

0 1 1

0 1 2 2 1

; ;
;

2 0 2 0.
N N

N N N

−

− −

 =   =  
 
 −  +  =  −  + = 

 (20) 

 

As a result, the difference scheme (17) is modified and takes on the following form: 
 

1 1 1

2 2 2

3 3 3

4 4 4

1 1 1

0 0 0 ... 0
2 0 0 ... 0

0 2 0 ... 0
.

0 0 2 ... 0

0 0 0 0 0 ... N N N

V a
a a V a

a a V a
E

a a V a

V − − −

     
    − +  
    − +  

=    − +  
    
         

 (21) 

 

The algorithmic approach to solving the difference scheme (21) is similar to that of the 

difference scheme (18), it consists in finding the eigenvalues and eigenfunctions of the  
 

1

2

3

4

1

0 0 0 ... 0
2 0 0 ... 0

0 2 0 ... 0
0 0 2 ... 0

0 0 0 0 0 ...

nm

N

V a
a a V a

a a V a
A

a a V a

V −

 
 − +
 − +

=  − +
 
 
 

. 
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4. DEVELOPMENT OF SOFTWARE FOR IMPLEMENTING THE 

MATHEMATICAL MODEL OF THE SCHRÖDINGER EQUATION IN THE FORM 

OF A GRID PROBLEM 
 

The software implementation of mathematical models of effective potentials as spectral 

problems for the stationary Schrödinger equation was carried out based on the constructed (18)–

(21) grid finite difference schemes [19]. We started with the implementation of the simplest 

components of this software system block, namely for the potential model with infinitely high 

walls, within the potential well for which U(z)=0. The main parameters that can be changed in 

such a model are the electron's effective mass m and the width of the potential well L. We also 

took the number of divisions of the one-dimensional grid equal to N=500, which corresponds 

to a matrix (18) and (21) of size 500×500, while ensuring an accuracy of 10−6. The 

implementation of this component of the software system is presented in Fig. 2. 

 

 
 

Figure 2. Modeling the spectrum and squared moduli of wave functions 

in a potential well with infinitely high walls 

 

The possibility of continuous change in the electron's effective mass m and the width 

of the potential well L was implemented using sliders. The electron energy level number was 

also changed using a discrete-step spinner. For convenience, the squared moduli of the wave 

functions 
2

( , )
n n

E z  are plotted on the energy scale, and the energies En themselves are 

displayed in a side menu. 

Next, mathematical models for different effective potentials in a potential well with 

potential walls of finite height U0 were implemented. The component of the software system 

created based on the quantum oscillator model with 2
/ 2U kz=  is presented in Fig. 3a. In 

addition to the possibility of changing the electron's effective mass m and the width of the 

potential well L using sliders, and the number of electron levels with a discrete step, the 

possibility of changing the potential barrier height U0 and the effective stiffness a has also been 

implemented. Thus, in this implemented mathematical model, we can interactively change all 

its parameters. 
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a 

 

 

b 

 

Figure 3. Modeling the spectrum and squared moduli of wave functions in a potential well with finite walls 

for a quantum harmonic oscillator (a) and quantum anharmonic oscillator (b) 

 

A similar situation exists for the anharmonic oscillator for which 2
U az bz= + , the 

software implementation of which mathematical model is presented in Fig. 3b. Here, unlike the 

harmonic oscillator model discussed above, the possibility of changing the anharmonicity 

parameter b has also been implemented. 

 

  
 

a 

 

 

b 

 

Figure 4. Modeling the spectrum and squared moduli of wave functions in a potential well with finite walls 

for the Pöschl-Teller potential (a) and modified Pöschl-Teller potential (b) 

 

Next, the software implementation of the Pöschl-Teller potential was carried out: 

( )2

0
( ) / coshV z V az= − . Such a mathematical model is additionally characterized by the depth 

value 
0

V  and the generalized width of the quantum well L. The results of such mathematical 

modeling in the form of a software block are presented in Fig. 4a.  

Unlike the mathematical models of the harmonic and anharmonic oscillator, 

which are used in models of molecular spectra, the Pöschl-Teller potential is well 

suited for approximating potential traps for volatile hydrocarbons. One of the alternative 

options for mathematical models of potential traps is the modified Pöschl-Teller potential: 

( ) ( )2 2

0 1
( ) / cosh tanhV z V az V az= − + . It has greater flexibility and reliability for modeling, 
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as this model contains an additional "fitting" parameter 
1

V . The results of the developed 

software block for such a mathematical model, with sliders available for changing all 

parameters, are presented in Fig. 4 b. 

 

  

a b 

Figure 5. Modeling the spectrum and squared moduli of wave functions in a potential well with finite walls 

for the Morse potential (a) and Lennard-Jones potential (b) 

 

For mathematical modeling of vibrational processes in diatomic molecules and often as 

potential traps for such molecules, the Morse potential is used: ( )0
2

( )
( ) 1

a z x

e
V z D e

− −
= − . In our 

generalized model, this potential is characterized by the following additional parameters: the 

depth of the potential well 
e

D , the effective width of the potential a, and the position of the 

minimum of the effective potential x0. The component of the software system that provides 

effective mathematical modeling of the spectrum and squared moduli of wave functions works 

as shown in Fig. 5a. An important feature of the software block we have developed is the 

possibility of direct calculation of the spectrum and quantum transition energies, which allows 

determining the ionization energies and activation energies possible in both electronics and 

molecular dynamics. 

The last component of the software system we have developed is the component that 

provides mathematical modeling of the Lennard-Jones potential: 

12 6

( ) 4V z
z z

 

    

= −    
     

, 

where   is the depth of the potential well, and   is the distance at which the potential is zero. 

A feature of this potential is the partial states associated with the potential well at ( ) 0V x  . 

Transitions between these states determine the activation energy during the processes of 

molecule adsorption in functional materials with micropores. To fully solve this problem, it is 

necessary to algorithmically implement a model that allows for mathematical modeling of the 

mentioned energies with possible changes in all parameters of both the potential well and the 

Lennard-Jones potential itself. The result of the operation of such a component of the software 

system is presented in Fig. 5b. 
 

5. CONCLUSIONS 
 

1. This study presents a comprehensive analysis of the subject domain encompassing 
micro- and nanoelectronics, with a particular focus on applying software engineering 
methodologies and principles for the development and verification of mathematical models of 
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effective potentials. These potentials emerge during the simulation of quasiparticle states in 
mesoscopic structures. The study demonstrates the necessity of an integrated approach to 
implementing such mathematical models.  

2. Ultimately, this approach is realized as a complex software system, where each 
software component is responsible for either visualizing the potentials or executing the core 
mathematical computations. As part of the practical outcomes, a range of mathematical models 
representing various types of effective potentials were developed. These models were 
visualized using the Wolfram Mathematica environment through specialized software modules 
that allow dynamic manipulation of key parameters. These modules constitute the first 
component of the developed software system.  

3. The second component involves solving boundary value problems for the 
Schrödinger equation incorporating diverse effective potentials. Finite difference schemes were 
constructed based on these models and subsequently implemented in software. Each unit within 
this module facilitates the simulation of energy spectra, localization, and spatial distribution of 
quasiparticle states by enabling the modification of potential well parameters, effective 
potential properties, and relevant physical constants of the materials used.  

4. A flexible and modular architecture was designed for the entire software system, 
ensuring intuitive access to both graphical and numerical results produced by each individual 
model. Owing to its versatility, the system can be applied not only in the field of electronics but 
also in adjacent and interdisciplinary domains. These include applications involving 
microporous materials, particularly in air purification systems and the monitoring of hazardous 
emissions into the atmosphere. 
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ПРОГРАМНА СИСТЕМА ДЛЯ МАТЕМАТИЧНОГО 

МОДЕЛЮВАННЯ ВПЛИВУ ЕФЕКТИВНИХ ПОТЕНЦІАЛІВ НА 

ЕЛЕКТРОННІ СТАНИ У КВАНТОВИХ ЯМАХ 
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Резюме. Представлено розгорнутий огляд сучасного стану досліджень та аналіз математичних 

моделей, які використовуються для описування електронних процесів у низьковимірних структурах, 
зокрема у квантових ямах. Особливу увагу приділено розробленню програмних рішень, що забезпечують 
точне та ефективне математичне моделювання спектральних характеристик електронних станів із 
застосуванням широкого спектру ефективних потенціалів. У межах дослідження розроблено 
архітектуру програмного комплексу, який поєднує в собі функціональність для виконання обчислювальних 
експериментів, зміни параметрів моделей та візуалізації результатів. Розглянуто такі типи ефективних 
потенціалів, як гармонійний осцилятор, ангармонійний осцилятор, потенціал Пешля–Теллера, 
модифікований потенціал Пешля–Теллера, потенціал Морзе, потенціал Леннарда-Джонса. Ці потенціали 
широко застосовуються в квантовій механіці для описування взаємодії частинок у системах з 
обмеженнями розмірності. Реалізовані в програмному середовищі алгоритми дозволяють користувачам 
змінювати фізичні параметри (наприклад, масу частинок, глибину потенціальної ями, її ширину), а 
також геометричні характеристики системи, що моделюється, відповідно до конкретного типу 
наноструктури чи матеріалу. Однією з ключових особливостей програмного комплексу є зручний 
інтерфейс для інтерактивної побудови графіків ефективних потенціалів та спектральних ліній 
електронних станів. Система також забезпечує чисельне розв’язання відповідних рівнянь Шредінгера з 
урахуванням вхідних параметрів і генерацію результатів у вигляді графіків, таблиць та інших форматів, 
придатних для подальшого аналізу. Важливим етапом стало тестування працездатності комплексу на 
основі прикладів реальних фізичних систем і порівняння отриманих результатів із теоретичними 
прогнозами та літературними даними. Завдяки модульній структурі, програмний комплекс може бути 
розширений новими моделями або адаптований до інших типів потенціалів та умов. У підсумку, створена 
програмна система є універсальним інструментом для дослідників і розробників, які працюють у галузі 
мікро- та наноелектроніки, оскільки дозволяє не лише проводити точні розрахунки спектральних 
характеристик електронних станів у квантових ямах, але й служити освітнім та науковим засобом для 
вивчення поведінки електронів у різних потенціальних конфігураціях. 

Ключові слова: математична модель, програмна система, Wolfram Mathematica, квантова яма, 
метод скінченних різниць, ефективні потенціали. 
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