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Abstract. This work presents a detailed review and analysis of mathematical models and development
software solutions applicable to the field of electronics of low-dimensional structures. Based on this, the
architecture and components of a comprehensive software system were developed, intended for mathematical
modeling of the spectral characteristics of electronic states in quantum wells using various effective potentials. A
wide range of effective potentials is considered, including: the harmonic oscillator, anharmonic oscillator,
Péschl-Teller potential, modified Péschl-Teller potential, as well as Morse and Lennard-Jones potentials. Each
component of the software system allows users to modify the input physical and geometrical parameters according
to the developed mathematical models and the types of functional materials used. In addition, the software enables
convenient and efficient visualization of the effective potentials applied to potential wells, performs calculations
of electronic spectra dependencies on input parameters, and generates their graphical representations. Based on
the developed software modules, a software suite was designed and subsequently constructed in this work for
direct application in the fields of nano- and microelectronics, addressing both engineering and purely scientific
purposes.

Key words: mathematical model, software system, Wolfram Mathematica, quantum well, finite difference
method, effective potentials.
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1. INTRODUCTION

In modern electronics, over the last two decades, the field concerning the application of
micro- and nanostructures has become significantly widespread. These structures are
characterized by their high-tech nature and active connections with other disciplines, especially
with the tools and methodologies of information technology.

The aforementioned low-dimensional structures are applied in various human
engineering and technological activities, for example, in optoelectronic engineering,
semiconductor electronics, and are also of great importance for technologies used in wartime.
This 1s due to the fact that nanodetectors and nanolasers, which are created based on

low-dimensional semiconductor structures [1-5], are functional components of equipment
designed for detecting the flight of enemy military aircraft (airplanes and UAVs) thanks to the
so-called «anti-stealthy technology [6—8].

This is extremely important for the development of Ukrainian science and
technology at this difficult time. Another fundamentally different application of this type
of structures is found in medicine, where semiconductor lasers are successfully used for
performing high-precision operations, especially in oncology, and as a means for effective
drug delivery to the necessary location in the human body (so-called effective
macromolecules) [9—-11].

As for the application of software engineering methods, its subject area is one of the crucial
ones when applied to nanoelectronics tasks. This is because, as an analysis of the current state of
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technology shows, software systems and complexes support the functioning of electronics
components throughout all stages of their lifecycle — starting from their creation and fabrication up
to the moment of their direct implementation into specific devices.

Furthermore, the direct functioning of electronic devices based on low-dimensional
systems is absolutely impossible without the use of specialized software, which on the one hand
ensures the operation itself, and on the other hand, provides the maximum efficiency of these
devices.

Software related to nanoelectronics can be categorized into several groups based
on its purpose. The first group includes control-type software, which completely
controls the process and timeframes during the creation of low-dimensional systems [12—
15] based on predefined parameters. Examples of such software systems are software
suites supported by the companies Nextnano.de [12—15]. These software suites are
multifunctional and are essentially a set of application programs. The complexity of
working with such software suites lies in the fact that dozens and hundreds of specialists
from software engineering and mathematical modeling can work on each software package,
and their subject areas and fields of knowledge may not overlap. This effectively
necessitates a completely different approach to the management of such software projects,
primarily in terms of work organization. The disadvantages of this group of software
systems include the following: their high cost. Even considering the multimillion-dollar
expenditures on fabricating low-dimensional structures, purchasing software or ordering
specialized software developments from the mentioned companies requires significant
financial outlay.

Furthermore, a user can rarely purchase only a specific, required package
of programs. Due to the rapid development of this field, the entire software system
has to be updated several times a year, but in fact, 90-95% of the software
becomes irrelevant and cannot be used anywhere. This constitutes a serious problem
and requires a different approach to controlling the development processes of such
software.

Thus, for the implementation of such mathematical models, a holistic approach is
required, which should ultimately be presented in the form of a complex software system.
Each of its software components is responsible for visualizing the potential and
implementing the mathematical model itself.

As a result, the findings representing the practical part of this work are as follows.
Mathematical models of various effective potentials have been developed, and their
visualization has been carried out using the Wolfram Mathematica environment with the
help of software components allowing for the change of their main parameters. These
software blocks from the first part of the developed software system.

For the second block of the software system, based on mathematical models of
boundary value problems with various effective potentials for the Schrodinger equation,
their finite difference schemes have been constructed and their software implementation has
been carried out. Each component of this software block provides mathematical modeling
of the spectrum, localization, and distribution of quasiparticle states by changing the
parameters of potential wells, all parameters of effective potentials, and the physical
parameters of the materials used.

A flexible architecture has been developed for this software system, which provides
clear and fully visualized access to graphical and numerical information obtained from each
of the models constructed. By design, the software system will find application both in the
field of electronics and in related and interdisciplinary fields, such as the use of microporous
materials in air purification systems and the monitoring of harmful emissions into the
atmosphere.
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2. CONSTRUCTION OF A MATHEMATICAL MODEL FOR TASKS
DESCRIBING THE OPERATION OF NANOELECTRONICS DEVICES, THEIR
NUMERICAL AND SOFTWARE IMPLEMENTATION

Mathematical models used in nano- and microelectronics tasks are typically based on
the capability to calculate the electron spectrum. Such models are mainly based on finding
analytical or numerical solutions to the time-independent or time-dependent Schrodinger
equation. The adequacy of these mathematical models is determined by the fundamental
principles of quantum mechanics.

The non-parabolic stationary Schrodinger equation is used in almost all calculations
of the band structure of nanodevices with quantum wells. For semiconductor lasers,
considering deviations of the quantum well profile from rectangular is of great importance,
because a large band gap in quantum wells leads to states located high above the conduction
band edge, where this effect becomes noticeable and crucial. This deviation necessitates the
construction of separate mathematical models for each case. This modification of the
mathematical model can be introduced by introducing a local effective mass for the electron
according to relation [16]:

m(E,z)=m(z){l+a(z)NE-U(2))} ", (1)

where m — the effective mass of the electron in the local region, the model fitting parameter,

E — the electron spectrum energy. Special attention should be paid to the dependence U(z),
which is a key problem in optimizing the mathematical model and calculating activation
energies. The better this function is chosen under the given conditions, the more accurately the
activation energies will be calculated, as well as the wave functions of an electron, another
quasiparticle or a molecule in general. In the general case, the function U(z) is also called the
model potential. We use two approaches to describing the model potential outside the local
region with width w. In the first, simplified approach, the potential outside the region is infinite,
1.e. (Fig.1 a):

U(z)=U(z) > ». )

z—0 zZow

In such a case, the Schrodinger equation is significantly simplified, and it is often even
possible to obtain its analytical solutions. However, such mathematical models provide only
qualitatively reliable quantitative results.

In the second approach, the potential outside the local region is considered finite
(Fig.1b), that is:

U(z)=U(2) > U,, (3)
z—>0 zZow
or
U(Z)—)UI,U(Z)—)UZ (4)
z—0 zZow

Such mathematical models are more realistic. However, they can primarily be
implemented numerically, and such an implementation itself requires the use of specialized
software or its custom development for such specific tasks.
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The initial model considers a single potential well with arbitrary geometric confinement
of its base. It is assumed that the potential energy of the electron in the
quantum well is determined by its confinement, which is represented by a coordinate
dependency U =U(z), as shown in Fig. 1 a, b. Accordingly, a simplified model of the local

region of the potential well can be obtained from the model in Fig. 1a
when U(z), ,, — o; U(z) —oo. This model represents a potential well that has

zZoow
infinitely high walls. The geometric scheme of such a local region is presented in
Fig. 1 b. In both possible models, it is assumed that the potential well has the same width
equal to w.

For this given local region, the determination of the electron spectrum, activation
energy, and electron wave functions reduces to finding the solutions of the time-independent
Schrédinger equation:

H(:z)¥Y(z)=EY¥(2), (5)

where the Hamiltonian for the electron in this mathematical model, in the Luttinger
modification, is as follows:

U(z)—o0 U(z)—0 U,

U(z) U(z)

a b

Figure 1. Geometric confinement and energy scheme of a potential well with walls of infinite height (a)
and with walls of finite height (b)

H(z)=—————+U(2), (6)

In our mathematical model, it is assumed that the electron has different
effective masses in the studied local region and the surrounding medium. This leads
to a coordinate dependence of the effective mass m(z) and the electron's potential
energy, which in our case, taking into account the notations used in Fig. la, b, are as
follows:

U(z),0<z<w,
0<z< ~
m(z)y=1"0 "=*=" Gz =1U,, z<0, %
my,z<0,z>w U. 25w
25 .
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When considering expressions (7), the Schrodinger equation is somewhat simplified,
and its form for the entire local region will be as follows:

n d*Y(z)
- +UY(z)=EY¥Y(2), z<0,
2ml de 1 ( ) ( )
hz 2
N d IPZ(Z)+U(Z)\P(Z)=E\P(Z),OSZSW, (8)
2my dz
A 1O

—+U,¥Y(2) = E¥(2), z>w.

2m, dz

The requirement for the wave function to be finite expresses the need for
the electron to be localized in the studied region with the greatest probability.
Specifically, for the mathematical model, this is expressed as the wave function
normalization condition:

T (E ) dz =1 )

and also, its asymptotics at a significant distance from this local region:

Y(E,z) >0 (10)

z—>t0

Solutions of the Schrédinger equation in the external environment with respect
to the local region can be obtained in exact analytical form. They have the following
form:

¥(z2) = Aje~ X7 + B,eXiZ y, = —“2"11;[]1_’5),2 <0. (11)
2m,(U, — E
W(z) = Age17 4 Byeriz,y, = VoW ZE) (12)

h )

Considering the asymptotics of the wave function given by relations (8),
we must consider that the wave function must be finite at z < Oand z > w. This leads
to the fact that in the expressions for the wave function (11), (12), we must accept
A; =0 and B; = 0. As a result, finally for the wave functions in the external region
we have:

Y(z) = B,e**,2 < 0;¥(2) = Aze %%,z > w (13)

For the wave function in the local region under study, in both mathematical models,
which correspond to Fig. 1a, b, boundary conditions must be satisfied, which are responsible
for the finiteness of the wave function and the continuity of its probability flow. These boundary
conditions are as follows:

\P(Z)z%—o = \P(Z)zﬁ+0; lII(Z)ZHW—O = \P(Z)zﬁw+0;
d¥(z)|  d¥(2) d¥(z) _d¥(2) (14)
dz z—>-0 dz z—>+0 dz z—>w-0 dz z—>w+0
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Conditions (14) lead to a dispersion equation that has transcendental form. His solutions
determine the spectrum of an electron, which is in local area is not acquired discrete values:
E ., n=12,3,... As a result, the energy value activation is defined as follow:

n’

AE, =E —FE m>n.

3. DEVELOPMENT OF A FINITE DIFFERENCE SCHEME FOR A
MATHEMATICAL MODEL WITH THE STATIONARY SCHRODINGER
EQUATION AND ITS REPLACEMENT BY A GRID PROBLEM

In quantum mechanics, any equation must be modified to conform to the requirements
of wave theory, i.e. the electron becomes a wave (particle-wave), so the state of the particle
must be given by appropriate boundary conditions. Thus, the new representation of the
Schrodinger equation fully describes the peculiar waves corresponding to the particle. The
Schrodinger equation, in the one-dimensional case, together with an arbitrary potential }V(z) has
the following form:

2 2

h
H()¥() = {—E;’—zww}v(z) “E¥(2), (15)

z

in this rearrangement it is convenient for us to approach the construction of the difference
scheme of this equation. In the relation (15) V (z) is the potential in which the wave arises;
H — is the Hamiltonian of the problem, analogously to (8), and W (z)is the wave function or

the state of the particle-wave. In the equation (15) the energy £ was defined arbitrarily, that is,
it can be any value. As described above, the wave must satisfy the boundary conditions that
determine the spectrum of values of E. Such an equation is called we will call it an
eigenequation. Thus, the wave function obtained as a solution of (15) is the actual eigenstate of
the particle, respectively, the energy held is the eigenenergy. In matrix terminology, the
eigenvector and the eigenvalue are often used as corresponding to the eigenstate and the
eigenenergy, respectively.

Let us find out how the boundary conditions determine the eigenenergies for the
one-dimensional Schrédinger equation. Any differential operator can be approximated by a
finite difference form, so this method is called the finite difference method. For example,
if a continuous variable x is discretized into a series of uniformly distributed points x j such that
xi=xot+iA(i=0,1,2,.., N;Ais a constant — the grid step), then the second derivative is
approximated as follows:

f(xi_l)_zf(le)+f(xi+l) ' (16)

d2
gf(xiﬁf"(ﬂz N

Then, from equation (15 and considering (16), we easily obtain a set of one-dimensional
equations determined by the grid nodes x i:

a(¥,-2¥,+¥,)+ ¥, =EY,;

a(Wy—2%,+¥, )+, ¥, = E¥,; an

a(‘{’N -2¥, +‘PN_2)+VN_I‘I—’N_1 =EY, |,

where: V, =V (x,), ¥, =¥(x;), and a =—#>/2mA*>.
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For every mathematical model of the local zone, boundary conditions are very
important. In the simplest mathematical model, we assume that the wave function is zero both
in the leftmost and rightmost coordinates of the local region, i.e. W, =" , . Then all these

equations (17) can be directly presented in matrix form as follows:

—2a+V, a 0 0 0 0 ¥, ¥,
a —2a+V, a 0 0 0 ¥, Y,
0 a —2a+V; a 0 0 Y, |_ W,
0 0 a ' 2tV a 0o v T e | Y
0 0 0 0 0 .. 2a+7 ¥, ) ¥,

Thus, the finite-difference scheme (2.14) for the mathematical model of the Schrédinger
equation is equivalent to the problem of finding the eigenvalues of the matrix

—2a+V, a 0 0 0 0
a —2a+V, a 0 0 0
_ 0 a —2a+V; a 0 0 . .
4, = 0 0 a 2a+V, a 0 ,  which  uniquely
0 0 0 0 0 .. —2a+V,,

determines the spectrum E, and the wave function of each state ¥ .

Let us now consider a more realistic and complex mathematical model corresponding
to the local region in Fig. 1a. For such a model, consideration of the boundary conditions (14)
1s mandatory. Using the finite-difference approximation for the first derivative in the form:

d ' (x,')_ (xi_ )
S A R ACTEY (19)
dx A
we will have:
Y,=Y; Yy =Yy (20)
Y,-2¥, +¥,=0" (W, ,—2%, +¥, =0.

As a result, the difference scheme (17) is modified and takes on the following form:

Vi a 0 0 0 0 Y, ¥,

a —2a+V, a 0 0 0 ¥, )

0 a —2a+V; a 0 0 Y, |_ Y,

0 0 a —2a+V, a O || ¥4 -~ Ta | @b
0 0 0 0 0 . Ko \¥e) L,

The algorithmic approach to solving the difference scheme (21) is similar to that of the
difference scheme (18), it consists in finding the eigenvalues and eigenfunctions of the

14 a 0 0 0 0

a —2a+V, a 0 0 0

4 = 0 a —2a+V, a 0 0

"ol 0 a  2a+V, a 9
0 0 0 0 0 . ¥y,
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4. DEVELOPMENT OF SOFTWARE FOR IMPLEMENTING THE
MATHEMATICAL MODEL OF THE SCHRODINGER EQUATION IN THE FORM
OF A GRID PROBLEM

The software implementation of mathematical models of effective potentials as spectral
problems for the stationary Schrodinger equation was carried out based on the constructed (18)—
(21) grid finite difference schemes [19]. We started with the implementation of the simplest
components of this software system block, namely for the potential model with infinitely high
walls, within the potential well for which U(z)=0. The main parameters that can be changed in
such a model are the electron's effective mass m and the width of the potential well L. We also
took the number of divisions of the one-dimensional grid equal to N=500, which corresponds
to a matrix (18) and (21) of size 500x500, while ensuring an accuracy of 107%. The
implementation of this component of the software system is presented in Fig. 2.

m I 0.497
L l 492
KinbkicTe pisHis I 5

|¥n2)F

7.8084 meV

31.2333 meV
76.2737 meV
124.9288 meV
195.1948 meV

_ : '] g

e
i) Es

r
o
m

nmow o nowon

Figure 2. Modeling the spectrum and squared moduli of wave functions
in a potential well with infinitely high walls

The possibility of continuous change in the electron's effective mass m and the width
of the potential well L was implemented using sliders. The electron energy level number was
also changed using a discrete-step spinner. For convenience, the squared moduli of the wave

functions |‘Pn(En,z)|2 are plotted on the energy scale, and the energies E, themselves are

displayed in a side menu.

Next, mathematical models for different effective potentials in a potential well with
potential walls of finite height Uy were implemented. The component of the software system
created based on the quantum oscillator model with U = kz? /2 is presented in Fig. 3a. In
addition to the possibility of changing the electron's effective mass m and the width of the
potential well L using sliders, and the number of electron levels with a discrete step, the
possibility of changing the potential barrier height Uy and the effective stiffness a has also been
implemented. Thus, in this implemented mathematical model, we can interactively change all
its parameters.
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b

Figure 3. Modeling the spectrum and squared moduli of wave functions in a potential well with finite walls
for a quantum harmonic oscillator (a) and quantum anharmonic oscillator (b)

A similar situation exists for the anharmonic oscillator for which U = az” + bz, the
software implementation of which mathematical model is presented in Fig. 3b. Here, unlike the
harmonic oscillator model discussed above, the possibility of changing the anharmonicity
parameter b has also been implemented.

a b

Figure 4. Modeling the spectrum and squared moduli of wave functions in a potential well with finite walls
for the Péschl-Teller potential (a) and modified Poschl-Teller potential (b)

Next, the software implementation of the Pdschl-Teller potential was carried out:
V(z)=-V,/cosh’ (az) . Such a mathematical model is additionally characterized by the depth

value V, and the generalized width of the quantum well L. The results of such mathematical

modeling in the form of a software block are presented in Fig. 4a.
Unlike the mathematical models of the harmonic and anharmonic oscillator,

which are used in models of molecular spectra, the Poschl-Teller potential is well
suited for approximating potential traps for volatile hydrocarbons. One of the alternative
options for mathematical models of potential traps is the modified Pdschl-Teller potential:

V(z)=-V,/cosh? (az) +V, tanh® (az). It has greater flexibility and reliability for modeling,
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as this model contains an additional "fitting" parameter V,. The results of the developed

software block for such a mathematical model, with sliders available for changing all
parameters, are presented in Fig. 4 b.

a b

Figure 5. Modeling the spectrum and squared moduli of wave functions in a potential well with finite walls
for the Morse potential (a) and Lennard-Jones potential (b)

For mathematical modeling of vibrational processes in diatomic molecules and often as
: : : —a(zZ—X, 2
potential traps for such molecules, the Morse potential is used: V' (z) =D, (1 —e °)) . In our

generalized model, this potential is characterized by the following additional parameters: the
depth of the potential well D , the effective width of the potential a, and the position of the

minimum of the effective potential xo. The component of the software system that provides
effective mathematical modeling of the spectrum and squared moduli of wave functions works
as shown in Fig. 5a. An important feature of the software block we have developed is the
possibility of direct calculation of the spectrum and quantum transition energies, which allows
determining the ionization energies and activation energies possible in both electronics and
molecular dynamics.

The last component of the software system we have developed is the component that

12 6
provides mathematical modeling of the Lennard-Jones potential: V' (z) =4¢ ng —(Ej } ,
z z
where ¢ is the depth of the potential well, and o is the distance at which the potential is zero.

A feature of this potential is the partial states associated with the potential well at V'(x) <0.

Transitions between these states determine the activation energy during the processes of
molecule adsorption in functional materials with micropores. To fully solve this problem, it is
necessary to algorithmically implement a model that allows for mathematical modeling of the
mentioned energies with possible changes in all parameters of both the potential well and the
Lennard-Jones potential itself. The result of the operation of such a component of the software
system is presented in Fig. 5b.

5. CONCLUSIONS

1. This study presents a comprehensive analysis of the subject domain encompassing
micro- and nanoelectronics, with a particular focus on applying software engineering
methodologies and principles for the development and verification of mathematical models of

124 ... ISSN 2522-4433. Scientific Journal of the TNTU, No 3 (119), 2025 https://doi.org/10.33108/visnyk_tntu2025.03


https://doi.org/10.33108/visnyk_tntu2025.0

Igor Boyko, Sophia Khemii

effective potentials. These potentials emerge during the simulation of quasiparticle states in
mesoscopic structures. The study demonstrates the necessity of an integrated approach to
implementing such mathematical models.

2. Ultimately, this approach is realized as a complex software system, where each
software component is responsible for either visualizing the potentials or executing the core
mathematical computations. As part of the practical outcomes, a range of mathematical models
representing various types of effective potentials were developed. These models were
visualized using the Wolfram Mathematica environment through specialized software modules
that allow dynamic manipulation of key parameters. These modules constitute the first
component of the developed software system.

3. The second component involves solving boundary value problems for the
Schrodinger equation incorporating diverse effective potentials. Finite difference schemes were
constructed based on these models and subsequently implemented in software. Each unit within
this module facilitates the simulation of energy spectra, localization, and spatial distribution of
quasiparticle states by enabling the modification of potential well parameters, effective
potential properties, and relevant physical constants of the materials used.

4. A flexible and modular architecture was designed for the entire software system,
ensuring intuitive access to both graphical and numerical results produced by each individual
model. Owing to its versatility, the system can be applied not only in the field of electronics but
also in adjacent and interdisciplinary domains. These include applications involving
microporous materials, particularly in air purification systems and the monitoring of hazardous
emissions into the atmosphere.
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ITPOI'PAMHA CUCTEMA JJIA MATEMATHUYHOI'O
MOJIEJIOBAHHA BIVIMBY EOEKTUBHUX ITOTEHIIAJIIB HA
EJEKTPOHHI CTAHHU Y KBAHTOBHUX SAMAX

Irop Bboiiko; Codis Xemiit

Tepnoninbcokuu Hayionanbhuu mexuivHuu ynigepcumem imeni leana 1lynios,
Tepnonins, Yxpaina

Peztome. [Ipedcmasneno pozeopHymuii 027150 CyuaACHO20 CMAHY 00CIONCeHb MA AHANI3 MAMEMAMUYHUX
MoOenell, AKi 8UKOPUCMOBYIOMbCA OJi ONUCYBAHHA €NeKMPOHHUX NPOYeci8 y HULKOBUMIDHUX CMPYKMYpax,
30Kpema y kganmosux amax. Ocobausy ygazy npuodineHo po3pobieHHI0 NPOSPAMHUX pilieHb, o 3a6e3neuyioms
moune ma eexmugne mamemamuire MOOENOBARH CHEKMPATbHUX XAPAKMEPUCTIUK eNeKIMPOHHUX CMAanie i3
3aCMOCYBAHMSIM  WUPOKO20 CHeKmpy eexmugnux nomeuyianie. Y mesxcax Oocaiodcenns po3pobreHo
apximexmypy npocpamHoc0 KOMNIEKCY, AKULl HOEOHYE 6 cOOi PYHKYIOHANbHICMb OJisL BUKOHAHHS OOYUCTIOBATIbHUX
eKcnepumMeHmis, 3MiHu napamempis mooenell ma izyanizayii pesyromamis. Pozensanymo maxi munu eqexmuerux
nomenyianie, AK 2APMOHIUHUL OCYUNAMOP, AH2APMOHIUHUL ocyunamop, nomenyian Ilewnsa—Tennepa,
mooughikosanuti nomenyian Iewns—Tennepa, nomenyian Mopse, nomenyian Jlennapoa-/oconca. Lli nomenyianu
WUPOKO 3ACMOCOBYIOMbCA 8 KBAHMOGIN MeXaHiyi Ol ONUCYBAHHA 63AEMOOII YACMUHOK YV CUCMEeMAX 3
obmediceHHAMU posmiprocmi. Peanizoseani 6 npoepamuomy cepedoguwyi aneopummu 003801510Mb KOPUCTYEAYAM
sminiosamu Qhizuuni napamempu (Hanpukiad, MAcy YacCmMuHoOK, 2AUOUHY ROMeEHYianbHol smu, iT wupumny), a
MaKoxc 2eoMempuyHi XapaxKmepucmuKu Cucmemu, Wo MoOenioeEmvcs, 6iON08IOHO 00 KOHKPEMHO20 MUny
HaHnocmpykmypu 4du mamepiany. OOHI€EIO 3 KIIOUOBUX 0COOIUBOCMEU NPOZPAMHO20 KOMNAEKCY € 3PYYHUl
inmepeetic 0ns iHmepakmusHoi nobyoosu 2epaqikie e@exmusHuUx NOMeHyianie ma CneKmparbHux AiHil
enrekmponnux cmanis. Cucmema maxodic 3a6e3neuye yucenbhe po3e sa3anus 8ionosionux pisusans lllpedineepa 3
YPaxy8aHHAM GXIOHUX NApamempis i cenepayiio pe3yibmamia y uensdi epaghikie, mabauysb ma iHwux opmamia,
npudamuux 0 NOOAILUL020 aHai3y. Bascnueum emanom cmano mecmyganus npaye30amuoCmi KOMAIEKCY HA
OCHOBI NpUKIAOdi6 peanvbHux @I3UYHUX cucmem i NOPIGHAHHS OMPUMAHUX Pe3yIbMamis i3 meopemudHuMU
NPOSHO3AMU MA IMepamypHuMu OaHUMU. 3a805KU MOOYIbHIU CIMPYKMYPI, NPOSPAMHUL KOMIIEKC Modice Oymu
PO3UWUPEHUTI HOBUMU MOOENAMU AO0 a0anmo8anuil 00 IHUUX MUNI8 NOMEHYIANi8 ma yMO8. Y niocymMKy, cmeopeHa
NPOSPAMHA CUCMEMA € VHIBEPCAIbHUM IHCMPYMEHMOM 015 00CAIOHUKIE | pO3POOHUKIE, AKI NPAYIOIOMb V 2ANy31
MIKPO- Ma HAHOENEeKMPOHIKU, OCKIIbKU O0360JI9€ He Juule NPOoGOOUMU MOYHI PO3PAXYHKU CHEKMPATbHUX
Xapaxkmepucmux eieKmpoHHUX CIAHI8 Y KBAHMOBUX AMAX, aje U CYHCUMU OCBIMHIM Ma HAYKOBUM 3ACOOO0M Ol
BUBYEHHS NOBEOIHKU eNeKMPOHI8 Y PI3HUX NOMEHYIATbHUX KOHGIcypayisx.

Knrwouogi cnosa: mamemamuuna mooens, npoepamua cucmema, Wolfram Mathematica, keanmosa sama,
MemoO CKIHYEHHUX Pi3HUYb, eqheKMUBHI NOMeHYIauU.
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