/.\ BicHuk TepHONiibChbKOro HALIOHAJIBLHOT0 TEXHIYHOT0 YHIBEPCHTETY
https://doi.org/10.33108/visnyk tntu

W Scientific Journal of the Ternopil National Technical University
\_/ 2025, Ne 3 (119) https://doi.org/10.33108/visnyk _tntu2025.03
ISSN 2522-4433. Web: visnyk.tntu.edu.ua

UDC 681.3 CC-BY 4.0

COMPARATIVE ANALYSIS OF MLP AND KAN NEURAL NETWORK
ARCHITECTURES IN NEUROINTERFACE TECHNOLOGIES

Yuriy Petrov; Oleh Pastukh

Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

Abstract. This article explores the relevance of neurointerface technologies, particularly for assisting
individuals with disabilities through advanced prosthetics. It examines the use of two neural network architectures,
MLP (multilayer perceptron) and KAN (Kolmogorov Arnold network), for classifying finger movements based on
brain signals. Results indicate that KAN models show an advantage in accuracy with smaller datasets and a more
compact model size, though they require more computational resources and longer training times. In contrast,
MLP is faster to train and slightly more effective on larger datasets, highlighting the potential for further
development in neurointerface-based prosthetic solutions.
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1. INTRODUCTION

Today, it is hard to deny the relevance of neurointerface technologies. The number of
people injured in disasters, wars, and accidents is growing, thus increasing the need for
prosthetics. Neuro-interface prostheses are becoming increasingly important in the medical
field, as they can restore lost movement capabilities and help people with disabilities return to
active life. Modern neurointerface technologies allow people to control electronic devices or
bionic prostheses using brain signals, thus opening up new opportunities in treatment and
rehabilitation. This area is made possible by the collaboration of research institutes, private
companies and universities that work intensively to improve these technologies.

With the development of computer technology, the process of implementing bionic
prostheses and devices with a neural interface is growing rapidly. Research and development on
this subject has been carried out by many companies and universities. Among them: The University
of Michigan [1], BrainGate [2], Neuralink [3], Stanford University [4], and others [5—13].

The purpose of the article is to analyse the principle of operation, efficiency and
accuracy of two neural network architectures: MLP and KAN. The comparison will be made
on the basis of the results of the finger movement classification task in accordance with brain
signals.

2. DATASET FORMATION

To train both neural networks, we will use data obtained experimentally using a 16-
channel electroencephalograph. During the experiment, changes in brain electrical activity were
recorded when a participant performed sequential finger flexion and extension movements for
2 minutes. Such actions were performed separately for the thumb and index finger, which
allows us to distinguish between signals of different motor activities. The electrode placement
scheme shown in the figure (Fig. 1) covers the relevant brain areas associated with the motor
activity of each of the fingers, which allows obtaining data for further analysis and training of
the neural network.
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Figure 1. Diagram of electrodes on the EEG [14]

Each electrode provides a value that is the potential difference with the reference
electrode attached to the earlobe. This allows us to create a data set in a table format. Here, the
row is the moment of time, and the columns are the potential difference between the electrodes
of the encephalograph (Fig. 2).
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Figure 2. Graphs of electrode potential difference

3. MLP

MLP (multilayer perceptron) is a feedforward neural network architecture. An MLP unit is
an artificial neuron that replicates the behaviour of a biological neuron using mathematical operations.
The architecture is based on connections between neuronal layers. Each layer with the next forms a
graph in which all vertices of the first layer have edges with each vertex of the second layer (Fig. 3).
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Figure 3. MLP architecture [17]
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The edges contain numerical values — synaptic weights. The product of the weights
together with the data sent by the neuron from the first layer is passed to the neuron in the
second layer. The neuron sums up all the products it receives and passes the sum to the
activation function. The result of the function is passed to all neurons in the next layer.

Using the error function, the backpropagation algorithm, and optimisation algorithms
MLP performs the following steps:

1. Find out how much the network is wrong.

2. Find out how much each connection between neurons influenced the final result.

3. Find out how much the synaptic weights need to be changed to reduce the error.

4. Update the synaptic weights.

By iterating these steps, MLP «learns» and finds the dependence between input and
output data.

4. KAN

The KAN architecture is a new approach to neural network architectures, which was
originally described in an article by the University of Massachusetts [15], published on
April 30, 2024. It is based on the Kolmogorov-Arnold representation theorem.

2n n
fX) = f(xg, o, xn) = Z q)q 2 d)q,p(xp) (D
q=0 p=1

In the context of neural networks, it is important to understand that to implement the
architecture, the authors of the article use the general concept of the theorem, since an exact
reproduction of the formula does not give the desired results.

Therefore, we will focus on the main idea of the theorem: a function that depends on many
variables can be represented as a composition of continuous functions that depend on one variable.

Any neural network can be represented as a function that depends on many parameters
(in our case, we have 16 parameters). Therefore, according to the theorem, we can divide it into
at least 16 functions with one parameter (univariate function).

At this point, some questions might arise because MLP also depends on activation
functions that take one parameter. The number of activation functions is equal to the number of
neurons, and the product of data with synaptic weights coming to the neuron is the parameter.
So what is the difference?

KAN proposes to replace the weights with learnable functions. Thus, the activation
functions are shifted from neurons to edges, and neurons will only act as adders (Fig. 4).

fixed activation functions
on nodes

learnable weights
on edges

learnable activation functions
A on edges

'\_‘___’

L

h-“‘x.
)/-\ J';nl.
<\
VLI A
/

KAN -
ZARN

,— _— ~
ARV
I.,l"m e e
/ TS
™~

Figure 4. Visualisation of MLP and KAN models [15]
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The difference is visually noticeable. Even with such a small model with two input
parameters and one hidden layer, KAN has three times more activation functions. This feature
confirms the need for KAN models to be much smaller than MLPs, as otherwise training will
take a lot of time and resources.

Let’s take a closer look at learnable features. Since all functions on the edges are
univariate, we can parameterise them as B-spline curves [16].

A B-spline (or basis spline) is a function segmented by low-degree polynomials defined
between given points. Let us consider the B-spline in (Fig. 5).
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Figure 5. B-spline function on the edge [15]

In the figure, we see a continuous function on some interval defined by the nodes #;.. The
value of G/ is equal to the number of segments that make up the function. The parameter k is
responsible for the degree of the polynomial that describes each segment of the curve. Thus, if
k = 3, Bi(x) 1s a third-degree polynomial. The training coefficient ¢; affects the position and
shape of each spline segment. Therefore, by changing the value of these coefficients, we can
influence the overall shape of the function. Thus, c¢; is analogous to the weighting coefficients
in MLP.

Why B-Spline? The main advantage of B-Spline functions is local control. That is, a
change in one coefficient affects the shape of only one segment of the spline. This feature solves
the problem of “forgetting” in MLP (Fig. 6).
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Figure 6. The effectiveness of MLP and KAN architectures additional training [15]
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According to the data in the figure, we can conclude that additional MLP training is not
effective. Because at each iteration of training with new data, MLP changes the weighting
coefficients that affect the performance of the function over the entire range of values. This
indicates the behaviour of global control, which causes problems in additional training of the
model.

Each iteration in KAN has much less impact on the results of previous training. This is
due to the large number of activation functions compared to MLP and the local control of each
of them, which solves the problem of “forgetting” in the process of additional training.

Unlike MLP, KAN can increase the level of accuracy and local control using Grid
Extension. The Grid Extension process involves increasing the number of segments into which
the spline function is divided (Fig. 7).
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Figure 7. Grid extension y KAN [15]

Thus, the result of one function is influenced by a total of 12 basis functions. We
determine the degree of discreteness of the spline function in Grid Extension ourselves. When
choosing a value, one should keep in mind that with an increase in the number of segments, the
training time and resource requirements will increase, since this operation significantly raises
the number of calculations.

Pruning and Symbolisation. To reduce the time of the neural network operation,
different methods of model optimisation are used. The main method in MLP is Pruning. The
purpose of Pruning is to reduce the number of connections in the model. The fewer connections
and neurons there are in the neural network, the fewer stages of computation the input data will
go through.

During pruning in MLP, we search for neurons or connections that make no or very little
contribution to the final result of the neural network. The marked elements are removed and
they reduce the size of the model.

In addition to the above-described Pruning, KAN offers another approach that is called
Symbolification. During training, some functions on the edges can take on the same or very
close to the standard functions shape. Despite the similarity in shape, these functions are still
splines. Obviously, calculating the conditional sin(x) is much simpler than the sum of the basis
functions with weighting coefficients. Therefore, Symbolification suggests replacing splines
with simpler functions: x2, x3, sin(x), cos(x), tan(x), In(x), etc.

It is worth noting that it is desirable to use Symbolification on trained models. This is
because replacing learnable functions with static ones will significantly reduce the efficiency
of further training.
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5. PROCEDURE FOR ANALYSING MODELS

The models will be analysed according to the following parameters: training time,
accuracy metrics, and the amount of training data. The accuracy metrics include:
accuracy_score, fl _score, roc_auc score. Accuracy score determines the degree of matching
between the set returned by the model and the set of true values. F1 _score determines the
average value of the accuracy and recall of the model. Roc auc score summarises the
classifier’s performance across all possible classification thresholds.

The dataset on which the model will be trained and tested contains a total of 180
thousand rows. We will allocate 20% of each sample for testing. To evaluate the models more
objectively, we will test them on a different number of samples: 10%, 30%, 50%, 70%, 100%.

6. TRAINING AND TESTING OF MODELS

All calculations will be performed on a PC with the following characteristics:

1. RAM: 16gb Ballistix 2666mhz.

2. CPU: Intel Core 15-10400f 2.9Ghz

3. HDD

The MLP architecture will be implemented by the MLPClassifier module of the sklearn
library [19]. We set the following hyperparameters for the model:

1. activation: ‘logistic’

2. hidden_layer sizes: 100

3. batch_size: auto, 32 for a sample of 20% of the total data

4. max_iter: 200

5. solver: adam

To train the KAN neural network, we will use the pykan library [18] by the authors of
the original article. The library was developed based on the basic classes of the Pytorch
framework. For initialisation, the following parameters were used:

1. width: [16, 3, 1]. The first and last elements of the array determine the dimensionality
of the input and output data, respectively. The indices of the elements inside determine the order
of the layers, and their values determine the number of neurons in a layer.

2. grid: 3. The grid dimension.

3. k: 3. The degree of the polynomial.

4. noise_scale: 0.1. Estimation of the data noise level.

When training, we set the following parameters:
opt: ‘LBFGS’
steps: 50
batch: number of rows in the test sample
loss_fn: BCEWithLogitLoss
2 0.1
he results of both architectures are shown in the table.

H o

Table 1

Results of the architectures.

Architecture | Data amount | Training time in seconds | Accuracy | F1 | Roc Auc
1 2 3 4 5 6
MLP 10% 31.2 73.6 73.7 73.6
KAN 10% 36.8 76.7 75.9 76.8
MLP 30% 71.1 76.6 76.6 76.6
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The end of the table
1 2 3 4 5 6
KAN 30% 101.6 78.4 78.8 78.4
MLP 50% 113.5 77.8 77.1 77.8
KAN 50% 172.9 77.5 76.2 77.4
MLP 70% 153.7 78.7 78.2 78.6
KAN 70% 251.1 77.6 76.1 77.5
MLP 100% 222.9 78.2 78.0 78.2
KAN 100% 377.5 77.4 76.4 77.4

7. CONCLUSIONS

We solved the problem of binary classification using two neural network architectures
on different amounts of data. Having analysed the results of both networks, we can conclude
that MLP is faster in training and outperforms KAN by 0.5-1.5% on larger data sets: 50%, 70%,
100%. KAN shows more accurate results while training on 10% and 30% samples, thus
outperforming MLP by 2-3%. Taking into account the novelty of KAN and the future
optimisation of existing libraries and development of new ones, this architecture can replace
MLP for tasks with a small amount of training data. Considering the small size of the models
and optimisation algorithms, KAN can run more efficiently on devices with low computing
power, making them more accessible. In the future, KAN layers can be used in architectures
with fully connected layers of other networks ranging from CNNs to LLMs.
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VJIK 681.3

MOPIBHSIJIbHUM AHAJII3 HEUPOMEPEXKXEBUX APXITEKTYP MLP
TA KAN Y HEUPOIHTEP®EMCHUX TEXHOJIOI'ISIX

FOpiii ITerpoB; Ouaer ITacTyx

Teproninbcokull HayioHAIbHUL MeXHIYHUU YHIgepcumem imeni leana 11lynros,
Tepnonins, Yxpaina

Pesztome. Jlocniosceno axmyanvHy npooiemy Heupoinmep@eltcHux mexHoNozil, 0cooiuéo0 8 KOHMEKCmi
npome3sy8anHs 100etl 3 00MENCEHUMU MOICTUBOCAMU. 30KpeMa, NPOAHANIZ308AH0 MOICIUBOCTIE HeUpoinmepgelicie y
BIOHOGIEHHI QYHKYIT KIHYIBOK, WO 00380J5I€ KOPUCTIYSAUAM NPOMe3is ecute SUKOHY8AMU NOBCAKOCHHT 3a0aui.
byno pozenamymo 06i neiipomepedxcesi apximexmypu — MLP (multilayer perceptron) ma KAN (Kolmogorov
Arnold network), axi szacmocysanuca Onsa kiacu@ikayii pyxie nanvyié Ha OCHOBI MO3KOGUX cucHanie. s
Gopmyeanns Oamacemy suxopucmaro 16-xanmanrvHull  erekmpoenyegpaniocpag, 3a  OONOMO20I0 K020
DeECmpPYBaAnUcs 3MIHU eNeKMPUYHOL aKMUHOCMI MO3KY Ni0 4aC GUKOHAHHA YYACHUKOM HNOCHIO08HUX DYXi8
32UHAHHS MA PO32UHAHHA nanvyie npomsieom 2 xeunu. Taxi Oii euKonysanucy OKkpemo OJid 6eluK020 md
BKA3IBHO20 NANLYIG, WO 00360UNO PO3PIHAMU CUSHAU DIZHUX PYX0ux akmusHocmel. Cxema po3mauty8anisi
en1eKmpooi8 OXONI06ANA BIONOGIOHI OLIAHKU MO3KY, NO8'SI3aHI 3 PYX0BOI AKMUBHICMIO KOJICHO20 3 NAIbYISE.
Ompumano pe3yromamu egpexmugHocmi pobomu ma HagYauHsa 000X apXimeKmyp Ha PisHUX GUOIPKAX OAHUX 610
10% 00 100% 6i0 3azcanvnoco damacemy 6 180 mucsau paoxis. 3azanom ananiz nokasas neseauxy nepesazy KAN
2—-3% y mounocmi na manux oocsaeax mpenyganvrux oanux (10%, 30%), wo nosé'ssano 3 kpaworo 30amuicmio 00
y3azanvbhenHs 3a oomedcenux oanux. 1axodic CunbHOI CHOPOHOIO € 3HAYHO MeHwul posmip mooeneli KAN
3a608KU GUKOPUCMANHIO B-cnaatin ynkyitl ma modcaueocmsam cuMeonizayii, aie mpusanuii yac ma euuyi
nompebu 00 0OYUCTIOBATIHUX pPecypCl Ni0 Yac HAGUAHH: uYepe3 OLnbuly Kinbkicmb yHkyiu akmusayii. MLP
nepemazac y weuoKoCmi mpeHysants ma noxkasye mouniwi pesyiomamu na 0.5%—1.5% npu eeruxux obcaeax
oanux (50%, 70%, 100%), wo pobums uozo edhexmusniwum 0aa pobomu 3 eeruxumu oamacemamu. 36iocu
BUNUBAIOMb NEPCHEKMUBU PO3GUMKY HOBOI apximekmypu y cepi OiOHIYHUX NPOMe3i8 Ma IHWUX MEXHON02IU HA
0CHOGI Helipoinmepgelicis, wo cnpusimume NOKPAWEHHIO AKOCI dcumms ao0ell 3 QI3UYHUMU 0OMEIHCEHHAMU.
Bpaxosyiouu nosusny KAN ma maubymuio onmumizayiio icHytouux 0ibiomex, ys apximexmypa mModice 3aMiHumu
MLP 0ns 3a0au 3 He8eaUKoIO KibKICIIO MPEeHy8aIbHUX OAHUX.

Knrouoei cnoea: netipomepednci, neipoinmepgpetic, MLP, KAN, nai0ouno-mawunna 63aemodis,
WMy HULL iHmeneKkm, MauiunHe HaGYaHHs.
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