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Abstract. This paper examines approaches to implementing adaptive multi-protocol communication in
energy systems undergoing transformation in the context of distributed generation growth and Smart Grid concept
development. An architecture is proposed that integrates OpenlD Connect (a unified authentication provider) with
a machine learning module for dynamic selection of optimal data transmission protocols among MQOTT, CoAP,
HTTPS protocols and legacy systems. The solution is based on employing widely-used algorithms (Random Forest,
neural networks, logistic regression) for real-time communication efficiency prediction. The system ensures
flexible, secure, and scalable management of heterogeneous devices through a unified control center. The obtained
results demonstrate potential for communication cost reduction, reliability enhancement, and foundation
establishment for implementing intelligent communication systems in the energy sector with automatic protocol
switching.

Key words: energy networks, energy efficiency, communication protocols, machine learning methods,
adaptive protocol selection.
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1. INTRODUCTION

Today's energy infrastructure is undergoing radical changes under the influence
of intensive deployment of renewable energy sources, expansion of distributed
generation, and implementation of the smart grid concept. Forecast studies by the
International Energy Agency indicate rapid growth in the share of distributed energy
resources, which will reach 30% of the global energy system by 2030 [1]. The
increasing complexity of energy networks is accompanied by a significant increase
in the number of connected devices, according to forecasts by IoT Analytics (Fig. 1).
The global number of connected IoT devices demonstrates exponential growth from
15.9 billion in 2023 to 41.1 billion by 2030, representing a compound annual growth
rate (CAGR) of 14% [2]. This dynamic emphasizes the critical importance of
selecting scalable and efficient data transmission protocols for energy systems. Therefore,
this trend requires high-tech solutions for efficient data transmission between network
components.

Studies of statistical characteristics of electricity consumption reveal distinct
cyclical and periodic patterns of loads, which creates prerequisites for taking such patterns
into account in order to optimize data transmission protocols according to predicted
operating modes. In this context, mathematical modeling of electricity consumption
characteristics becomes a fundamental basis for creating predictive systems and control
algorithms. The methodological toolkit for statistical evaluation of energy consumption
characteristics relies on the mathematical apparatus of probability theory and mathematical
statistics for building stochastic models.
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Figure 1. Dynamics of growth in the number of connected IoT devices until 2030 [2]

Therefore, the selection of optimal network protocols in the context of modern Smart
Grid networks and SCADA systems becomes particularly relevant, taking into account
energy loads at a specific point in time, when ensuring stable functioning is of critical
importance [3, 4].

Analysis of publication activity in key areas of «energy efficiency» and «energy
networks» demonstrates rapid growth of scientific interest in this topic. According to data from
Scopus and Web of Science bibliometric databases, the number of publications on energy
efficiency has almost doubled in the last three years, and research on energy networks shows
an even more pronounced growth dynamic (Fig. 2).
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Figure 2. Dynamics of publication growth in the fields of «energy efficiency» and «energy networks» during
2020-2025, based on data from Scopus and Web of Science bibliometric databases

This indicates increased attention from the global scientific community to issues of
energy system optimization, especially in terms of data transmission protocols and

communication technologies. In particular, there is a significant increase in the number of
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publications devoted to the application of machine learning methods for optimizing the
selection of data transmission protocols in intelligent energy networks

Based on bibliometric data from Scopus and Web of Science, the distribution of scientific
publications across subject areas highlights the prominent role of Computer Science (Fig. 3) and
substantiates the relevance of research in this domain.

Documents by subject area

Other (9.8%) \

Business, Manag... (2.5%)
/ Engineering (24.9%)

Economics, Econ... (2.8%)
Physics and Ast... (2.9%)

Chemical Engine... (3.0%) ~—

Social Sciences... (3.2%)

Environmental S... (8.3%)

E 22.8%
Mathematics (9.8%) nergy ( o)

Computer Scienc... (9.8%)

Figure 3. Analysis of publication activity distribution by main subject areas

The synergy of energy consumption modeling results with advanced network
technologies creates powerful potential for achieving optimal balance between energy
efficiency, reliability, and speed of data transmission systems in energy systems. The
evolutionary transition from centralized models to decentralized Smart Grid architectures
necessitates a fundamental rethinking of approaches to information exchange organization.
Optimizing the balance between data processing speed and transmission reliability represents a
key challenge in designing modern energy systems [5, 6, 7].

2. MULTI-PROTOCOL COMMUNICATION IN ENERGY SYSTEMS

An effective solution for optimizing the balance between data processing speed
and transmission reliability is the use of an OIDC identity provider. Traffic optimization
in networks at the level of software architecture and data representation is critically
important for energy systems [8]. Such a task requires the development of comprehensive
solutions capable of flexible interaction with various data transmission protocols
and ensuring system scalability with the growth in the number of connected devices.
It is important to note that the implementation of technologies for flexible management
of communication protocols in real time using centralized authentication and
data transmission efficiency prediction algorithms is accompanied by a number of
challenges related to the need for rapid processing and secure transmission of significant
data arrays from peripheral devices to centralized analytics and decision-making servers. In
this context, automated selection of data transmission protocols in energy systems is
important.
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Figure 4 presents a generalized architecture for connecting a unified OIDC provider for
an energy system, which includes various types of devices (MQTT sensors, CoAP controllers,
HTTPS clients, Legacy systems) with their protocols, an OIDC provider with internal
components (authentication, authorization, ML module), and target services (analytics,
management, data storage).
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Figure 4. OIDC provider architecture with multi-protocol communication support

The presented architectural scheme demonstrates a comprehensive OIDC provider
system with multi-protocol communication support, specifically designed for intelligent energy
networks. The architecture is built on the principle of centralized management, where the OIDC
provider acts as a key orchestration component that ensures unified data flow between
heterogeneous network devices and target services.

The network component of the scheme represents various categories of network
devices, each characterized by specific communication protocols and functional purposes.
MQTT devices, including smart meters and IoT sensors, provide telemetric data collection with
minimal energy consumption thanks to the efficient "publisher-subscriber" architecture. CoAP
devices, represented by microcontrollers and embedded systems, are optimized for operation
under strict resource constraints and ensure reliable data transmission through UDP-based
transport. HTTPS devices, including web interfaces and API clients, guarantee a high level of
security through TLS/SSL encryption, although this is accompanied by increased
computational resource requirements. Legacy systems, such as SCADA and industrial
controllers, are integrated through specialized protocol adapters, ensuring compatibility with
existing energy infrastructure.

The central component of the scheme represents the OIDC provider as a multifunctional
system consisting of several interconnected modules. Verification of digital identifiers of devices
and users is implemented through the use of the OAuth 2.0 Authorization Framework [14] and the
OpenID Connect standards [15]. The authorization module applies RBAC policies to ensure
granular access control to system resources. The token management system provides generation,
validation, and rotation of JWT tokens with corresponding metadata and permissions. The protocol
adapter performs translation and standardization functions for messages between different
communication protocols, ensuring seamless integration of heterogeneous devices.
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The ML protocol selection module deserves special attention, as it uses three
complementary machine learning algorithms. Random Forest provides analysis of complex
interactions between network parameters and optimal protocol selection. Neural Networks
model nonlinear dependencies between device characteristics, network conditions, and protocol
performance. Logistic Regression provides interpretable baseline solutions and serves as a
fallback mechanism when there is insufficient data for more complex models.

The metrics collection module continuously monitors key network performance
indicators, including transmission delay, packet loss rate, and throughput. These metrics serve
as input data for ML algorithms and provide real-time optimization of protocol solutions. The
Load Balancer ensures intelligent traffic distribution between different services and implements
failover mechanisms to maintain high system availability.

The target services scheme demonstrates the architecture of target services, each specializing
in specific aspects of energy data processing. Analytics Service implements advanced big data
processing algorithms for generating insights and predictive analytics in the energy domain.
Control Service provides real-time device management and automation of technological
processes with minimal response delay. Storage Service implements time-series databases for
efficient storage and archiving of telemetric data with optimized compression and indexing.
The External APIs Module ensures integration with cloud services and third-party systems
through standardized REST and GraphQL interfaces. The Management Dashboard provides
comprehensive visualization of system status, performance metrics, and administrative
functionality for energy network operators.

The architecture enables a multi-level security model that includes device-level
authentication through digital certificates, transport-level encryption through TLS/SSL protocols,
and application-level authorization through OAuth 2.0 tokens. End-to-end encryption ensures
data integrity and confidentiality throughout the entire lifecycle from source to target service.
This allows ensuring a unified level of security and digital identity management for all types of
devices regardless of the underlying protocol (MQTT, CoAP, HTTPS, Legacy).

The use of multi-protocol communication in energy systems allows selecting the most
optimal data transmission protocol at a specific moment, taking into account various influences
on the energy system. Comparative analysis of the functional capabilities of main
communication protocols in energy systems reveals their specific characteristics and
limitations. The MQTT protocol, based on the "publisher-subscriber" principle, demonstrates
high efficiency for IoT devices with limited energy resources due to minimal 2-byte packet
headers, low delays, and stable operation under unstable connection conditions [9, 10].
However, the basic version of MQTT has limited built-in encryption capabilities and "request-
response" pattern implementation.

The CoAP protocol, designed for resource-constrained networks, uses efficient binary
encoding with caching support and follows REST architectural principles [11]. Its functioning
based on the UDP transport protocol significantly reduces communication overhead costs, but
does not guarantee reliable message delivery. Additional limitations are related to scaling for
large networks and difficulties passing through NAT and firewalls.

The HTTPS protocol is distinguished by a high level of security due to TLS/SSL
encryption, which prevents data interception or modification during transmission [12, 13].
However, the high level of security is accompanied by increased energy consumption due to
cryptographic calculations, significant hardware resource requirements, and a lengthy
connection establishment process.

Unlike using specialized solutions from individual suppliers (such as AWS IoT Core),
our developed system implements an OpenID Connect (OIDC) provider as a universal
authentication and data collection mechanism for all protocols regardless of their features. This
standardized approach ensures seamless integration regardless of the underlying protocol,
increasing system interoperability while maintaining information security requirements. The
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OIDC provider unifies authentication processes and implements a unified security model that
functions effectively in MQTT, CoAP, and HTTPS environments without additional
modifications.

The dynamic system update process is implemented through a multi-level automatic
reconfiguration mechanism. First, the metrics collection system continuously monitors key
network performance indicators (delay, packet loss, throughput) at 30-second intervals and
transmits data to the centralized analytics module. The machine learning module processes the
obtained metrics using three trained models (Random Forest, Neural Networks, Logistic
Regression) and generates recommendations for the optimal protocol for current conditions. In
case of recommendation changes, the system initiates gradual protocol switching through the
OIDC provider: first, access tokens for all devices are updated with new protocol parameters,
then new connections are gradually activated (starting with 10% of devices for testing), and
only after confirming stable operation does complete switching of the entire network occur.
The rollback mechanism allows automatic return to the previous protocol in case critical errors
are detected during a 5-minute observation window after switching.

The proposed approach significantly simplifies management of heterogeneous devices
in energy networks, optimizes data transmission processes, ensures flexible scaling, and
increases overall operational efficiency of all components, while implementing a protocol-
agnostic security model and centralized digital identity management.

3. RESEARCH METHODS AND RESULTS

Efficient data exchange between energy network nodes requires the use of modern
communication protocols that ensure reliability, minimal delays, and energy efficiency. The
selection of optimal data transmission protocols depends on the specifics of the operating
environment and requirements for connection speed and stability, and for this purpose, the use
of machine learning methods is proposed. This study employed Random Forest, Neural
Networks, and Logistic Regression. These three main models were chosen for their ability to
identify different types of patterns: Random Forest - for detecting complex interactions between
features, Neural Networks (with two hidden layers of 64 and 32 neurons) — for modeling
complex nonlinear dependencies between protocol characteristics for modeling nonlinear
dependencies [16], and Logistic Regression for ensuring interpretability of results. Together,
they provide powerful and complementary tools for deep analysis of network data.

Protocol comparison and selection is implemented through a multi-stage algorithm
where all machine learning models processed the same set of input data. The effectiveness of
each model was evaluated using the F1-score metric, which takes into account both precision
and recall:

(precision X recall)
F1 =2 X - (1)
(precision + recall)

This metric has particular value for evaluating classification quality under unbalanced
class conditions, as it takes into account both false positive and false negative results.
Specifically, in the context of our study, the Fl-score allows for correct assessment of the
models' ability to differentiate protocols based on their characteristics even under complex
conditions of uneven class distribution in the training data.

To ensure research representativeness, the data collection process took place directly
during system operation, which allowed obtaining relevant results under real operating
conditions. For quantitative analysis, an evaluation of MQTT, CoAP, and HTTPS protocols
was conducted based on three key indicators: transmission delay (latency), packet loss rate
(packet loss), and throughput. Data collection was performed using specialized network
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analysis tools, including Wireshark for deep packet inspection, tcpdump for monitoring
network traffic at the TCP/IP level, JMeter for load testing, and iperf for throughput
measurement. For each protocol, 20,000 data messages were transmitted, ensuring statistical
significance of the results.

For this study, real data obtained from smart meters installed in a private enterprise were
used. These meters provide information to specialized equipment for data collection and
processing. The dataset consisted of structured records containing transmission delay,
throughput, and packet loss indicators. These parameters were continuously monitored and
recorded in real time, forming the basis for further analysis. The collected metrics were
subsequently used as input for the machine learning models, enabling the system to make
protocol selection decisions in real time depending on the observed communication
environment.

The data processing methodology involved dividing the obtained energy load data array
into training and test samples in an 80:20 ratio. To ensure reliable assessment of the stability of
the created models, a 5-fold cross-validation methodology (Stratified K-Fold) was applied [17],
in which each model was tested on five different subsets of training data [18]. Data
preprocessing included normalization using StandardScaler to bring all indicators to a unified
measurement scale, which eliminated the dominance of individual features with large absolute
values and improved training accuracy.

The final protocol selection was based on a comprehensive approach that combined
quantitative indicators (average Fl-score value of all machine learning models) with qualitative
verification of compliance with industry technical requirements for energy systems. Specifically,
such critical parameters were considered as maximum allowable delay, acceptable packet loss level,
and minimum required throughput to ensure uninterrupted system operation, particularly during
emergency conditions such as power outages or external disruptions [19, 20, 21].

The obtained results of data transmission in energy systems using multi-protocol
communication during different time periods presented in Table 1 demonstrate the system's
ability to adapt to changing conditions.

Table 1

Results of data transmission in energy system using multi-protocol communication during different time periods
with Logistic Regression, Random Forest, Neural Network methods

Model Accuracy Protocol Fl-score

27.01.2025, 10:00 am

Logistic Regression 0.68 CoAP 0.70
Random Forest 0.62 CoAP 0.71
Neural Network 0.63 MQTT 0.67

02.02.2025, 10:00 am

Logistic Regression 0.60 MQTT 0.67
Random Forest 0.58 MQTT 0.66
Neural Network 0.60 HTTPS 0.69
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Analysis of Table 1 data indicates variability of results across different time periods.
Based on the obtained results, we can observe that in most cases the Random Forest model
recommended using the MQTT protocol, while the Neural Network in two cases preferred the
HTTPS protocol, and Logistic Regression demonstrated a more conservative approach, evenly
distributing recommendations between MQTT and CoAP depending on specific network
conditions.

This divergence is explained by different model sensitivity to various aspects
of network performance. Random Forest proved to be more sensitive to delay and
packet loss indicators, the Neural Network better accounted for security aspects and
connection stability, while Logistic Regression focused on linear dependencies between
main performance metrics and demonstrated the highest interpretability of results.
Consensus among the three models was achieved through a weighted algorithm that
considered both individual F1-scores of each model and the degree of consistency of their
recommendations.

The system automatically updates device configurations through the OIDC
provider after determining the optimal protocol based on the generalized decision.
Such implementation creates a protocol-agnostic layer that guarantees compliance
with security standards while simultaneously ensuring flexible switching between
protocols.

A key advantage of the proposed multi-model approach lies in its ability to
significantly simplify the administration and management of heterogeneous devices within
energy networks. In contrast to traditional methods, which require specific configurations
for each device type and communication protocol, the unified OIDC-based system
integrated with three complementary machine learning algorithms enables centralized
management from a single control point, thereby reducing operational costs and enhancing
overall system reliability.

4. CONCLUSIONS

The presented study demonstrates the effectiveness of a comprehensive approach to
dynamic data transmission protocol selection in energy systems with multi-protocol
communication, leveraging machine learning methods. The proposed methodology
successfully addresses the challenges of adaptive protocol selection through the integration of
three complementary models: Random Forest, Neural Networks, and Logistic Regression, each
providing optimal recommendations for different network conditions and performance
requirements.

Comparative analysis of the models revealed distinct sensitivities to network parameters:
Random Forest exhibited the highest stability for delay and packet loss metrics, Neural Networks
better accounted for security aspects and connection stability, and Logistic Regression offered the
greatest interpretability of results. A consensus algorithm based on weighted F1-scores ensures
reliable decision-making even when model recommendations diverge.

The methodology establishes a robust foundation for next-generation energy systems
with intelligent protocol management capable of adapting to changing operating conditions and
optimizing resource utilization. The use of multi-protocol communication simplifies the
integration of heterogeneous devices, ensures system scalability, and reduces operational costs
through centralized management.

The practical implementation of the proposed approach is expected to enhance the
efficiency, stability, and security of modern Smart Grid systems, which is particularly important
in the context of exponential growth in [oT devices and the increasing integration of distributed
energy resources. It should be emphasized that, in scenarios where devices support only a
limited set of communication protocols, the methodology can be adapted to perform protocol
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selection within the available subset. This ensures that the decision-making process remains
relevant under constrained conditions, while still leveraging the benefits of machine learning—
based optimization.

Overall, the study confirms that combining multi-model machine learning with
centralized authentication and protocol-agnostic management can significantly improve
performance, reliability, and security of contemporary energy networks, providing a scalable
and flexible solution for future Smart Grid implementations.
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AJAIITUBHA BAI'ATOITPOTOKOJIbHA KOMYHIKALIA 15
EHEPITETUYHUX CUCTEM

Amnapiit Boaomyk; I'asinaa OcyxiBcbka

Teproninbcokull HayioHAbHUL MeXHIYHUU YHIgepcumem imeni leana 11lynros,
Tepuonins, Ykpaina

Pestome. Pozensinymo nioxoou 00 6npoeaoddiceHHs adanmueHoi 0azamonpomoKoIbHOI KOMYHIKAyil 6
eHepeemUUHUX CUCTEMAX, WO MPAHCHOPMYIOMbCA 8 YMO8AX 3POCMAHHA PO3NOOINeHOi cenepayii ma po3eumky
xonyenyii Smart Grid. 3pocmaioua 2emepo2eHHICMb CYHACHUX eHEP2eMULHUX IHPPACMPYKMYP, 3yMOGIEHA MACOBUM
ynposaocennuam loT-npucmpois, inmenreKmyanbHux NiYUNGHUKIE MA PO3NOOINEHUX eHePemUYHUX pecypcis,
CMBOPIOE CYMmesL UKMUKU OJis 3a0e3neUeHHst HAOIHO20 Ma eQheKmusH020 nepedasaniss OaHUX. 3a Makux ymoe
MpAouUYitiHi CIMAmuyHi KOMYHIKAYIUHI apXimeKmypu UAGIAIMbCA MAI0eDEeKMUSHUMY MA HECNPOMONCHUMU
adanmysamucst 00 OUHAMIYHUX 3MIH CMaHy Mmepedcl. 3anponoHO8aHO apXimeKmypHuti niOXi0, Wo NOEOHYE
nposaiidep ioenmuixayii OpenID Connect ax yHipikosanuii mexanizm aemenmu@ixayii ma asmopusayii 3
iHMeNeKMYanoHUM MOOYIeM MAWUHHO20 HAGUAHHA Ol AOANMUBHO20 YNPAGNIHHA NPOMOKONAMU 36 A3KY.
Hunamiunuii eubip npomokonie nepedagarna Oauux 30itichioemoves mioe MOTT, CoAP, HTTPS ma inwumu
APOMUCTOBUMU CUCTEMAMU 3 YPAXYBAHHAM NOKAZHUKIE NPOOYKMUBHOCII MEPEICi 8 PeaNbHOMY HaCi, BUMO2 De3neKu
ma Xapakmepucmuk eKCcHIyamayiiHo2o Haganmascents. JUisi npoeHo3yeaHHs eQexmueHocmi KOMYHIKayil
BUKOPUCIAHO 6A2amMOMOOeNbHUL NIOXI0 MAWUHHO20 HABYAHHS, W0 éKktoYac areopummu Random Forest, Hetliponni
Mepedici ma 102icmuyny pezpeciio, AKi 3a6e3neuyioms 63aeM000N0BHIOEANbHULL AHANI3 Mepedicesux napamempis.
Ocmamoune piwenns w000 6ubOpy ONMUMATLHOZO NPOMOKOTY (YOPMYEMbCA HA OCHOBI  36AXHCEHO20
KOHCEHCYCHO20 MEeXAHI3MY 3 YPAXYBAHHAM NOKAZHUKIE AKOCMI KOJNCHOI MOOei. 3anpononosana cucmema peaiisye
NPOMOKON — HE3ANeNCHY MOOeNb Oe3neku, YeHmpanizoeane YNpAasuinHA 2emepoeHHUMU NPUCIPOAMU Md
macumabosany apximexmypy, RpUOAmHy Osi CYHACHUX I NePCHEeKMUBHUX eHepeemUdHux mepedxc. Pesynomamu
EKCNepUMEHMANLHUX OOCTIONCEHb, OMPUMANT HA OCHOBI PeanbHUX eKCNAyamayiuHux OaHux, niomeepoicyroms
MOHNCIUBICMb 3MEHUEHHS KOMYHIKAYIUHUX 8UMPam, ni08UeHHs HAOIIHOCMI nepeddeanHs OaHuX i 3a0e3neqenHs
cmabinbHoi pobomu cucmemu 3a 3MIHHUX Mepedcesux ymos. Ompumani pe3yibmamu 008005imb, WO NOEOHAHHA
yenmpanizoeanoi idenmugbikayii 3 a0anNMuUEHUM, 3ACHOBAHUM HA MAUUHHOMY HABYAHHI 8UOOPOM NPOMOKOIIE
CMBOPIOE HAOIUHY OCHOBY OJiA IHMENeKMYANbHUX KOMYHIKAYIHUX CUCeM 3 aA8MOMAMUYHUM NePeMUKAHHAM
NPOMOKONIE Y eHep2eMUuYHUX IHHPACMPYKMypax HO8020 NOKOJIIHHS MAd eKCIYAMAYitiHOl CmiuKocmi.

Knrouosi cnosa: enepeemuuni mepeici, enepeoepekmunicms, KOMYHIKAYIlHI NPOMOKOIU, Memoou
MAWUHHO20 HABYAHHS, A0ANMUBHUL 8UOTD NPOTNOKOTY .
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