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Abstract. This paper examines approaches to implementing adaptive multi-protocol communication in 

energy systems undergoing transformation in the context of distributed generation growth and Smart Grid concept 

development. An architecture is proposed that integrates OpenID Connect (a unified authentication provider) with 

a machine learning module for dynamic selection of optimal data transmission protocols among MQTT, CoAP, 

HTTPS protocols and legacy systems. The solution is based on employing widely-used algorithms (Random Forest, 

neural networks, logistic regression) for real-time communication efficiency prediction. The system ensures 

flexible, secure, and scalable management of heterogeneous devices through a unified control center. The obtained 

results demonstrate potential for communication cost reduction, reliability enhancement, and foundation 

establishment for implementing intelligent communication systems in the energy sector with automatic protocol 

switching. 
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1. INTRODUCTION 

 

Today's energy infrastructure is undergoing radical changes under the influence 

of intensive deployment of renewable energy sources, expansion of distributed 

generation, and implementation of the smart grid concept. Forecast studies by the 

International Energy Agency indicate rapid growth in the share of distributed energy 

resources, which will reach 30% of the global energy system by 2030 [1]. The 

increasing complexity of energy networks is accompanied by a significant increase 

in the number of connected devices, according to forecasts by IoT Analytics (Fig. 1).  

The global number of connected IoT devices demonstrates exponential growth from 

15.9 billion in 2023 to 41.1 billion by 2030, representing a compound annual growth 

rate (CAGR) of 14% [2]. This dynamic emphasizes the critical importance of 

selecting scalable and efficient data transmission protocols for energy systems. Therefore, 

this trend requires high-tech solutions for efficient data transmission between network 

components. 

Studies of statistical characteristics of electricity consumption reveal distinct 

cyclical and periodic patterns of loads, which creates prerequisites for taking such patterns 

into account in order to optimize data transmission protocols according to predicted 

operating modes. In this context, mathematical modeling of electricity consumption 

characteristics becomes a fundamental basis for creating predictive systems and control 

algorithms. The methodological toolkit for statistical evaluation of energy consumption 

characteristics relies on the mathematical apparatus of probability theory and mathematical 

statistics for building stochastic models. 
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Figure 1. Dynamics of growth in the number of connected IoT devices until 2030 [2] 

 

Therefore, the selection of optimal network protocols in the context of modern Smart 

Grid networks and SCADA systems becomes particularly relevant, taking into account 

energy loads at a specific point in time, when ensuring stable functioning is of critical 

importance [3, 4]. 

Analysis of publication activity in key areas of «energy efficiency» and «energy 

networks» demonstrates rapid growth of scientific interest in this topic. According to data from 

Scopus and Web of Science bibliometric databases, the number of publications on energy 

efficiency has almost doubled in the last three years, and research on energy networks shows 

an even more pronounced growth dynamic (Fig. 2).  

 

 
 

Figure 2. Dynamics of publication growth in the fields of «energy efficiency» and «energy networks» during 

2020–2025, based on data from Scopus and Web of Science bibliometric databases 

 

This indicates increased attention from the global scientific community to issues of 

energy system optimization, especially in terms of data transmission protocols and 

communication technologies. In particular, there is a significant increase in the number of 
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publications devoted to the application of machine learning methods for optimizing the 

selection of data transmission protocols in intelligent energy networks 

Based on bibliometric data from Scopus and Web of Science, the distribution of scientific 

publications across subject areas highlights the prominent role of Computer Science (Fig. 3) and 

substantiates the relevance of research in this domain. 

 

 
 

Figure 3. Analysis of publication activity distribution by main subject areas 

 

The synergy of energy consumption modeling results with advanced network 

technologies creates powerful potential for achieving optimal balance between energy 

efficiency, reliability, and speed of data transmission systems in energy systems. The 

evolutionary transition from centralized models to decentralized Smart Grid architectures 

necessitates a fundamental rethinking of approaches to information exchange organization. 

Optimizing the balance between data processing speed and transmission reliability represents a 

key challenge in designing modern energy systems [5, 6, 7]. 
 

2. MULTI-PROTOCOL COMMUNICATION IN ENERGY SYSTEMS 
 

An effective solution for optimizing the balance between data processing speed 

and transmission reliability is the use of an OIDC identity provider. Traffic optimization 

in networks at the level of software architecture and data representation is critically 

important for energy systems [8]. Such a task requires the development of comprehensive 

solutions capable of flexible interaction with various data transmission protocols 

and ensuring system scalability with the growth in the number of connected devices.  

It is important to note that the implementation of technologies for flexible management  

of communication protocols in real time using centralized authentication and 

data transmission efficiency prediction algorithms is accompanied by a number of 

challenges related to the need for rapid processing and secure transmission of significant 

data arrays from peripheral devices to centralized analytics and decision-making servers. In 

this context, automated selection of data transmission protocols in energy systems is 

important. 
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Figure 4 presents a generalized architecture for connecting a unified OIDC provider for 

an energy system, which includes various types of devices (MQTT sensors, CoAP controllers, 

HTTPS clients, Legacy systems) with their protocols, an OIDC provider with internal 

components (authentication, authorization, ML module), and target services (analytics, 

management, data storage). 

 

 
 

Figure 4. OIDC provider architecture with multi-protocol communication support 

 

The presented architectural scheme demonstrates a comprehensive OIDC provider 

system with multi-protocol communication support, specifically designed for intelligent energy 

networks. The architecture is built on the principle of centralized management, where the OIDC 

provider acts as a key orchestration component that ensures unified data flow between 

heterogeneous network devices and target services. 

The network component of the scheme represents various categories of network 

devices, each characterized by specific communication protocols and functional purposes. 

MQTT devices, including smart meters and IoT sensors, provide telemetric data collection with 

minimal energy consumption thanks to the efficient "publisher-subscriber" architecture. CoAP 

devices, represented by microcontrollers and embedded systems, are optimized for operation 

under strict resource constraints and ensure reliable data transmission through UDP-based 

transport. HTTPS devices, including web interfaces and API clients, guarantee a high level of 

security through TLS/SSL encryption, although this is accompanied by increased 

computational resource requirements. Legacy systems, such as SCADA and industrial 

controllers, are integrated through specialized protocol adapters, ensuring compatibility with 

existing energy infrastructure. 

The central component of the scheme represents the OIDC provider as a multifunctional 

system consisting of several interconnected modules. Verification of digital identifiers of devices 

and users is implemented through the use of the OAuth 2.0 Authorization Framework [14] and the 

OpenID Connect standards [15]. The authorization module applies RBAC policies to ensure 

granular access control to system resources. The token management system provides generation, 

validation, and rotation of JWT tokens with corresponding metadata and permissions. The protocol 

adapter performs translation and standardization functions for messages between different 

communication protocols, ensuring seamless integration of heterogeneous devices. 
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The ML protocol selection module deserves special attention, as it uses three 

complementary machine learning algorithms. Random Forest provides analysis of complex 

interactions between network parameters and optimal protocol selection. Neural Networks 

model nonlinear dependencies between device characteristics, network conditions, and protocol 

performance. Logistic Regression provides interpretable baseline solutions and serves as a 

fallback mechanism when there is insufficient data for more complex models. 

The metrics collection module continuously monitors key network performance 

indicators, including transmission delay, packet loss rate, and throughput. These metrics serve 

as input data for ML algorithms and provide real-time optimization of protocol solutions. The 

Load Balancer ensures intelligent traffic distribution between different services and implements 

failover mechanisms to maintain high system availability. 

The target services scheme demonstrates the architecture of target services, each specializing 

in specific aspects of energy data processing. Analytics Service implements advanced big data 

processing algorithms for generating insights and predictive analytics in the energy domain. 

Control Service provides real-time device management and automation of technological 

processes with minimal response delay. Storage Service implements time-series databases for 

efficient storage and archiving of telemetric data with optimized compression and indexing. 

The External APIs Module ensures integration with cloud services and third-party systems 

through standardized REST and GraphQL interfaces. The Management Dashboard provides 

comprehensive visualization of system status, performance metrics, and administrative 

functionality for energy network operators. 

The architecture enables a multi-level security model that includes device-level 

authentication through digital certificates, transport-level encryption through TLS/SSL protocols, 

and application-level authorization through OAuth 2.0 tokens. End-to-end encryption ensures 

data integrity and confidentiality throughout the entire lifecycle from source to target service. 

This allows ensuring a unified level of security and digital identity management for all types of 

devices regardless of the underlying protocol (MQTT, CoAP, HTTPS, Legacy). 

The use of multi-protocol communication in energy systems allows selecting the most 

optimal data transmission protocol at a specific moment, taking into account various influences 

on the energy system. Comparative analysis of the functional capabilities of main 

communication protocols in energy systems reveals their specific characteristics and 

limitations. The MQTT protocol, based on the "publisher-subscriber" principle, demonstrates 

high efficiency for IoT devices with limited energy resources due to minimal 2-byte packet 

headers, low delays, and stable operation under unstable connection conditions [9, 10]. 

However, the basic version of MQTT has limited built-in encryption capabilities and "request-

response" pattern implementation. 

The CoAP protocol, designed for resource-constrained networks, uses efficient binary 

encoding with caching support and follows REST architectural principles [11]. Its functioning 

based on the UDP transport protocol significantly reduces communication overhead costs, but 

does not guarantee reliable message delivery. Additional limitations are related to scaling for 

large networks and difficulties passing through NAT and firewalls. 

The HTTPS protocol is distinguished by a high level of security due to TLS/SSL 

encryption, which prevents data interception or modification during transmission [12, 13]. 

However, the high level of security is accompanied by increased energy consumption due to 

cryptographic calculations, significant hardware resource requirements, and a lengthy 

connection establishment process. 

Unlike using specialized solutions from individual suppliers (such as AWS IoT Core), 

our developed system implements an OpenID Connect (OIDC) provider as a universal 

authentication and data collection mechanism for all protocols regardless of their features. This 

standardized approach ensures seamless integration regardless of the underlying protocol, 

increasing system interoperability while maintaining information security requirements. The 
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OIDC provider unifies authentication processes and implements a unified security model that 

functions effectively in MQTT, CoAP, and HTTPS environments without additional 

modifications. 

The dynamic system update process is implemented through a multi-level automatic 

reconfiguration mechanism. First, the metrics collection system continuously monitors key 

network performance indicators (delay, packet loss, throughput) at 30-second intervals and 

transmits data to the centralized analytics module. The machine learning module processes the 

obtained metrics using three trained models (Random Forest, Neural Networks, Logistic 

Regression) and generates recommendations for the optimal protocol for current conditions. In 

case of recommendation changes, the system initiates gradual protocol switching through the 

OIDC provider: first, access tokens for all devices are updated with new protocol parameters, 

then new connections are gradually activated (starting with 10% of devices for testing), and 

only after confirming stable operation does complete switching of the entire network occur. 

The rollback mechanism allows automatic return to the previous protocol in case critical errors 

are detected during a 5-minute observation window after switching. 

The proposed approach significantly simplifies management of heterogeneous devices 

in energy networks, optimizes data transmission processes, ensures flexible scaling, and 

increases overall operational efficiency of all components, while implementing a protocol-

agnostic security model and centralized digital identity management. 
 

3. RESEARCH METHODS AND RESULTS 
 

Efficient data exchange between energy network nodes requires the use of modern 

communication protocols that ensure reliability, minimal delays, and energy efficiency. The 

selection of optimal data transmission protocols depends on the specifics of the operating 

environment and requirements for connection speed and stability, and for this purpose, the use 

of machine learning methods is proposed. This study employed Random Forest, Neural 

Networks, and Logistic Regression. These three main models were chosen for their ability to 

identify different types of patterns: Random Forest - for detecting complex interactions between 

features, Neural Networks (with two hidden layers of 64 and 32 neurons) – for modeling 

complex nonlinear dependencies between protocol characteristics for modeling nonlinear 

dependencies [16], and Logistic Regression for ensuring interpretability of results. Together, 

they provide powerful and complementary tools for deep analysis of network data. 

Protocol comparison and selection is implemented through a multi-stage algorithm 

where all machine learning models processed the same set of input data. The effectiveness of 

each model was evaluated using the F1-score metric, which takes into account both precision 

and recall: 
 

𝐹1 =  2 ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙)
 (1) 

 

This metric has particular value for evaluating classification quality under unbalanced 

class conditions, as it takes into account both false positive and false negative results. 

Specifically, in the context of our study, the F1-score allows for correct assessment of the 

models' ability to differentiate protocols based on their characteristics even under complex 

conditions of uneven class distribution in the training data. 

To ensure research representativeness, the data collection process took place directly 

during system operation, which allowed obtaining relevant results under real operating 

conditions. For quantitative analysis, an evaluation of MQTT, CoAP, and HTTPS protocols 

was conducted based on three key indicators: transmission delay (latency), packet loss rate 

(packet loss), and throughput. Data collection was performed using specialized network 
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analysis tools, including Wireshark for deep packet inspection, tcpdump for monitoring 

network traffic at the TCP/IP level, JMeter for load testing, and iperf for throughput 

measurement. For each protocol, 20,000 data messages were transmitted, ensuring statistical 

significance of the results. 

For this study, real data obtained from smart meters installed in a private enterprise were 

used. These meters provide information to specialized equipment for data collection and 

processing. The dataset consisted of structured records containing transmission delay, 

throughput, and packet loss indicators. These parameters were continuously monitored and 

recorded in real time, forming the basis for further analysis. The collected metrics were 

subsequently used as input for the machine learning models, enabling the system to make 

protocol selection decisions in real time depending on the observed communication 

environment. 

The data processing methodology involved dividing the obtained energy load data array 

into training and test samples in an 80:20 ratio. To ensure reliable assessment of the stability of 

the created models, a 5-fold cross-validation methodology (Stratified K-Fold) was applied [17], 

in which each model was tested on five different subsets of training data [18]. Data 

preprocessing included normalization using StandardScaler to bring all indicators to a unified 

measurement scale, which eliminated the dominance of individual features with large absolute 

values and improved training accuracy. 

The final protocol selection was based on a comprehensive approach that combined 

quantitative indicators (average F1-score value of all machine learning models) with qualitative 

verification of compliance with industry technical requirements for energy systems. Specifically, 

such critical parameters were considered as maximum allowable delay, acceptable packet loss level, 

and minimum required throughput to ensure uninterrupted system operation, particularly during 

emergency conditions such as power outages or external disruptions [19, 20, 21].  

The obtained results of data transmission in energy systems using multi-protocol 

communication during different time periods presented in Table 1 demonstrate the system's 

ability to adapt to changing conditions. 
 

Table 1 

 

Results of data transmission in energy system using multi-protocol communication during different time periods 

with Logistic Regression, Random Forest, Neural Network methods 

 

Model Accuracy Protocol F1-score 

27.01.2025, 10:00 am 

Logistic Regression 0.68 CoAP 0.70 

Random Forest 0.62 CoAP 0.71 

Neural Network 0.63 MQTT 0.67 

02.02.2025, 10:00 am 

Logistic Regression 0.60 MQTT 0.67 

Random Forest 0.58 MQTT 0.66 

Neural Network 0.60 HTTPS 0.69 
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Analysis of Table 1 data indicates variability of results across different time periods. 

Based on the obtained results, we can observe that in most cases the Random Forest model 

recommended using the MQTT protocol, while the Neural Network in two cases preferred the 

HTTPS protocol, and Logistic Regression demonstrated a more conservative approach, evenly 

distributing recommendations between MQTT and CoAP depending on specific network 

conditions. 

This divergence is explained by different model sensitivity to various aspects  

of network performance. Random Forest proved to be more sensitive to delay and 

packet loss indicators, the Neural Network better accounted for security aspects and 

connection stability, while Logistic Regression focused on linear dependencies between 

main performance metrics and demonstrated the highest interpretability of results. 

Consensus among the three models was achieved through a weighted algorithm that 

considered both individual F1-scores of each model and the degree of consistency of their 

recommendations. 

The system automatically updates device configurations through the OIDC 

provider after determining the optimal protocol based on the generalized decision. 

Such implementation creates a protocol-agnostic layer that guarantees compliance 

with security standards while simultaneously ensuring flexible switching between 

protocols. 

A key advantage of the proposed multi-model approach lies in its ability to 

significantly simplify the administration and management of heterogeneous devices within 

energy networks. In contrast to traditional methods, which require specific configurations 

for each device type and communication protocol, the unified OIDC-based system 

integrated with three complementary machine learning algorithms enables centralized 

management from a single control point, thereby reducing operational costs and enhancing 

overall system reliability. 
 

4. CONCLUSIONS 
 

The presented study demonstrates the effectiveness of a comprehensive approach to 

dynamic data transmission protocol selection in energy systems with multi-protocol 

communication, leveraging machine learning methods. The proposed methodology 

successfully addresses the challenges of adaptive protocol selection through the integration of 

three complementary models: Random Forest, Neural Networks, and Logistic Regression, each 

providing optimal recommendations for different network conditions and performance 

requirements. 

Comparative analysis of the models revealed distinct sensitivities to network parameters: 

Random Forest exhibited the highest stability for delay and packet loss metrics, Neural Networks 

better accounted for security aspects and connection stability, and Logistic Regression offered the 

greatest interpretability of results. A consensus algorithm based on weighted F1-scores ensures 

reliable decision-making even when model recommendations diverge. 

The methodology establishes a robust foundation for next-generation energy systems 

with intelligent protocol management capable of adapting to changing operating conditions and 

optimizing resource utilization. The use of multi-protocol communication simplifies the 

integration of heterogeneous devices, ensures system scalability, and reduces operational costs 

through centralized management. 

The practical implementation of the proposed approach is expected to enhance the 

efficiency, stability, and security of modern Smart Grid systems, which is particularly important 

in the context of exponential growth in IoT devices and the increasing integration of distributed 

energy resources. It should be emphasized that, in scenarios where devices support only a 

limited set of communication protocols, the methodology can be adapted to perform protocol 
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selection within the available subset. This ensures that the decision-making process remains 

relevant under constrained conditions, while still leveraging the benefits of machine learning–

based optimization. 

Overall, the study confirms that combining multi-model machine learning with 

centralized authentication and protocol-agnostic management can significantly improve 

performance, reliability, and security of contemporary energy networks, providing a scalable 

and flexible solution for future Smart Grid implementations. 
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АДАПТИВНА БАГАТОПРОТОКОЛЬНА КОМУНІКАЦІЯ ДЛЯ 

ЕНЕРГЕТИЧНИХ СИСТЕМ 
 

Андрій Волощук; Галина Осухівська 
 

Тернопільський національний технічний університет імені Івана Пулюя, 

Тернопіль, Україна 
 

Резюме. Розглянуто підходи до впровадження адаптивної багатопротокольної комунікації в 

енергетичних системах, що трансформуються в умовах зростання розподіленої генерації та розвитку 

концепції Smart Grid. Зростаюча гетерогенність сучасних енергетичних інфраструктур, зумовлена масовим 

упровадженням IoT-пристроїв, інтелектуальних лічильників та розподілених енергетичних ресурсів, 

створює суттєві виклики для забезпечення надійного та ефективного передавання даних. За таких умов 

традиційні статичні комунікаційні архітектури виявляються малоефективними та неспроможними 

адаптуватися до динамічних змін стану мережі. Запропоновано архітектурний підхід, що поєднує 

провайдер ідентифікації OpenID Connect як уніфікований механізм автентифікації та авторизації з 

інтелектуальним модулем машинного навчання для адаптивного управління протоколами зв’язку. 

Динамічний вибір протоколів передавання даних здійснюється між MQTT, CoAP, HTTPS та іншими 

промисловими системами з урахуванням показників продуктивності мережі в реальному часі, вимог безпеки 

та характеристик експлуатаційного навантаження. Для прогнозування ефективності комунікації 

використано багатомодельний підхід машинного навчання, що включає алгоритми Random Forest, нейронні 

мережі та логістичну регресію, які забезпечують взаємодоповнювальний аналіз мережевих параметрів. 

Остаточне рішення щодо вибору оптимального протоколу формується на основі зваженого 

консенсусного механізму з урахуванням показників якості кожної моделі. Запропонована система реалізує 

протокол – незалежну модель безпеки, централізоване управління гетерогенними пристроями та 

масштабовану архітектуру, придатну для сучасних і перспективних енергетичних мереж. Результати 

експериментальних досліджень, отримані на основі реальних експлуатаційних даних, підтверджують 

можливість зменшення комунікаційних витрат, підвищення надійності передавання даних і забезпечення 

стабільної роботи системи за змінних мережевих умов. Отримані результати доводять, що поєднання 

централізованої ідентифікації з адаптивним, заснованим на машинному навчанні вибором протоколів 

створює надійну основу для інтелектуальних комунікаційних систем з автоматичним перемиканням 

протоколів у енергетичних інфраструктурах нового покоління та експлуатаційної стійкості. 

Ключові слова: енергетичні мережі, енергоефективність, комунікаційні протоколи, методи 

машинного навчання, адаптивний вибір протоколу. 
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