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Abstract. The theory of approximation of multidimensional functions of r variables r > 2 using
spline-interflatation operators is developed in this paper. A new method for constructing such operators,
which is based on the approach of decomposing the multidimensional approximation problem into a sequence
of one-dimensional problems, each solved using spline interpolation. is proposed in this paper. This makes
it possible to investigate the interflatation properties of the constructed operators, as well as to analyze their
effectiveness in approximating functions with several variables. The distinctive feature of the proposed
method is the explicit representation of spline-interflatation operators in terms of one-dimensional spline
interpolation operators, which are applied separately to each variable of the approximated function. This
provides convenience in investigating the properties of operators and enables more in-depth analysis of their
behavior. The expression for the approximation remainder of functions using these operators, in particular,
in terms of the remainders that arise from applying one-dimensional spline interpolation operators is
investigated in this paper. Special attention is paid to the analysis of approximation remainders of
multidimensional functions and to proving that the approximation remainder calculated by means of the
proposed interflatation operators is equal to the operator product of the approximation remaindes, defined
separately for each variable. This means that total remainder can be considered as a combination of
remainders obtained through one-dimensional operators, which significantly simplifies the analysis and
makes it possible to investigate the approximation accuracy more thoroughly. Furthermore, a comparative
analysis of the obtained results with classical multidimensional interpolation operators is carried out in this
paper. This enables us to evaluate the advantages and disadvantages of the proposed method in the context
of accuracy and efficiency of approximating functions with several variables. This opens up prospects for
further development of the theory of multidimensional approximation and its application in various fields of
science and engineerin , where efficient and accurate approximation of multidimensional functions is
required.

Key words: spline-interflatation, operator, approximation error, interpolation, remainder,
differential function, Taylor formula.
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1. INTRODUCTION

The theory of approximation of differentiable functions » of variables
r r

S, 2= (315000, ) €D=[01F, 722 using specially constructed spline interflatation
operators is developed and comprehensively investigated in this paper [1, 2, 3]. The main
attention is paid to the investigation of the interflatation properties of the proposed operators,
as well as to establishing the relationship between these properties and classical approaches to
interpolation and spline interpolation of functions of many variables [4, 5, 6]. The results
obtained in this paper are based on modern achievements in the field of approximation theory
and spline analysis [5, 6, 7].

The construction of the spline interflatation operators is based on first-degree splines,
which are distinguished by their simple structure and low computational cost, making them
suitable for practical applications [2, 8]. The main advantage of this approach is that only
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limited information about the function being approximated is required to construct the
corresponding operators — in particular, the value of the function on the edges of the unit cube.
This means that multidimensional approximation can be implemented by sequentially applying

one-dimensional operators Ok to each variable separately [3, 6, 9].

From the formal point of view, the interflation problem in this context is to
construct operators that combine both the properties of interpolation and approximation.
On the one hand, these operators preserve the function values at specific points (on the edges
of the cube), while on the other hand, they enable us to obtain the global approximation that
exhibits good behavior for the class of smooth (differentiable) functions. This highlights the
difference between spline interflatation and classical interpolation: instead of requiring exact
coincidence with the function at numerous nodes, interflatation operators can use additional
flexibility while maintaining selected characteristics of the function [1, 3, 9].

At present, the problem of reconciling classical interpolation and spline interflatation in
the context of function approximation on the edges of the unit cube remains insufficiently
investigated. The aspect of the similarity between the structural properties of the constructed
operators and the properties of the approximation remainders (i.e., errors) arising in the
approximation process remains especially insufficiently investigated [4, 10, 11]. This paper
makes a significant contribution to filling this gap by proving the theorems that describe explicit
expressions for spline interflatation operators in terms of compositions of one-dimensional

operators O [3, 9]. This makes it possible to reduce the multidimensional problem to a
sequence of one-dimensional problems, which significantly simplifies both theoretical analysis
and numerical implementation.

Furthermore, it has been proven that the approximation remainder (the difference
between the exact function value and the value obtained using the interflatation operator) for
the class of differentiable functions can also be represented as the operator product of the one-
dimensional approximation remainders [8, 9, 10, 11]. This structure of the remainder term
facilitates a detailed analysis of approximation accuracy as well as the development of adaptive
algorithms that automatically determine optimal approximation parameters depending on the
function properties [3, 12].

In order to assess the effectiveness of the constructed operators, a comparative
investigation of the approximation remainders for classical interpolation is carried out. The
obtained results made it possible to establish a deep functional connection between the
classical spline interpolation problem and the spline interflatation problem. In particular, it
has been demonstrated that these problems have a dual nature. This means that the explicit
expressions for spline interflatation operators, constructed through compositions of one-
dimensional operators, turn out to be analogous to the expressions for the remainders of
spline interpolation of differentiable functions. And vice versa - the approximation
remainder obtained in the case of spline interflatation is expressed through the product of

one-dimensional remainders E, , arising from the application of the corresponding operators
to each variable [3, 4, 6].

Special attention should be paid to the fact that classical interpolation operators can
also be represented as a product of one-dimensional operators [5, 6]. This property creates
opportunities for further generalization of approximation methods, particularly in the
direction of developing highly accurate and efficient algorithms for the numerical solution
of problems in mathematical physics, multidimensional data processing, machine learning,
and other modern fields where precise modeling of complex multivariate dependencies is
required [7, 13, 14].

In conclusion, it should be noted that the results obtained in this paper have
both theoretical and applied significance. On the one hand, they deepen the

84 ............ ISSN 2522-4433. Scientific Journal of the TNTU, No 3 (119), 2025 https://doi.org/10.33108/visnyk_tntu2025.03


https://doi.org/10.33108/visnyk_tntu2025.0

Oleh Lytvyn, Viktor Halushka

understanding of the nature of the relationship between different types of
approximation problems, and on the other hand, they create the basis for constructing
new approximation methods that combine the advantages of spline interpolation
and interflatation [1, 3, 9]. Such methods can be particularly useful in conditions
of limited information about the function or when it is necessary to maintain computational
efficiency.

2. CONSTRUCTION AND INVESTIGATION OF SPLINE INTERFLATATION
OPERATORS FOR FUNCTIONS » OF VARIABLES (722.)

r r
F(x), x=(x,%5,...,x,) € D=[0,1]", I"ZZ’ N s the
h(z)

Let us introduce the notation:

given natural number, / is the same operator, is piecewise linear function with

properties [1, 3]:

h(0)=1; (1) =0,t|>1.

4

For each k=Lr let us construct operators Ok of the following form [3]

N .
O f(x) = Zf[xl:-"ﬂxk—la%axkﬂ'J"'?er'h(N'xk _ik) (1)

i,=0

Let us note that from the definition of the function h(#) it follows that

N‘)Ck—ik 2].

Therefore, operator O f (x) 1s the operator of piecewise linear spline interpolation with

respect to the variable ** [4, 5]

O f )|, _p = f(X)|, _p 2y =O.N
"=y N .

In the case of 7 =2 these operators will be interlineation operators, and in the case of
rz3 they will be interflatation operators [1, 3].
It is necessary to construct non-identity operator O with the following properties:

Okf(x)|xk=m = f(x)|xk=& P =0.N 2)
N N .

Let us introduce into consideration operator [3]

r

om:(f—n(f—ok)}f(x) 8

k=1

Theorem 1. Operator O meets the following reguirements: O, (¥) =0,/ (x)q =1.r .

Proof.
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r

0,0f(x)=0,f()-0,][(1-0, )/ (x) =

k=1
=0,/(0-(0,-0,0,) T[] (1-0,)f(x)=
k=1,k=q
=0,/(x)-(0,-0,) TT (1-0)/(x)=0,/(x), q=

k=1.k+q

0,/ (x), q#k

different wvariables in the 1) , that s, these operators are commutative:
Okoq.f (x) = Oqokj‘(x) , as well as Oqf ()C) = Oqf(x) )

Theorem 1 is proved.

Here we use the fact that the operator O f (x) and the operator act on

o

Further, an explicit representation of the operator O in terms of the operators O O,

is required without using the identity operator.

O,f(x)= Zf[ ] (Nx —iy)

Let us recall that in case * =1 the operator uses only
3
numbers for its construction — the values of the function NJ.
P | P
0] —,0<p, <N
2] 05
In case *=2 the operators 0.0, use the traces of function / (x"xz)on the line

segments perpendicular to the sides of the square, which lie on the axes Ox;, Ox,

respectively:

N
O]f(x],xz):Z:f[%l xz) h(Nx] —il)

;=0 ,
N .

Ozf(x1:x2)= Zf(x]a%J'h(Nxz _52)-
i,=0

At the same time, the operator

O]Ozf x,,x2 ZZf[ : ) N x]—zl) h(N-xz—iz)

§=0i,=0

is classical two-dimensional spline interpolation operator [4, 5, 15]:

OOzf[i]r };J f(i} N} 0<p.,p, <N
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Incase F=2 ¥~ (x1%7) it follows from formula (3) that

Of (x) =(01 +0, _OlOz)f(x)_ 4

Incase ¥ =3, *~ (1, %5,%3) based on formula (3), we can write

Of (x) =(0; + 0, + 05 = 0,0, = 0,05 = 0,05 + 0,0,05 ) f () _ (3)

Let us note that the term 00,0, 1 () in formula (5) is the classical formula for spline
interpolation of the function of three variables [5, 6].

Olozos.f(xl » X9, X3 ) =

N N N

iy I . : .
=333 (B () (N 1) (N )
=0 1,=0 ;=0

(P P2 P3 P P2 P3
OO O s s | T B R R OS s ) SN
123]{[NNNJ f(NNN] P> P25 Ps '

Formulas (4) and (5) have the following feature:

In these formulas, the first group of terms is the sum of operators Ok =1, r’ the second
sum of terms is the sum of products of operators taken two by two with the appropriate sign at

r=2,3 , and the third group of terms is the product of three different operators at " = 3,

It is obvious that for 7 >3 , the last group of terms will be the monomial, which has the
form of the product of all operators » with the corresponding sign [3, 9].

From the point of view of applications, we prefer this representation of the operator O
and in the next section of the paper we propose a general method of representing the operator

O for any natural number 7.

Ol,n--,Or

3. REPRESENTATION OF OPERATOR O THROUGH OPERATORS
WITHOUT USING THE IDENTITY OPERATOR FOR 7 € I

r

om:[zn(fok)}f(x)

In the expression for the operator 0. k=1 let us replace [ by

one, Ok by > k=1r , and denote the resulting function by T ).

¥

o =T@)=1-T](1-%)

k=1

1 . S=15,....,8 Sl=8 +...+5..
Let us introduce the notation (810005, ), | I »
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5\5| r
Ty =——=T0| -[]&
i or' ..oty [

1 Uy =0 k=1

>
Theorem 2. For each * €1 , (r - 2) function (@) can be represented as follows

T()=T(0)+ |Z UM (6)

s‘:l

Proof.

Note that is (@) is 7 linear function of the variables I"tz""’tf’, that is, it is a
polynomial of » from these variables. In this case

T(t)=T(0)+ Zr: (A

‘s‘=1

=1 740

where $k =0 or S =1 Foe example, at it is as follows

!

¥

rl+...+iT(t)
ot, -0

1=0 ’

0
T,0= 570

. s|=1 § .
Since | ‘ only for such sets “¥ , where one component is equal to one, all the others

e .~ |8=2

are zero. Similarly, if | ‘ only two components are equal to one, all others are zero. For
s|=r § o . . f

‘ | ,all “F are equal to one, because T(®) has derivatives with respect to each variable k of

s o258, <r
order ¥ equal to zero if k="

(1)

This means that can be exactly represented by the Taylor series expansion of the

t,=0,k=1r y

function around the point /=% that is , in powers *, which we express usin
p p p g

derivatives — described in detail in [1]. It should be noted that T s a polynomial of degree »
, each term of which is linear function with respect to each of the arguments foeesly . This means

. o Sy . . 7
that the order of partial derivatives "% with respect to the variable "% can take the values one
or Zero.
Taylor formula in terms of derivatives can be written as follows [1]:

T(6)=T(0)+ > T() (7)

|S‘=|

Theorem 2 is proved.

! 5| =1.5

Let's write down the expressions | for
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r—|s|+| aT(t)
Ty(1)= > o 1,.]s]=1,

=l P li—o

rBl Al
Ty = 2 Z E) 'tpltpz’s‘:2>

=l p= P|+| PPy i

r7|S|+l rfls‘+2 rf‘s‘+3 a‘slT
t
Ty(= . _0TO ot t|s|=3,
i ot, ot ot Prpehs
=l py=p Al p=py 1 0P D |
r—|s|+l r—|s|+2 r—‘5|+3 r—|s|+4 a|s|T( |
7)
0= 2, 2 ot, o1, ot ot o tntpol =4
=l pr=ptl py=pytl p=p; Py Pa =g
r—‘5|+l r—|5|+2 r—|s|+3 r—‘s‘+4 r—|s|+5 a|s|T(t)
b, 01,1, |s|=5.

PPy PPy Ps?

To=2 2 2 X 0, 01,,0t,.01,.01, |

p=l p,=p+l ps=p,+1 p,=p,+1 p;=p,+1

| " |

To derive the formula for arbitrary "', one can use the method of mathematical
induction.

. - k=1r).
Let us perform the inverse substitution Tk for ~k ( r) in formula (7). Then

0(0,,...0,)=T(0,....0 T(O)+z 4(01.0,)

[si=!

Let us write expressions for Ty (G:-0,) for |s]=1,
r—ls‘-*—] BT(t)
I|‘S| (01?"’901’): Z T |71,
=l P =0

r—|sl+ s
|(Olv 0,)= 2. Z 6‘ ot ““p Y, s|=2,
p=

1 P2=D P t=0

r—ls‘—o—l r—ls‘+2 r—‘s‘+3 ‘sl
o"'T(t) .0,0,0

7(01550,) = 2. oo 5.0, [s|=3
=l p=p+l py=p,+1 P P, Yy =0
r7|s‘+l rf‘s‘+2 r7‘5|+3 F7|S|+4 a|S|T(
1)
|S\(01’ 20,)= 2. > X 3 10,,0,,0,0,,, |s s|=4,
D1 pyptl preputl peepisl Oy, 01, 01, O
P D=t =P, Py=ps PP P Pa i
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I|’S|(O],.‘.,Or)=
st rpol#2 rfsfe3 rjsira r sl Flr(r) |
-0,0,0,0,0, ., |s|=
Z= =P|+'Ps=zpz+'pzplpZpﬂatp.atpzatp;atmatps (=0 b |

and so on.

. - . a,...,0, .
So, we obtained the explicit representation of the operator O through 1" without
using the identity operator.

It should be also noted that for ¥ =2 and =3 we obtain the explicit formulas (4)
and (5) for the operator O, namely

r r—l1 r
r=2 Of(x)—[z Op] _{Z Z OPWOPZ J}f(x)_(ol +0, —0,0z)f(x).
p=l

p1:1 pz:p|+l

r r—1 r r=2  r-l r
a0 £0,-/ 5 5 0,0, [{E £ £ 00,0, |-
p=l

p=1 p,=p+l p=1p,=p,+1 p,=p,+1
= (O, +0, + 05 - 0,0, —0,0; — 0,05 + O,0,0;4 )f(x) .

Next, we present expressions for the operator Oatr=4and =5,

r r—1 r r=2  r-l r
r=4 Of(x): ZOPW_[Z Z Oprpz]—F[z Z Z OplOPzOpaJ_

p=1 =1 p,=p+1 p,=1 p,=p,+1 p;=p,+1

r=3 r-2 r—l1 r
—[z 55 s o,,,opzo,,ppj .

p=1 p,=p,+1 p,=p,+1 p,=p,+1

r r—1 r r=2  r-1 r
r=5 0f(x)= Zop._[ Z OP.OPI}’[Z Z Z Oplopzom]_

p =1 p=1p,=p+l =1 p,=p,+1 p,=p,+1

r=3 r=2 r—1 r
_{ Z Z Z Z OP| Opz Op; Op4 J *
P=p

=l py=p+1 py=p,+| p,=p;+

r=4  r=3 r—2 r—I| r
[£5 5 8 % 00000,

12 =1 p2=p|+l p3=P2+I P4=P3+] P5=P4+1

4. INVESTIGATION OF THE REMAINDER OF THE DIFFERENTIAL
FUNCTIONS APPROXIMATION BY CLASSICAL SPLINES OF r VARIABLES ”

Theorem 3. Remainder Rf (x)= f(x)=Of (x) can be represented as
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Rf (x) = (H Ry ]f(X) (8)
k=1

Ry is the product of one-dimensional remainders along R=1-0, .

Proof.
RF(x)=(I-0)f(x) = (1 —(f 11 -ok)} f(x)J _
k=1

_(ﬁ(I—Ok ]f(x) (]_[Rka(x)

k=1

Theorem 3 is proved.
Below we obtain an expression for the remainder of the approximation of the function

k=1r

VAC) by classical splines of » variables by uepe3 Ry
Let us take into account that

r

RSpclasicf(x): [I_ﬁokjf(x) _[I_H(I_([_Ok ))Jf(x) =
k=1

k=1

r

—{[—H(I—Rk)Jf(x)

k=1

In this expression let us replace [ by one, Ry by vk =1

function by T(™Y)  Then

, and denote the resulting

F

RS,vclasic (VM) =T(v)=1- (1 =V )
k=1

Thus, we obtain explicit formulas for the approximation error of the function S(x) by

. . . . R
classical spline interpolation operators, expressed in terms of the operators ~  , from the Taylor
formula written in terms of derivatives. Then, for the remainder of the approximation

RSpclasicf (JC )

operator 0.

we can use the same approach as in deriving the above mentione formulas for the

T(v)=T(0)+ Z T ).

|s|=1

s+
|S|(V Z -va ? S

=1,

v=0
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rlslel o r a|s| T(v)

Iy = 2 ov, v VoVp, s|=2,
n=l py=p+l 2% Pt
r—|s|+l r—|s‘+2 r—|s|+3 8|S|T(v)
T,(v)= z —_— v,Vv,V ,s|=3,
|S‘ av av a\) PPy Py
=l p,=p+l p;=p,+1 Ps =0
r7|s|+1 r7|s|+2 rfls‘+3 r7|s|+4 als‘T(v) |
Tym= > > VY,V s =4,
s oy v ov. o | ',V pVp,
=l py=p AL p=pyHlp=ptl VTP TP P Py |

S|+l r— ‘s|+2 r— ‘5|+3 r— |s|+4 r— ‘5|+5 a‘slT(V) |

ICE DRSPS ov, ov, v, v, v

p=l p=p+l py=p,+l p,=p,+| p;=p,+

vpl Vp’ vpz vPet tps

5 |x=0

.. . K .
When deriving the formula for arbitrary | | , one can use the method of mathematical
induction.

R, k=17

L v ) )
Let us do the reverse substitution. Instead ~* we will write . Then

‘RSpclasic (Rlﬂ""’Rr):T(Rla-' T(0)+|Z |s‘ Rl"”’Rr)
s 1

r7‘5|+16T
Ty (R R )= Y )

1z =1

‘R
P
ov 2l

S|:1,

r—‘s|+1 I a|s|T(v)
ir|ts‘|(}i’1""’R?‘): Z av aV T tpy

p=l p,=p+ P |y=0

S|=2,

r7|s|+] r7|s|+2 r7|5|+3 |S|
T (RpsenR,) = IT() ‘R,R, R

Py
p=l py=pi+l py=p,+1 av av 6Vp1 v=0

‘|_3’

r7|s|+] r7|s|+2 r7|5|+3 rf‘.f|+4 6|5|T(v)
Ty (RysensR) = | ‘R,R, R, R

PPy
=l py=pi+l py=p,+l py=p;+l avp. 6‘% avp; 6vp4 ’v=0

T, (RyssR,) =

r—|s|+l r—|s|+2 r—|s|+3 r—ls‘+4 r—|s|+5 8‘S‘T(v) |
- Z Z Z Z z ov av av 61/ av RPRPRPRPRP

=l po=ptl py=py+l p=pstl ps=p,+1 77 p, Ps |y=0

s|=5.

and so on.
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. - : R tosi R,..R
So, we have obtained an explicit representation of the operator = ¢ through ~ 1> "'r

without using the identity operator.
Let us illustrate the above mentioned statements for * =2 and © = 3.

=25 Repetasse S ()= (I =(1 =R ) (I - R,)) f(x) =
=(R+R,—RR,) f(x)= ZRPW {Z Z R, R J 1(x).

p=1 p=1 p,=p+1

r=3 ‘RSpciasicf(x)=(]_(I_Rl)([_RZ)(I_RB))f(x):
=(R]+R2+R3—Rle—R]R3—R2R3+R]R2R3)f(x)=

r r—1 r =2 r-l r
6,8 £ aa (S 8 5 mr, o

p=l p=lp,=p+ =l py=p+l py=p,+1

. R : _
Next, we present expressions for the operator = 5Pelasic gt # =4 and # =3

r=4 Repetaic /() =(1 = (1= R))(I - Ry)(1 - R;)(1 - Ry,)) f(x) =

r r—1 r r=2 r-l ¥
= Z:]RM_[Z Z RleP2J+[Z Z z Rprszsz_
pP=

p=1p,=p+l p=l p=p+l py=p,+1

-3 r=2 r—1 r
{zz 5 Z&&%R}my

p=l p=p+1 py=p,+1 p,=p;+1
r :5; RSpclasicf(x) =( ([ Rl)(] RZ)(] R3)(]_R4)(]_R5 ))f(x) =

- Zr_:]Rp._[rZI: Zr: Rleng [i FZ: Zr: R, R, p3J_

p=1 p,=p+1

r-3 r-2 r=1
{£5 & zR&ﬁ4]
p=l py=p+l py=py+1 py=py+l
r=4 r-=3 r=2 r=1 r
2 2 2 2 X RRRRR, /().

1% =1 P :p|+l }73:}72+1 p4=]73+1 pj:p4+]

R . Re 1 .
It should be noted that at small values ~* for remainder = P | the asymptotic
relation can be written — its application in physical and technical problems is described

=Zr:R ,N>>1
k=1

R

Spclasic
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5. COMPARISON OF ERROR ESTIMATES WHEN APPROXIMATING THE
DIFFERENTIAL FUNCTION OF r VARIABLES BY SPLINE INTERFLATATION
OPERATORS AND CLASSICAL SPLINE INTERPOLATION

In order to prove the following theorem, we need formulas for estimating the errors of

one-dimensional spline interpolation (first-degree splines) with respect to the variable U_ the
application in physical and technical problems is described in [1, 12].
For function

A’ M,
8

gu) e C*la,b]=

R, (u) = g(u)=s, ()| <

b

M, = m[aé]|g”(u) , A=max(u,, —u,_ ), 1<m<n

u—u, u—u,,
S, ) =g, ) —2—+g(u, ) —2" u, , <u<u,, m=1n
m-1 " Uy Uy = Upy
S (1) is first degree spline (piecewise linear spline).
1
A=—.
In the case of uniform division of the segment, we will assume N
Then
M,
Ryl ©)
. f(x)eC**(D) . .
Theorem 4. For any function , the following inequality is true

r

< M,

[Rf (%)) =

[ﬁRk Jf(x)
k=1

Proof.
Taking into account formula (7), which expresses the remainder of the approximation

of the function /(*) as the product of the remainders for each of rvariables, and inequality
(8), we obtain formula (9).
Theorem 4 is proved.

S ) 3r A72
Considering the above mentioned, we have 2N and

M
|RSpclasicf(x)‘ =r 23 ;rZ

In order for classical spline interpolation to provide the same order of accuracy with

respect to the variable N asthe operator O , it is necessary in classical interpolation to replace
N with ¥ inall  sums. This requires the use of V * values of the approximating function.

-2 : >
So, at N>>1 ‘Rf(x)‘ < CIN ' ‘RSpcIasic:f ()C)’ < C2N ,C),Cy —CONSI .
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6. CONCLUSIONS

The paper investigates The relationship between two types of approximation operators

for differential functions » of variables (" =2) is investigated in this paper. The first type
consists of spline interflatation operators, which are constructed using information about the

function being approximated in the form of spline interpolation Ok operators on each edge of
the unit cube separately. The second type consists of classical interpolation operators, which
use information about the function being approximated simultaneously on all edges. Despite
the fact that these operators are known, the relationship between them and their approximation
remainders has not been established in the general formulation.

The paper formulates and proves that there is a duality between these types of operators.
In the first type, the approximation remainder is the operator product of the remainders of one-

dimensional approximation operators ~*. Whereas in the second type, the approximation

: : . o O,.
operator is the product of one-dimensional approximation operators £,
Moreover, it is proven that the formula for the explicit representation of the first-type

. ) . N 0 :
operators in terms of the one-dimensional approximation operators ¢ used in the second-type
approximation operators coincides with the formula for the remainder when ~* is replaced by

k which is also proven. Examples are provided for the decomposition of interflatation
operators and remainder operators of classical spline interpolation of differential functions of
r variables. This can be used for compressing information about differentiable functions of
many variables, as follows from the comparison of their computational complexity provided in
the work while ensuring the same approximation accuracy.
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VK 519.6
TEOPISI CINIAMH-IHTEP®JIETALII ® YHKIUH r SMIHHUX r > 2

Ouer JlutBun; BikTop I'amxymka

Xapkiscokuti HayionanvHull yHieepcumem imeni B. H. Kapas3ina,
Xapkis, Yxpaina

Pe3tome. Po3pobierno meopito HabaudicenHs 6a2amosumipHux QYHKYIl r 3MIHHUX (r=2) sa 00nomMo200

onepamopie cniain-inmepgaemayii. B pamxax oocnioxcenna 3anponoHosano Ho8utli menmoo nodyoosu maxux
onepamopie, wo 06aszyemvcsi Ha NiOX00i posKkiady 6a2amosumiphoi 3a0aui HAOIUINCEHHS HA NOCHIO06HICMb
OOHOBUMIDHUX 3A0ay, KONMCHA 3 AKUX BUPIWYEMbCA 3d O00NOMO2OKW chaauH-inmepnonayii. Lle oo3zeonse
docnioxcysamu iHmep@remayitini eracmueocmi noby008aHUX ONnepamopis, a MmMaKoiC aHANIZy8amu IiXHiO
epexmugnicmyv y HabaudcenHi QyHKYil 3 Kitbkoma 3minHumu. Ocobausicmio 3anponoHO8AHO20 Memoody € s6He
npeoCcmaeieHHs Onepamopie cnaalH-inmepgremayii uepes 0OHOBUMIPHI Onepamopu CniatH-iHMmepnoaayii, sKi
3ACMOCOBYIOMbCL OKPEMO 00 KOXNCHOL 3MIHHOI yHKYil, wo Habausxcyemwvcs. Lle 3abesneyye spyuuicmov y
00CNIONCEeHHT 81ACMUBOCHEll ONePamopie i 003605€ enudule aHanizysamu ixu nosedinky. B pamkax pobomu
00CTIONHCEHO 8UPA3 3ATUWKY HAOIUNCEHHA QYHKYIU 30 O0NOMO2010 YUX Onepamopis, 30Kkpemd, yepes 3anuuKu
HAOMUIICEHHS, WO GUHUKAIOMb NPU 3ACMOCYEAHHI 0OHOBUMIPHUX Onepamopié cnaain-inmepnonayii. Ocobaugy
yeazy npudileno ananizy 3aIUUKI6 HAOIUNCEHHS 0a2amoGUMIPHUX YHKYIU [ 008COCHHIO MO20, WO 3ANUULOK
HAONUMNCEHHA, WO OOUUCTIOEMBCA 3 00NOMO2010 3ANPONOHOBAHUX ONepamopis inmep@remayii, 0opigHioe
onepamopHomy 000ymKY 3aNUWKIE HAONUIICEHHS, AKI BUSHAYAIOMbCA 01 KOJICHOI 3MIHHOI okpemo. Le o3nauae,
WO NOGHULL 3ANUUIOK MOIICHA PO32NA0AMU AK KOMOIHAYIIO 3ANUWIKIE, OMPUMAHUX Yepe3 OOHOBUMIPHI ONnepamopu,
W0 3HAYHO CAPOWYE AHANI3 [ 0AE MONCIUBICID OemaibHiule 00CAI0NCY8amu moynicms Habaudxcenus. Kpiv moeo,
NpPOBeO0eHO NOPIGHANbHULL AHALI3 OMPUMAHUX De3VIbmamie i3 KIACUYHUMU Onepamopamu 6a2amosumipHoi
inmepnonayii. 30kpema, 3p0ONEHO NOPIBHAHHS 3 ONEPAMOPAMU KIACUYHOT IHMepnoaayii, o 003805€ OYIHUMU
nepegazu U HeOONIKU 3ANPONOHOBAHOI MemMOOUKU Y KOHMEKCMi MOYHOCMI ma eq@eKmueHOCmI HAONUNCEHHS
@yHkyii 3 kKinekoma sminnumu. Lle 8i0xkpusae nepcnekmusu 05 NOOAIbUIOZ0 PO3GUMK) MEOPIi ba2amosumipHo2o
HAOMUIICEHHSL MA 3ACMOCYSants ii 6 PISHUX 2any3aX HAYKU Ul mexHiku, de HeobXiOue egexmuene U moyHe
HAOAUdICEHHS 6A2aMOBUMIDHUX (DYHKYILL.

Knrwouoei cnosa: cniaiin-inmepgremayis, onepamop, noxubka HAOIUNCEHHS, THMEPNOAAYIA, 3ATUULOK,
ougpepenyitiosna pyuxyis, popmyna Teuropa.
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