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ANNOTATION 

 

Comparative Study of MPI vs. OpenMP in High-Performance Computing // 

Term Paper Bachelor degree // Rauf Sadat // Ternopil Ivan Puluj National Technical 

University, Faculty of Computer Information System and Software Engineering, 

Department of Computer Science // Ternopil, 2026 // P. 52, Fig. – 10, Tables – 15, 

Annexes – 0, References – 20. 

Keywords: High-Performance Computing, Parallel Programming, MPI, 

OpenMP, Distributed Memory, Shared Memory, Performance Analysis, Scalability, 

Hybrid Parallelization. 

This comprehensive study presents an in-depth comparative analysis of MPI 

and OpenMP, examining their architectural foundations, programming models, 

performance characteristics, and applicability to diverse computational workloads. 

Through theoretical analysis, empirical benchmarking, and case studies, the 

strengths, limitations, and optimal use cases for each paradigm were evaluated. 

Performance measurements were conducted on multiple hardware platforms using 

standard benchmarks. 

The findings indicate that MPI excels in distributed-memory environments 

while OpenMP provides superior productivity for shared-memory parallelism. 

Performance analysis revealed up to 85% parallel efficiency for MPI on 512 cores 

and 92% efficiency for OpenMP on 64 cores. 

Hybrid MPI-OpenMP approaches were explored that leverage the 

complementary strengths of both paradigms. Experimental results demonstrated 15-

30% performance improvement over pure MPI implementations on hierarchical 

architectures. 

This study provides practical guidance for HPC practitioners in selecting 

appropriate parallelization strategies. Implementation examples, performance 

models, and optimization techniques are presented. 
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INTRODUCTION 

 

The exponential growth of data generation and the increasing complexity of 

scientific and engineering problems have made high-performance computing (HPC) 

indispensable across numerous domains. Modern applications demand 

computational capabilities that far exceed those of sequential processors, driving the 

evolution of parallel computing architectures and programming paradigms. 

According to recent statistics, the computational requirements of scientific 

applications have grown by approximately 10-fold every five years. Climate 

modeling simulations now require petaflop-scale computing resources to process 

terabytes of data daily. Genomic sequencing projects analyze billions of DNA base 

pairs, demanding massive parallel processing capabilities. Financial institutions 

perform risk analysis on portfolios containing millions of instruments, requiring 

real-time parallel computation. 

Among parallel programming approaches, two paradigms have achieved 

particular prominence: the Message Passing Interface (MPI) and Open Multi-

Processing (OpenMP). MPI provides a robust framework for distributed-memory 

parallel computing, enabling applications to scale across thousands of nodes. As of 

2024, the world's fastest supercomputers utilize MPI implementations to coordinate 

hundreds of thousands of processing cores. OpenMP offers an accessible approach 

to shared-memory parallelism through compiler directives, with over 90% of HPC 

centers reporting OpenMP usage in production applications. 

The choice between MPI and OpenMP has profound implications for 

application performance, scalability, and development effort. Performance 

measurements indicate that communication overhead in pure MPI implementations 

can consume 20-40% of execution time for communication-intensive applications. 

OpenMP applications face memory bandwidth limitations, with typical utilization 

rates of 60-70% on NUMA architectures. Despite decades of research, selecting the 
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optimal parallelization strategy remains complex, influenced by problem 

characteristics, target architecture, and performance requirements. 

This study provides an authoritative comparison of MPI and OpenMP across 

multiple dimensions. The research objectives include: examination of architectural 

foundations and programming models; systematic performance evaluation across 

computational kernels; analysis of scalability characteristics from 4 to 512 

processing cores; assessment of programming productivity through development 

time measurements; and investigation of hybrid approaches combining both 

paradigms. 

The methodology encompasses theoretical analysis, empirical benchmarking, 

and case studies. The study examines MPI versions 3.1 and 4.0, along with OpenMP 

specifications 4.5 through 5.2. Performance evaluations use standard benchmarks, 

including the NAS Parallel Benchmarks (NPB), the High Performance Conjugate 

Gradient (HPCG), and the STREAM memory bandwidth tests. Experimental 

platforms include dual-socket Intel Xeon systems with 64 cores, AMD EPYC 

workstations with 128 cores, and distributed-memory clusters with up to 512 cores 

connected via InfiniBand networks with 100 Gb/s bandwidth and sub-microsecond 

latency. 
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1. THEORETICAL FOUNDATIONS OF PARALLEL COMPUTING 

 

1.1 Parallel computing architectures and memory models 

 

Understanding the comparison between MPI and OpenMP requires 

foundational knowledge of parallel computer architectures. Flynn's taxonomy 

categorizes parallel systems based on the multiplicity of instruction and data 

streams. Modern HPC systems predominantly employ Multiple Instruction Multiple 

Data (MIMD) architectures, subdivided based on memory organization. 

Shared-memory architectures provide a unified address space accessible to all 

processing elements. Symmetric Multi-Processing (SMP) systems exemplify this 

model, in which processors share physical memory via interconnection networks. 

Uniform Memory Access (UMA) systems provide equal memory access latency, 

while Non-Uniform Memory Access (NUMA) systems exhibit varying access times 

based on processor-memory proximity. Figure 1.1 illustrates the NUMA architecture 

topology commonly found in modern multi-socket systems. 

 

 
Figure 1.1 - NUMA Architecture Diagram 
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Figure 1.2 – Non-Uniform Memory Access (NUMA) architecture with two 

CPU sockets 

 

Modern multi-core processors represent the prevalent shared-memory 

architecture. Intel Xeon Scalable processors integrate up to 64 cores per socket, 

AMD EPYC processors reach 96 cores, and ARM-based server processors like 

Ampere Altra offer 128 cores. These processors share three levels of cache 

hierarchy: L1 caches (32-64 KB per core), L2 caches (256-512 KB per core), and 

L3 caches (shared, ranging from 32-256 MB). 

Parallel programming models provide abstractions that enable programmers 

to express parallelism while hiding low-level architectural details. The design space 

for these models involves fundamental trade-offs between programmer control, ease 

of use, performance portability, and expressiveness. Different models position 

themselves differently along these dimensions, influencing their suitability for 

particular application classes and programmer preferences. 

Shared-memory programming models exploit the implicit communication 

available through shared address spaces. Threads within a process can communicate 

by simply reading and writing shared variables, avoiding explicit message 



11 

 

 

construction and transmission. This natural programming style, resembling 

sequential programming with added synchronization primitives, reduces the 

conceptual barrier to parallelization. However, shared-memory programming 

introduces challenges including data races (unsynchronized concurrent access to 

shared data), deadlocks (circular dependencies in lock acquisition), and difficult-to-

reproduce bugs resulting from non-deterministic thread scheduling. 

OpenMP exemplifies directive-based shared-memory programming. Rather 

than requiring explicit thread creation and management, OpenMP allows 

programmers to annotate sequential code with pragmas specifying parallel regions, 

work distribution, and data sharing attributes. The compiler transforms these 

annotations into multithreaded code, managing thread creation, work scheduling, 

and synchronization. This approach enables incremental parallelization: developers 

can parallelize performance-critical loops individually, maintaining sequential 

semantics elsewhere. The parallel for directive, the most common OpenMP 

construct, distributes loop iterations across threads with configurable scheduling 

policies (static, dynamic, guided) controlling work distribution strategies. 

POSIX threads (pthreads) represent a lower-level shared-memory 

programming interface providing explicit control over thread creation, 

synchronization primitives (mutexes, condition variables, barriers), and thread 

attributes. While offering maximum flexibility, pthread programming requires 

significant expertise and careful design to avoid race conditions and ensure correct 

synchronization. Manual thread management adds complexity compared to 

directive-based approaches: programmers must explicitly create thread pools, 

partition work, implement synchronization, and manage thread lifecycles. However, 

this control enables optimizations difficult to express in higher-level models, making 

pthreads valuable for performance-critical system software and runtime library 

implementation. 

Message-passing programming models communicate through explicit send 

and receive operations rather than shared memory. Each process maintains private 
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address space, eliminating data race hazards but requiring explicit data distribution 

and communication management. Message passing naturally expresses distributed-

memory algorithms and maps efficiently to cluster architectures where physical 

memory distribution matches the logical programming model. The explicit 

communication style, while requiring more programming effort than shared-

memory approaches, provides clear visibility into data movement costs, facilitating 

performance reasoning and optimization. 

MPI (Message Passing Interface) standardizes message-passing programming 

through a comprehensive API supporting point-to-point communication, collective 

operations, process groups, communicators, and derived datatypes. MPI's process-

based model creates isolation between address spaces, enabling implementation on 

both shared-memory and distributed-memory systems. The standard deliberately 

avoids mandating specific implementation strategies, allowing vendors to optimize 

for particular architectures: shared-memory implementations can use memory 

copies rather than network communication, while distributed implementations can 

exploit RDMA capabilities of high-performance interconnects. 

Partitioned Global Address Space (PGAS) languages attempt to combine 

shared-memory programming convenience with distributed-memory performance 

characteristics. UPC (Unified Parallel C), Co-Array Fortran, Chapel, and X10 

provide global address space abstractions while distinguishing between local and 

remote data access. PGAS languages typically support affinity-based parallelism 

where computation executes on processors owning data, minimizing remote access 

overhead. Despite theoretical advantages, PGAS languages have achieved limited 

adoption in production HPC—most estimates suggest less than 5% of HPC 

applications use PGAS languages, compared to near-universal MPI adoption and 

widespread OpenMP usage. 

Cache coherence protocols like MESI (Modified, Exclusive, Shared, Invalid) 

and MOESI (adding Owned state) maintain data consistency across caches. 

Coherence traffic increases with core count, potentially consuming 10-30% of 
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memory bandwidth on 64+ core systems. Table 1.1 presents typical cache latency 

and bandwidth characteristics. 

 

Table 1.1 – Memory hierarchy characteristics in modern processors 

Cache Level Size Latency (cycles) Bandwidth 

(GB/s) 

L1 Cache 32-64 KB 4-5 > 1000 

L2 Cache 256-512 KB 12-15 400-600 

L3 Cache 32-256 MB 40-60 200-300 

Main Memory 128-1024 GB 100-200 50-150 

 

Distributed-memory architectures comprise independent nodes with private 

local memory. Nodes communicate through explicit message passing over 

interconnection networks. Modern HPC clusters connect nodes through high-

performance networks such as InfiniBand (100-200 Gb/s), Cray Slingshot (200 

Gb/s), or Intel Omni-Path (100 Gb/s). Network latency typically ranges from 0.5-

2.0 microseconds. 

Contemporary systems increasingly incorporate specialized accelerators like 

NVIDIA A100 GPUs (6912 cores, 40-80 GB HBM2e memory) or AMD MI250X 

GPUs (14080 cores, 128 GB HBM2e memory). These heterogeneous architectures 

combine CPUs with massively parallel accelerators. 

 

1.2. Analysis of parallel programming paradigms 

 

Parallel programming models provide abstractions hiding architectural 

complexity while exposing parallelism. Several fundamental models exist with 

distinct characteristics. Shared-memory programming allows multiple threads to 

access common memory locations, simplifying data sharing but requiring careful 
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synchronization. OpenMP exemplifies this model with compiler directives 

managing threads automatically. 

Message-passing models explicitly communicate data through send and 

receive operations. This provides clear address space separation and naturally 

expresses distributed algorithms. MPI standardizes this model with point-to-point 

and collective communication primitives. Table 1.2 compares key characteristics of 

shared-memory and message-passing models. 

 

Table 1.2 – Comparison of parallel programming model characteristics 

Characteristic Shared Memory 

(OpenMP) 

Message Passing 

(MPI) 

Memory Model Shared address space Private address spaces 

Communication Implicit (load/store) Explicit (send/receive) 

Scalability Limited to single node Scales to thousands of 

nodes 

Programming Effort Lower (directives) Higher (explicit calls) 

Data Distribution Automatic Manual programmer 

control 

Synchronization Barriers, locks Message completion 

 

Partitioned Global Address Space (PGAS) languages like UPC, Co-Array 

Fortran, and Chapel provide global address space programming convenience while 

maintaining distributed memory performance characteristics. These languages 

distinguish between local and remote data access, with performance models 

reflecting access costs. While offering potential advantages for certain application 

classes, PGAS languages have not achieved the widespread adoption of MPI and 

OpenMP, with user bases estimated at less than 5% of the HPC community. 
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1.3. Performance metrics and evaluation methodology 

 

Performance evaluation requires well-defined metrics and methodologies. 

Key metrics include execution time, speedup, efficiency, and scalability. Speedup 

S(p) measures performance improvement from parallelization, defined as: 

S(p) = T(1) / T(p) 

where T(1) is sequential execution time and T(p) is parallel execution time on 

p processors. Efficiency E(p) normalizes speedup by processor count: 

E(p) = S(p) / p = T(1) / (p × T(p)) 

Efficiency indicates resource utilization effectiveness, with values between 0 

and 1. Values above 0.8 (80%) typically indicate good parallelization. 

Amdahl's Law provides theoretical limits on parallel speedup based on 

sequential fraction f of computation: 

S(p) = 1 / (f + (1-f)/p) 

This demonstrates that even small sequential portions significantly limit 

achievable speedup. For example, with f = 0.05 (5% sequential), maximum speedup 

is limited to 20× regardless of processor count. Table 1.3 shows Amdahl's Law 

predictions for various sequential fractions. 

 

Table 1.3 – Amdahl's Law speedup predictions for various sequential fractions 

Sequential 

Fraction (f) 

p = 16 p = 64 p = 256 Max 

Speedup 

0.01 13.91 39.26 72.11 100.0 

0.05 9.14 15.42 18.62 20.0 

0.10 6.40 8.77 9.66 10.0 

0.20 4.00 4.71 4.92 5.0 

0.30 2.91 3.22 3.30 3.3 
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Gustafson's Law presents an alternative perspective, considering problem size 

scaling with processor count: 

S(p) = p - f(p - 1) 

This scaled speedup model better represents applications where problem size 

increases with available resources, yielding more optimistic scalability predictions. 

Scalability analysis examines performance variation with increasing 

resources. Strong scaling maintains fixed problem size while increasing processors, 

measuring ability to reduce execution time. The strong scaling efficiency is: 

E_strong(p) = T(1) / (p × T(p)) 

Weak scaling increases problem size proportionally with processors, 

measuring ability to maintain constant execution time per processor. The weak 

scaling efficiency is: 

E_weak(p) = T(1) / T(p) 

where T(1) and T(p) represent execution times for base and scaled problem 

sizes respectively. 
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2. MESSAGE PASSING INTERFACE (MPI) 

 

2.1. MPI architecture and core concepts 

 

The Message Passing Interface emerged in the early 1990s as standardization 

effort unifying various message-passing systems. The MPI Forum developed the 

first standard (MPI-1.0) in 1994, establishing core functionality for point-to-point 

and collective communication, process groups, and communicators. Today, MPI is 

implemented by major vendors including Intel MPI, OpenMPI, MPICH, and 

MVAPICH, with performance optimizations for specific network architectures. 

MPI-1.0, released in May 1994, established core functionality including point-

to-point communication with multiple modes (standard, synchronous, buffered, 

ready), collective operations (broadcast, scatter, gather, reduce, barriers), process 

groups and communicators enabling modular program organization, and virtual 

topologies imposing logical structure on process arrangements. Deliberately omitted 

from MPI-1 were dynamic process management, one-sided communication, parallel 

I/O, and language bindings beyond C and Fortran77—these features awaited 

subsequent revisions. The standard succeeded in achieving portability: applications 

written to MPI-1 execute on diverse platforms from commodity clusters to 

proprietary supercomputers without source modification. 

MPI-2.0 (1997) added substantial functionality addressing limitations 

identified during MPI-1 deployment. Dynamic process management through 

MPI_Comm_spawn and related functions enables applications to create new 

processes during execution, supporting master-worker patterns and client-server 

programming models. One-sided communication (Put, Get, Accumulate operations 

within epochs bounded by synchronization calls) provides Remote Memory Access 

(RMA) capabilities, allowing processes to access remote memory without explicit 

cooperation from target processes. MPI-IO introduced portable parallel file I/O 

operations with collective optimizations including data sieving and collective 
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buffering. Extended language bindings added C++ and Fortran90 interfaces (though 

C++ bindings were deprecated in MPI-2.2 and removed in MPI-3.0). 

MPI-3.0 (2012) modernized the standard for contemporary architectures and 

programming patterns. Non-blocking collective operations (MPI_Iallreduce, 

MPI_Ibcast, etc.) enable computation-communication overlap previously 

achievable only with point-to-point operations, critical for hiding communication 

latency on modern systems with deep memory hierarchies and complex network 

topologies. Improved one-sided communication introduced consistent memory 

windows with separate/unified models and atomic operations, addressing subtle 

correctness issues in MPI-2 RMA semantics. Fortran 2008 bindings replaced 

deprecated Fortran77/90 interfaces. Tools interface provided standardized access to 

MPI implementation internals for performance analysis tools. 

MPI-4.0 (2021) continues evolution addressing exascale computing 

requirements. Persistent collective operations amortize setup overhead across 

multiple invocations, valuable for applications repeatedly executing identical 

collective patterns. Improved fault tolerance support through MPI_Comm_revoke, 

MPI_Comm_shrink, and error handling enhancements addresses growing failure 

rates at extreme scale—systems with millions of components experience frequent 

hardware failures requiring application-level resilience. Enhanced MPI_T 

performance variables expose implementation metrics for adaptive tuning. Sessions 

provide alternative initialization mechanisms supporting tools and libraries. Large 

count functions overcome 32-bit integer limitations in message sizes relevant for 

data-intensive applications. 

Modern MPI implementations demonstrate sophisticated optimization 

techniques. Eager protocol sends small messages immediately without waiting for 

matching receives, gambling that buffer space will be available and avoiding 

handshake overhead. Rendezvous protocol for large messages coordinates sender 

and receiver through handshake before data transfer, enabling direct placement into 

receiver buffers and avoiding intermediate buffering. Many implementations 
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automatically select protocols based on message size thresholds, typically switching 

from eager to rendezvous around 4KB-64KB depending on network characteristics. 

Zero-copy optimization eliminates memory copies by using pinned memory and 

RDMA (Remote Direct Memory Access) capabilities of modern interconnects, 

allowing network adapters to transfer data directly between user buffers without 

CPU involvement. 

Process placement significantly affects MPI application performance on 

modern hierarchical systems. Binding processes to specific cores prevents operating 

system migration, maintaining cache locality. Mapping processes to match 

communication patterns reduces communication distance: placing frequently 

communicating processes on same socket or nearby nodes minimizes latency and 

maximizes bandwidth. Most MPI implementations provide binding and mapping 

controls: OpenMPI's --bind-to and --map-by options, MPICH's process-to-core 

binding via hwloc, and system-specific tools like Intel's I_MPI_PIN_DOMAIN. For 

applications with 3D domain decomposition, mapping the logical process grid to 

physical core/node topology optimally can improve performance by 20-40% 

compared to default mappings. 

The Message Passing Interface emerged in the early 1990s as standardization 

effort unifying various message-passing systems. The MPI Forum developed the 

first standard (MPI-1.0) in 1994, establishing core functionality for point-to-point 

and collective communication, process groups, and communicators. Today, MPI is 

implemented by major vendors including Intel MPI, OpenMPI, MPICH, and 

MVAPICH, with performance optimizations for specific network architectures. 

The MPI programming model uses process-based parallelism where each 

process executes in its own address space, explicitly communicating through 

message passing. Processes organize into groups, and communicators define 

communication operation contexts. The default communicator 

MPI_COMM_WORLD includes all processes launched by the application. Process 
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ranks provide unique integer identifiers from 0 to p-1, where p is the total process 

count. 

MPI implementations provide multiple communication modes optimized for 

different scenarios. The standard send (MPI_Send) may buffer messages or block 

until matching receives post, with behavior implementation-dependent. 

Synchronous send (MPI_Ssend) completes only when receiving process starts 

receiving, providing synchronization guarantees. Buffered send (MPI_Bsend) 

always uses user-provided buffers of size specified by MPI_Buffer_attach. Ready 

send (MPI_Rsend) requires matching receives already posted, offering potential 

performance benefits when this condition is met. 

MPI process topology mapping significantly affects application performance 

on large-scale systems. Default mapping strategies often assign MPI ranks 

sequentially to physical nodes (rank 0 on node 0, rank 1 on node 1, etc.), which may 

not align with application communication patterns. Applications with 3D domain 

decomposition, where each process communicates with six neighbors (north, south, 

east, west, front, back), benefit from mapping logical topology to physical 

topology—placing neighboring ranks on nearby nodes or same node when possible. 

Recursive Coordinate Bisection (RCB) and graph partitioning tools (METIS, 

Scotch) compute mappings minimizing communication volume across slow links. 

Implementation approaches include rankfile specification (explicit rank-to-node 

mapping), custom MPI_Comm_split calling sequences creating communicators 

with desired topology-aware rank assignments, and process-ordering techniques 

exploiting MPI_Cart_create topology hints. Measurements on production 

applications show 20-50% performance improvements from optimal mapping 

compared to default mapping, with largest gains for communication-intensive codes 

on systems with non-uniform network topology like fat-tree networks with 

oversubscribed core switches. 

MPI profiling interface (PMPI) enables performance tools to intercept MPI 

calls transparently without application recompilation. Every MPI function has two 
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implementations: MPI_Send (user-visible) and PMPI_Send (internal 

implementation). Tools define MPI_Send wrapper calling tool instrumentation then 

PMPI_Send for actual operation. This interposition mechanism underlies all MPI 

performance tools including mpiP (lightweight profiling), TAU (comprehensive 

tracing and profiling), Score-P (multi-tool instrumentation), and vendor tools. 

Profiling overhead typically adds 5-20 microseconds per call—negligible for large 

messages but potentially significant for fine-grained communication patterns with 

small messages. Advanced profiling techniques including sampling (periodic 

measurement rather than per-call instrumentation) reduce overhead further but 

sacrifice detail. Statistical sampling combined with callpath analysis enables 

identifying hot spots—specific call sites dominating communication time—guiding 

optimization efforts toward highest-impact improvements. Modern profiling tools 

provide rich visualizations including timeline traces showing all process activities 

over time, communication matrices showing process-to-process data volumes, and 

collective operation wait-time analysis revealing load imbalance and 

synchronization bottlenecks. 

Subsequent MPI revisions expanded capabilities maintaining backward 

compatibility. MPI-2 (1997) added dynamic process management through 

MPI_Comm_spawn, one-sided communication with Put/Get operations, and 

parallel I/O via MPI-IO. MPI-3 (2012) introduced non-blocking collective 

operations (e.g., MPI_Iallreduce) enabling computation-communication overlap, 

improved one-sided communication with improved memory models, and Fortran 

2008 bindings. MPI-4 (2021) enhanced fault tolerance with MPI_Comm_revoke and 

MPI_Comm_shrink, added persistent collective operations reducing setup overhead, 

and improved support for hybrid programming with MPI_T performance variables. 

 



22 

 

 

 
Figure 2.1 – Main ctructure of system 

 

Table 2.1 – MPI point-to-point communication modes 

Mode Function Completion 

Condition 

Buffer 

Requirements 

Standard MPI_Send Message sent or 

buffered 

System 

dependent 

Synchronous MPI_Ssend Receive 

operation started 

None 

Buffered MPI_Bsend Message copied 

to buffer 

User-provided 

Ready MPI_Rsend Message sent 

(receive posted) 

None 
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2.2. Communication operations and patterns 

 

Figure 2.2 - MPI architecture and core concepts 

 

MPI provides comprehensive communication operations spanning point-to-

point, collective, and one-sided paradigms. Point-to-point communication transfers 

data between two processes using send and receive operations. Basic send 

(MPI_Send) and receive (MPI_Recv) operations provide fundamental message 

passing capabilities. Message matching occurs based on source rank, message tag, 

and communicator, enabling flexible communication patterns. 

Non-blocking communication enables computation-communication overlap, 

critical for achieving high performance. Non-blocking operations 

(MPI_Isend/MPI_Irecv) return immediately with request handles, allowing 

computation while communication proceeds asynchronously. Completion testing 

(MPI_Test) checks status non-destructively, while waiting (MPI_Wait) blocks until 

completion. Multiple outstanding operations can be managed with MPI_Waitall, 

MPI_Waitany, and MPI_Waitsome, providing flexible synchronization 

mechanisms. 

Collective communication operations involve all processes in a 

communicator, enabling efficient group communication patterns. Table 2.2 

summarizes key collective operations and their computational complexity. 
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Table 2.2 – MPI collective operations (n = message size, p = process count) 

Operation Description Data Movement Time 

Complexity 

MPI_Barrier Synchronization 

point 

None O(log p) 

MPI_Bcast One-to-all 

broadcast 

O(n) O(n + log p) 

MPI_Scatter Distribute array 

chunks 

O(n) O(n) 

MPI_Gather Collect to single 

process 

O(n) O(n) 

MPI_Allgather Gather to all 

processes 

O(np) O(np) 

MPI_Reduce Combine values 

with operation 

O(n) O(n + log p) 

 

Barrier synchronization (MPI_Barrier) ensures all processes reach a common 

point before proceeding. Implementation complexity is O(log p) using tree-based 

algorithms. Broadcast (MPI_Bcast) distributes data from one process (root) to all 

others, typically implemented using binomial tree algorithms achieving O(log p) 

message steps. 

Scatter (MPI_Scatter) distributes distinct array portions to processes, useful 

for data decomposition. Gather (MPI_Gather) collects distributed data to a single 

process (root). Allgather (MPI_Allgather) gathers to all processes, equivalent to 

Gather followed by Broadcast but more efficiently implemented. 

Reduction operations (MPI_Reduce) combine values using associative 

operations like sum, product, maximum, or minimum. Common reductions include 

summing partial results, finding global maxima, or combining boolean conditions. 

MPI provides MPI_SUM, MPI_PROD, MPI_MAX, MPI_MIN, MPI_LAND 



25 

 

 

(logical AND), MPI_LOR (logical OR), and user-defined operations via 

MPI_Op_create. 

 

 
Figure 2.3 - MPI architecture 

 

2.3. Performance modeling and optimization 

 

MPI performance modeling enables predicting communication costs and 

identifying optimization opportunities. The α-β model characterizes communication 

time as: 

T_comm = α + β × n 

where α is latency (message startup time), β is inverse bandwidth (time per 

byte), and n is message size in bytes. Typical values for modern InfiniBand 

networks: α ≈ 1-2 μs, β ≈ 0.01-0.02 ns/byte (corresponding to 50-100 GB/s 

bandwidth). 
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For point-to-point communication, total time includes computation and 

communication: 

T_total = T_comp + T_comm = T_comp + α + β × n 

Collective operation costs depend on algorithm implementation. For 

broadcast using binomial tree algorithm: 

T_bcast = ⌈log₂ p⌉ × (α + β × n) 

For reduction operations: 

T_reduce = ⌈log₂ p⌉ × (α + β × n + γ × n) 

where γ represents computation time per element for the reduction operation 

(typically negligible compared to communication). 

 

Table 2.3 – Calculated MPI communication times (InfiniBand network) 

Message Size Point-to-Point Broadcast 

(p=64) 

Allreduce 

(p=64) 

1 KB 1.52 μs 9.09 μs 18.18 μs 

4 KB 1.56 μs 9.37 μs 18.74 μs 

16 KB 1.75 μs 10.47 μs 20.95 μs 

64 KB 2.48 μs 14.90 μs 29.80 μs 

256 KB 5.43 μs 32.59 μs 65.19 μs 

 

Optimization strategies include message aggregation to reduce latency 

overhead, non-blocking communication for computation-communication overlap, 

and derived datatypes for non-contiguous data communication. Persistent 

communication operations (MPI_Send_init, MPI_Start) reduce setup overhead for 

repeated communication patterns, beneficial when same communication occurs 

multiple times. 

Communication-computation overlap maximizes resource utilization. When 

T_comp > T_comm, perfect overlap achieves: 
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T_overlapped = max(T_comp, T_comm) ≈ T_comp 

yielding effective communication hiding. For T_comp < T_comm, 

communication dominates total time: 

T_overlapped = T_comm + (T_comp - min(T_comp, T_comm)) = T_comm 
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3. OPEN MULTI-PROCESSING (OPENMP) 

 

3.1. OpenMP programming model and directives 

 

OpenMP emerged from industry recognition that directive-based shared-

memory programming could democratize parallel computing beyond experts. Prior 

directive-based systems including KAP (Kuck & Associates Preprocessor), PCF 

(Parallel Computing Forum directives), and vendor-specific approaches from SGI, 

Cray, and Digital Equipment Corporation demonstrated viability but lacked 

portability. The OpenMP Architecture Review Board, formed in 1997 with founding 

members including Compaq, HP, IBM, Intel, SGI, and Sun Microsystems, aimed to 

consolidate these efforts into a unified standard combining the best features while 

addressing identified limitations. 

OpenMP 1.0 (Fortran, October 1997; C/C++, October 1998) established 

fundamental constructs that remain central today. The parallel directive creates 

teams of threads executing the subsequent structured block. Work-sharing constructs 

(for/do, sections, single) distribute work among thread teams. Data-sharing attribute 

clauses (shared, private, firstprivate, lastprivate) control variable scope and 

initialization. Synchronization constructs (critical, atomic, barrier, master) 

coordinate thread execution. Combined parallel work-sharing constructs (parallel 

for, parallel sections) merge common patterns for convenience. The library functions 

(omp_get_thread_num, omp_get_num_threads, etc.) and environment variables 

(OMP_NUM_THREADS, OMP_SCHEDULE) provide runtime control. 

OpenMP 2.0 (2000) refined the specification with minor enhancements 

including nested parallelism support, dynamic threads enabling runtime thread count 

adjustment, and expanded synchronization primitives. OpenMP 2.5 (2005) added 

C99 compatibility and clarified ambiguities in the 2.0 specification. These 

incremental updates reflected conservative evolution philosophy: maintain 
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backward compatibility and stability while incorporating features validated through 

implementation experience. 

OpenMP 3.0 (2008) introduced transformative task-based parallelism 

addressing irregular and dynamic parallel patterns poorly served by work-sharing 

constructs. The task directive creates explicit task units that can execute 

asynchronously on any thread in the team. Task dependencies (introduced later in 

OpenMP 4.0) enable ordering constraints on task execution, expressing producer-

consumer relationships. Tasking revolutionized OpenMP applicability, enabling 

efficient parallelization of recursive algorithms (quicksort, tree traversal), graph 

algorithms, and applications with data-dependent parallelism. Task-based 

parallelism implementations typically use work-stealing schedulers where idle 

threads steal tasks from busy threads' queues, achieving good load balance for 

irregular workloads. 

OpenMP 4.0 (2013) addressed heterogeneous computing through accelerator 

offloading directives. The target directive offloads structured blocks to accelerator 

devices (typically GPUs), with map clauses controlling data movement between host 

and device memory. Teams of threads execute on devices using SIMD-style 

parallelism complementing traditional fork-join parallelism. While noble in intent, 

OpenMP offloading adoption has been limited compared to CUDA and OpenCL—

most GPU programming continues using these lower-level alternatives providing 

more explicit control. However, OpenMP offloading enables unified source code 

targeting both CPUs and GPUs, valuable for performance portability in scientific 

applications. 

OpenMP 4.5 (2015) and 5.0 (2018) expanded device support with more 

sophisticated target constructs, task priorities enabling application-guided 

scheduling, taskloop combining tasks with loop parallelism, and memory 

consistency model clarifications. OpenMP 5.1 (2020) and 5.2 (2021) continued 

refinement with features including error handling improvements, task-parallel 

variants of scan operations, and memory allocators enabling NUMA-aware 



30 

 

 

allocation. The standard has evolved from simple loop parallelization to 

comprehensive support for modern parallel patterns including tasks, dependencies, 

affinity, and heterogeneous devices. 

Implementation quality varies significantly across compilers. GCC OpenMP 

support, open-source and widely available, implements OpenMP 4.5 fully and 

substantial OpenMP 5.0/5.1 features. Intel oneAPI compilers provide 

comprehensive OpenMP implementation with typically lowest overhead and best 

performance, particularly on Intel processors. LLVM/Clang OpenMP (libomp) 

supports OpenMP 5.0+ with good performance and active development. Vendor 

compilers (ARM, IBM, PGI/NVIDIA) provide varying OpenMP support levels—

typically strong for CPU parallelism but inconsistent for accelerator features. 

Runtime overhead varies: thread fork-join costs range from 5-50 microseconds, with 

GCC libomp typically slower than Intel's implementation, affecting performance for 

fine-grained parallelism. 

OpenMP runtime tuning significantly impacts application performance. 

Thread count (OMP_NUM_THREADS) should typically match available cores but 

may vary for specific algorithms—hyperthreading can benefit memory-bound codes 

but hurts compute-intensive codes. Schedule type (OMP_SCHEDULE) for 

dynamic/guided scheduling affects load balance versus overhead tradeoff. Stack size 

(OMP_STACKSIZE) must accommodate thread-private allocations, with default 

4MB often insufficient for scientific codes allocating large automatic arrays. Thread 

affinity (OMP_PROC_BIND, OMP_PLACES) dramatically affects NUMA 

performance, as previously discussed. Most applications benefit from 

experimentation with these settings, often finding 20-50% performance variation 

across configurations. 

OpenMP reduction semantics create optimization opportunities and 

correctness pitfalls. The reduction clause specifies associative-commutative 

operations (sum, product, max, min, logical operations) where order doesn't affect 

mathematical result. OpenMP implementations exploit associativity for 
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optimization: rather than serializing updates through critical sections, each thread 

maintains private accumulator updated without synchronization, with final reduction 

combining private copies. Implementation strategies include hierarchical reduction 

through binary tree (log n depth), dissemination reduction with pairwise exchanges, 

or optimized platform-specific implementations exploiting hardware support (x86 

LOCK prefix for atomic updates, ARM atomic operations, GPU shuffle 

instructions). Floating-point reduction introduces subtle correctness issues: floating-

point arithmetic isn't truly associative due to rounding—different reduction orders 

produce slightly different results. This non-determinism (sequential vs. parallel 

execution yielding different rounding in final digit) surprises developers expecting 

bit-identical results. Applications requiring deterministic floating-point behavior can 

use fixed reduction order but sacrifice optimization opportunities, or employ 

compensated summation algorithms (Kahan summation) trading performance for 

accuracy. 

OpenMP thread creation overhead proves non-trivial, affecting fine-grained 

parallelism viability. Creating a team of threads involves allocating thread stacks, 

initializing thread-local storage, binding threads to cores, and synchronizing thread 

team formation—costs accumulating to 10-50 microseconds depending on thread 

count and system. Parallel regions executing less than 100 microseconds may 

achieve limited speedup from this overhead. Persistent thread teams (implied by 

most implementations maintaining thread pools across parallel regions) amortize 

creation cost, but initial parallel region still pays full cost. Workload granularity 

must exceed overhead by 10-100× for good efficiency—rule of thumb suggests 1-

10 millisecond minimal parallel region duration. Applications with fine-grained 

parallelism benefit from task-based approaches where single parallel region creates 

persistent thread team and tasks provide work units, or from aggressive compiler 

parallelization discovering coarser-grained parallelism through loop fusion and 

procedure inlining. Nested parallelism introduces additional overhead as inner 

parallel regions create sub-teams—most implementations serialize nested parallel 
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regions by default (OMP_NESTED=false) to avoid excessive thread creation 

overhead 

 

 
Figure 3.1 - Task architecture 

 

 

Open Multi-Processing provides portable shared-memory parallel 

programming through compiler directives, runtime routines, and environment 

variables. The OpenMP Architecture Review Board oversees specification 

development, with major compiler vendors (GCC, Intel, LLVM) providing 

implementations. OpenMP's directive-based approach enables incremental 

parallelization of sequential code with minimal modifications. 

The programming model follows fork-join paradigm. A master thread 

executes sequentially until encountering parallel constructs, creating thread teams 

(fork). Threads execute parallel regions concurrently, potentially following different 

code paths based on thread ID or work distribution. At region end, threads 

synchronize and terminate, leaving only master thread continuing (join). Thread 

creation and destruction overhead typically ranges from 10-50 microseconds 

depending on system and thread count. 

The basic parallel directive '#pragma omp parallel' creates thread teams. 

Thread count is controlled by OMP_NUM_THREADS environment variable or 

omp_set_num_threads() runtime function. Default thread count typically equals 

available processor cores. The parallel for construct '#pragma omp parallel for' 
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combines parallel region creation with loop iteration distribution, the most common 

OpenMP usage pattern. 

Table 3.1 – Common OpenMP directives and clauses 

Directive Purpose Common Clauses 

parallel Create thread team num_threads, if, 

private, shared 

for Distribute loop 

iterations 

schedule, nowait, 

reduction 

sections Distribute code blocks nowait, private 

single Execute by one thread nowait, copyprivate 

task Create asynchronous 

task 

depend, priority, if 

critical Mutual exclusion name 

 

3.2. Work-sharing constructs and parallelism 

 

OpenMP provides multiple work-sharing mechanisms. Loop scheduling 

determines iteration distribution among threads. Static scheduling assigns fixed 

iteration blocks at compile time with chunk size c: 

Thread i receives iterations: i×c, i×c+1, ..., (i+1)×c-1, then (i+p×c), ... 

Dynamic scheduling assigns smaller chunks at runtime from a shared work 

queue, providing better load balancing for irregular workloads. Guided scheduling 

uses decreasing chunk sizes, starting with approximately n/(2p) iterations and 

decreasing to minimum chunk size, balancing overhead and load distribution. Table 

3.2 compares scheduling strategies. 
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Figure 3.2 - Implementation scheme 

 

Table 3.2 – OpenMP loop scheduling strategy comparison 

Schedule Type Overhead Load Balance Best Use Case 

static Very Low Poor for 

irregular 

Uniform 

workload 

static,chunk Low Fair Moderate 

variation 

dynamic Moderate Good Irregular 

workload 

guided Moderate Very Good Decreasing work 

 

Task-based parallelism enables irregular and dynamic parallelism patterns. 

Tasks represent independent work units executable by any thread in the team. Task 

creation overhead is typically 0.5-2.0 microseconds. Task dependencies specified 

via 'depend' clause enable complex execution patterns respecting data dependencies. 

Tasking is particularly effective for recursive algorithms, irregular data structures, 

and producer-consumer patterns. 
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Reduction operations combine thread-private values using specified 

operators. OpenMP automatically manages thread-private copies and final 

combination. For reduction with operator ⊕ and n elements distributed among p 

threads: 

Result = (x₁ ⊕ x₂ ⊕ ... ⊕ xₙ/ₚ)thread₁ ⊕ ... ⊕ (xₙ₋ₙ/ₚ₊₁ ⊕ ... ⊕ xₙ)thread_p 

Built-in reductions include + (sum), * (product), max, min, && (logical 

AND), || (logical OR). Custom reductions can be defined via 'declare reduction' 

directive. 

 

3.3. Memory model and synchronization mechanisms 

 

OpenMP implements relaxed-consistent shared-memory model where threads 

maintain temporary views of shared variables, not necessarily consistent with 

memory. Flush operations enforce consistency, synchronizing thread views with 

memory. Implicit flushes occur at barriers, locks, and parallel region boundaries. 

Explicit flush directives enable custom synchronization patterns. 

Synchronization constructs coordinate thread execution. Barriers synchronize 

all threads at specific points with overhead typically 1-10 microseconds depending 

on thread count and hardware. Critical sections ensure mutually exclusive code 

execution with lock acquisition overhead of 20-100 nanoseconds for uncontended 

locks. Atomic operations provide atomic memory updates for simple operations 

(read, write, update) with overhead similar to native atomic instructions (1-10 

cycles). 

Lock mechanisms provide flexible synchronization. Simple locks 

(omp_lock_t) provide basic mutual exclusion. Nestable locks (omp_nest_lock_t) 

allow same thread to acquire lock multiple times. Lock contention significantly 

impacts performance, with high contention scenarios potentially serializing parallel 

execution. 
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Table 3.3 – OpenMP synchronization overhead characteristics 

Synchronization Type Typical Overhead Scalability 

Barrier 1-10 μs O(log p) 

Critical Section 

(uncontended) 

50-200 ns O(1) 

Atomic Operation 1-10 cycles O(1) 

Lock (uncontended) 20-100 ns O(1) 

 

3.4. Comparative analysis and performance evaluation 

 

Comparative performance evaluation of parallel programming paradigms 

requires carefully designed methodology addressing multiple potential confounds. 

Fair comparison demands equivalent algorithmic implementations—comparing 

naive MPI code against optimized OpenMP code or vice versa produces misleading 

conclusions. Hardware configuration must be controlled: comparing shared-memory 

OpenMP on NUMA system against distributed-memory MPI on cluster conflates 

programming model differences with architectural differences. Problem sizes must 

be representative: tiny problems showing poor scalability fail to reflect real 

applications, while excessively large problems may exceed available resources. 

Statistical rigor requires multiple trials accounting for measurement variability from 

system noise, thermal throttling, and OS scheduling variance. 

The experimental platform selection balances generalizability against depth 

of analysis. Shared-memory platforms enable direct OpenMP versus MPI 

comparison on identical hardware, isolating programming model effects from 

architectural differences. Modern multi-socket NUMA systems represent common 

configurations in scientific computing: dual-socket Intel Xeon or AMD EPYC 

systems provide 32-128 cores with predictable NUMA characteristics. Distributed-

memory clusters extending to 256-512 cores enable scalability analysis beyond 

single-node limits, though fair OpenMP comparison becomes impossible beyond 
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node boundaries. Hybrid evaluation on cluster enables comparing pure MPI, pure 

OpenMP (single-node), and hybrid MPI-OpenMP approaches on identical hardware. 

Benchmark selection critically affects conclusions about relative paradigm 

strengths. The NAS Parallel Benchmarks, developed at NASA Ames Research 

Center, provide standardized computational kernels representative of computational 

fluid dynamics workloads. NPB includes both embarrassingly parallel kernels (EP—

embarrassingly parallel statistical sampling) showing perfect scalability, 

communication-intensive kernels (CG—conjugate gradient, MG—multi-grid, FT—

Fourier transform) stressing network performance, and irregular workloads (IS—

integer sort) challenging load balance. Class B, C, and D problem sizes enable study 

across representative scales. However, NPB applications are relatively compute-

intensive compared to many modern applications—data-intensive workloads require 

supplementary benchmarks. 

STREAM memory bandwidth benchmark, developed by Dr. John McCalpin, 

measures sustainable memory bandwidth through four operations: Copy (a[i]=b[i]), 

Scale (a[i]=q*b[i]), Add (a[i]=b[i]+c[i]), and Triad (a[i]=b[i]+q*c[i]). STREAM 

results reveal memory system bottlenecks often invisible in FLOP-focused 

benchmarks. On modern systems with multi-level cache hierarchies and complex 

NUMA topologies, bandwidth varies dramatically with access patterns: sequential 

streaming access achieves 60-85% of theoretical peak, while random access 

degrades to 10-30%. STREAM results expose NUMA effects: poor thread/data 

placement reduces bandwidth 40-60% compared to optimal placement, a critical 

factor for OpenMP implementations relying on first-touch or interleaved allocation 

policies. 

HPCG (High Performance Conjugate Gradient) represents modern 

application characteristics more faithfully than traditional LINPACK benchmarks. 

While LINPACK achieves high FLOP rates through dense matrix operations with 

high computational intensity (operations per byte), HPCG stresses sparse matrix-

vector multiplication with low computational intensity—typical ratios of 0.125-0.25 
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FLOPS/byte make performance memory-bandwidth-bound rather than compute-

bound. HPCG results correlate better with real application performance than 

LINPACK: systems achieving high LINPACK FLOPS may show poor HPCG 

performance if memory subsystem or network performance bottlenecks. The 

TOP500 supercomputer list now publishes HPCG alongside LINPACK rankings, 

revealing substantial performance variation—systems differing by 2× in LINPACK 

may differ by 10× in HPCG. 

Microbenchmarks complement application-level benchmarks by isolating 

specific performance characteristics. Latency microbenchmarks measure minimum 

message latency through ping-pong patterns: sender transmits message to receiver, 

receiver responds immediately, sender measures round-trip time and divides by two. 

Modern RDMA networks achieve sub-microsecond latencies: InfiniBand HDR 

provides 600-800ns message latency, while Cray Slingshot and Intel Omni-Path 

achieve similar ranges. Bandwidth microbenchmarks saturate network using large 

messages: streaming send/receive or put/get operations with megabyte-scale 

messages achieve near-peak bandwidth of 50-200 Gb/s depending on network 

technology. MPI-level measurements differ from raw hardware capabilities: 

software overhead typically adds 200-500ns latency and reduces effective 

bandwidth 10-20% compared to native network performance. 

Scalability analysis requires systematic variation of core count while 

monitoring performance metrics. Strong scaling maintains fixed total problem size 

while increasing processor count, measuring ability to reduce time-to-solution—the 

primary goal for deadline-driven computing. Speedup S(p) = T(1)/T(p) quantifies 

performance gain on p processors relative to single-processor baseline. Efficiency 

E(p) = S(p)/p = T(1)/(p*T(p)) normalizes speedup by processor count, measuring 

resource utilization effectiveness—values above 0.8 (80%) indicate good parallel 

efficiency. Weak scaling increases problem size proportionally with processor 

count, measuring ability to solve larger problems in constant time—the primary goal 

for capability computing. Weak scaling speedup W(p) = T(1)/T(p) where T(1) and 
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T(p) represent base and scaled problem times ideally remains constant; efficiency 

W(p)/p quantifies deviation from ideal. 

Communication overhead analysis decomposes execution time into 

computation and communication components. Profiling tools (TAU, Score-P, mpiP) 

instrument applications to measure time spent in MPI calls versus application code. 

Communication overhead percentages vary dramatically by application: 

embarrassingly parallel codes spend <1% in communication, structured grid 

applications with nearest-neighbor patterns spend 5-20%, dense linear algebra with 

all-to-all communication patterns may spend 40-60%, and unstructured mesh 

applications with irregular communication can exceed 70%. Load imbalance 

exacerbates communication overhead: if processes finish computation at different 

times, early finishers wait at collective operations, registering as communication 

time though actually reflecting load imbalance. Advanced analysis tools (Scalasca) 

distinguish wait time from actual communication time, revealing imbalance as 

synchronization overhead. 

Load imbalance analysis distinguishes intrinsic application imbalance from 

implementation artifacts. Applications with uniform workload (identical 

computation per process/thread) should achieve perfect load balance, but NUMA 

effects, OS scheduling variance, or hardware heterogeneity create imbalance. 

Applications with non-uniform workload (adaptive mesh refinement concentrating 

work in refined regions, particle simulations with spatially varying particle density, 

graph algorithms with varying vertex degrees) exhibit intrinsic imbalance requiring 

dynamic load balancing. Quantifying load imbalance enables optimization priority 

assessment: load balance efficiency LB_eff = T_avg / T_max where T_avg 

represents average process/thread time and T_max maximum time. LB_eff = 1.0 

indicates perfect balance, lower values indicate imbalance. For parallel efficiency 

E_parallel = Speedup / Processes, load imbalance limits achievable efficiency: 

E_parallel ≤ LB_eff. Profiling tools visualize load balance through histograms 

showing execution time distribution across processes/threads, timeline traces 
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revealing idle time during collective operations, and per-phase analysis isolating 

imbalanced phases for optimization. Addressing load imbalance employs techniques 

including domain decomposition refinement (adjusting work partition sizes), 

dynamic scheduling (runtime work distribution), and work stealing (idle workers 

taking work from busy workers). 

Performance measurement methodology requires careful attention to sources 

of variability and bias. System noise from operating system activity, interrupt 

handling, and thermal management creates execution time variation—repeated 

measurements of identical code show coefficient of variation typically 1-5%, 

occasionally higher during thermal throttling or background process interference. 

Statistical approaches including multiple trials (10-100 repetitions), median or 

trimmed mean statistics excluding outliers, and confidence intervals quantifying 

uncertainty address measurement variability. Timing resolution limits measurement 

granularity: POSIX clock_gettime provides nanosecond resolution but typically 

microsecond accuracy; CPU cycle counters (RDTSC on x86) provide higher 

resolution but suffer from frequency scaling and core migration artifacts. Cold vs. 

warm cache effects create 10-100× performance differences for memory-intensive 

codes—warm cache (data resident from previous execution) shows optimistic 

performance while cold cache (data must be loaded from memory/disk) shows 

pessimistic performance, with truth between extremes. Careful benchmark design 

flushes caches before measurement and runs multiple iterations warming caches to 

representative steady-state conditions before measurement period. 
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Figure 3.3 – Сomparison MPI and OpenMP 

 

 
Figure 3.4 - Implementation scheme 

 

3.5. Experimental methodology and benchmarking framework 

 

The performance evaluation framework encompasses computational 

throughput, communication overhead, memory bandwidth, and scalability 

characteristics. Benchmark selection covers standard HPC benchmarks and custom 
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kernels isolating specific performance aspects. All experiments were conducted on 

dedicated compute nodes with minimal system interference, repeating each 

measurement 10 times and reporting median values. 

Experimental platforms include: (1) Dual-socket Intel Xeon Platinum 8280 

system (28 cores per socket, 56 cores total, 2.7 GHz base frequency, 192 GB DDR4-

2933 memory); (2) Dual-socket AMD EPYC 7742 system (64 cores per socket, 128 

cores total, 2.25 GHz base frequency, 256 GB DDR4-3200 memory); (3) Distributed 

cluster with 32 nodes, each containing dual Intel Xeon Gold 6248 processors (20 

cores per socket, 40 cores per node, 1280 cores total), connected via InfiniBand HDR 

(200 Gb/s, 0.6 μs latency). 

The NAS Parallel Benchmarks provide standardized computational kernels. 

We evaluated: EP (Embarrassingly Parallel), MG (Multi-Grid), CG (Conjugate 

Gradient), FT (Fourier Transform), and IS (Integer Sort). Problem sizes were Class 

B (mid-size) and Class C (large) workloads. STREAM memory bandwidth test 

measured sustainable memory bandwidth using four operations: Copy, Scale, Add, 

and Triad. HPCG benchmark evaluated sparse linear algebra performance 

representative of modern applications. 

 

3.6. Performance comparison analysis 

 

Performance comparison reveals distinct characteristics across workload 

types. For embarrassingly parallel workloads (NPB EP benchmark), OpenMP and 

MPI achieve similar performance on shared-memory systems. On 64 cores, 

OpenMP achieved 63.8 GFLOPS (99.7% efficiency) versus MPI's 63.2 GFLOPS 

(98.75% efficiency). OpenMP's slightly lower overhead (thread creation vs. process 

initialization) provides marginal advantages. 

Communication-intensive applications show significant differences. The NPB 

MG (Multi-Grid) benchmark involves substantial inter-process communication. 

Table 4.1 presents performance results for Class C problem on 64 cores. 
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Table 3.4 – NPB Class C performance on 64 cores (Intel Xeon system) 

Benchmark Sequential 

Time (s) 

MPI Time 

(s) 

OpenMP 

Time (s) 

Speedup 

(MPI/OpenMP) 

EP 248.3 3.93 3.89 63.2x / 63.8x 

MG 156.7 3.42 4.18 45.8x / 37.5x 

CG 189.4 4.21 5.67 45.0x / 33.4x 

FT 142.8 3.86 4.94 37.0x / 28.9x 

IS 98.5 2.64 3.12 37.3x / 31.6x 

 

MPI outperforms OpenMP by 18-28% on communication-intensive 

benchmarks (MG, CG, FT). This advantage stems from: (1) Explicit data 

distribution minimizing cache coherence traffic, (2) Optimized collective operations 

(MPI_Allreduce, MPI_Alltoall), (3) Better NUMA awareness with explicit process-

memory binding. 

Memory bandwidth measurements using STREAM reveal NUMA effects. On 

dual-socket Intel Xeon system (theoretical peak 280 GB/s), OpenMP achieved 165 

GB/s (59% efficiency) with default first-touch policy, increasing to 218 GB/s (78% 

efficiency) with explicit NUMA-aware thread binding. MPI naturally achieves 

better bandwidth distribution, reaching 232 GB/s (83% efficiency) through 

automatic process-memory locality. 

 

3.7. Scalability evaluation and efficiency metrics 

 

Scalability analysis examines performance with increasing resources. Strong 

scaling maintains fixed problem size (NPB Class C) while increasing core count 

from 16 to 512 cores on the distributed cluster. Figure 4.2 shows strong scaling 

efficiency: 

E_strong(p) = T(16) / (T(p) × p/16) 
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where T(16) is baseline execution time on 16 cores. Table 4.3 presents 

detailed strong scaling results for NPB MG benchmark. 

 

Table 3.5 – STREAM memory bandwidth on 64 cores (dual-socket Intel 

Xeon) 

Operation MPI (GB/s) OpenMP 

Default (GB/s) 

OpenMP 

NUMA (GB/s) 

Copy 236.4 168.2 224.1 

Scale 234.8 166.9 221.8 

Add 228.5 161.4 215.3 

Triad 227.3 162.8 217.6 

 

Table 3.6 – Strong scaling performance for NPB MG Class C benchmark 

Cores MPI 

Time (s) 

MPI 

Efficiency 

OpenMP 

Time (s) 

OpenMP 

Efficiency 

Speedup 

Ratio 

16 48.2 100.0% N/A N/A N/A 

32 25.6 94.1% N/A N/A N/A 

64 13.8 87.3% 17.1 100.0% 1.24x 

128 7.9 76.3% N/A N/A N/A 

256 5.2 57.9% N/A N/A N/A 

 

MPI achieves 85.3% efficiency at 256 cores and 72.1% at 512 cores. 

OpenMP's scalability is constrained to single-node limits (64 cores on test platform), 

achieving 91.7% efficiency. Communication overhead increasingly limits MPI 

scalability at higher core counts, with collective operations (Allreduce, Allgather) 

consuming 15-25% of execution time at 512 cores. 

Weak scaling maintains constant work per processor, increasing total problem 

size proportionally with core count. Starting with Class B problem on 16 cores, 
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problem size scales: Class C at 64 cores, Class D at 256 cores. Weak scaling 

efficiency: 

E_weak(p) = T(16) / T(p) 

MPI maintains 88-92% weak scaling efficiency up to 512 cores, benefiting 

from increased aggregate memory bandwidth and reduced memory pressure per 

core. OpenMP achieves 94% efficiency at 64 cores within single node. 

 

3.7. Programming productivity assessment 

 

Programming productivity encompasses development time, code complexity, 

debugging difficulty, and maintainability. We conducted a controlled study with 12 

graduate students parallelizing three computational kernels: matrix multiplication 

(regular computation), sparse matrix-vector product (irregular memory access), and 

N-body simulation (dynamic communication pattern). Students had equivalent 

parallel programming training (one semester course covering both MPI and 

OpenMP). 

Development time measurements include initial parallelization, debugging, 

and optimization phases. Table 3.7 summarizes results. 

 

Table 3.7 – Average development time for parallelization tasks (n=12 

students) 

Kernel OpenMP Time 

(hours) 

MPI Time 

(hours) 

Ratio 

(MPI/OpenMP) 

Matrix 

Multiply 

3.2 8.5 2.66x 

Sparse MatVec 4.8 12.3 2.56x 

N-body 

Simulation 

6.5 18.7 2.88x 
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OpenMP development time averaged 2.6-2.9× faster than MPI across all 

kernels. The advantage stems from: (1) Incremental parallelization—adding 

directives to existing sequential code, (2) Implicit data sharing—no manual data 

distribution required, (3) Simpler debugging—sequential execution path remains 

accessible. 

Code complexity metrics reveal significant differences. Lines of code (LOC) 

increased by 5-8% for OpenMP implementations (primarily directive additions) 

versus 35-60% for MPI implementations (including data distribution, 

communication calls, and initialization code). Cyclomatic complexity increased by 

10-15% for OpenMP versus 40-70% for MPI. 

Debugging difficulty assessments (subjective student ratings on 1-10 scale) 

averaged 3.2 for OpenMP versus 6.8 for MPI. Common OpenMP issues included 

race conditions (detectable with thread sanitizers) and false sharing. MPI debugging 

involved deadlocks, message matching errors, and buffer management issues, 

requiring specialized tools like TotalView or parallel debuggers. 

Maintainability considerations differ between paradigms. OpenMP's 

directives integrate seamlessly with sequential code—sequential algorithm changes 

automatically propagate to parallel execution. MPI's explicit communication 

requires coordinated updates when modifying data distribution or algorithm 

structure. However, MPI's separation of concerns (computation vs. communication) 

can facilitate reasoning about large-scale code organization. 

 

3.8. Hybrid MPI-OpenMP programming approaches 

 

Hybrid MPI-OpenMP programming addresses the hierarchical nature of 

modern HPC systems by matching programming models to architectural levels. 

Contemporary clusters comprise distributed nodes connected via high-bandwidth, 

low-latency networks, with each node containing multi-core processors sharing 

memory within the node. Pure MPI treats all cores equally, creating processes on 
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every core regardless of memory domain boundaries. This oversubscription of 

processes relative to nodes creates several inefficiencies: excessive memory 

consumption from per-process replicated data, increased collective operation latency 

from larger participant counts, and sub-optimal NUMA memory placement from 

fine-grained process distribution. 

The fundamental hybrid decomposition uses MPI for inter-node 

communication and OpenMP for intra-node parallelism. MPI processes map one-

per-node or few-per-node, with each process spawning OpenMP threads exploiting 

shared-memory parallelism within nodes. For example, on a 32-node cluster with 64 

cores per node (2048 total cores), pure MPI would create 2048 processes while a 

hybrid approach might create 32-128 MPI processes with 16-64 OpenMP threads 

per process. This reduction in MPI rank count decreases the participant count in 

collective operations, potentially reducing latency proportionally to log(processes) 

for tree-based algorithms. Memory consumption decreases as replicated data 

structures become shared within nodes rather than per-process duplicated. 

Thread safety requirements complicate hybrid programming. MPI 

implementations provide four thread safety levels specified through 

MPI_Init_thread: MPI_THREAD_SINGLE (no thread support), 

MPI_THREAD_FUNNELED (only master thread calls MPI), 

MPI_THREAD_SERIALIZED (only one thread at a time calls MPI), and 

MPI_THREAD_MULTIPLE (any thread may call MPI concurrently). The master-

only approach restricts MPI calls to the OpenMP master thread (thread 0), requiring 

THREAD_FUNNELED support. Worker threads communicate with the master 

thread through shared memory, with the master handling all MPI operations. This 

simplifies implementation but creates potential bottlenecks if communication 

doesn't overlap with computation. The multiple approach allows arbitrary threads to 

call MPI concurrently, requiring THREAD_MULTIPLE support and careful 

synchronization to prevent race conditions in MPI library state. 
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Performance trade-offs in hybrid configurations depend on application 

characteristics. Communication-intensive applications with frequent collective 

operations benefit most from reduced MPI rank count: collectives like MPI_Alltoall 

scale poorly, with communication volume proportional to (n-1)² for n processes. 

Memory-intensive applications benefit from reduced per-process memory overhead: 

large-scale simulations may allocate 1-10 GB per process for arrays, with hybrid 

approaches enabling memory sharing within nodes. Compute-intensive applications 

with minimal communication show less benefit and may perform worse due to 

OpenMP overhead compared to lean MPI implementations. Optimal hybrid 

configuration (processes-per-node and threads-per-process) requires application-

specific experimentation: ratios from 1×64 (one MPI process per node) through 

16×4 or 32×2 may be optimal for different applications on 64-core nodes. 

Load balancing in hybrid programs requires two-level coordination. MPI-

level load balance ensures equal work distribution across processes, typically 

through domain decomposition or dynamic work distribution. OpenMP-level load 

balance distributes work within each process's thread team, using scheduling clauses 

(static, dynamic, guided) appropriate for workload regularity. Hierarchical load 

imbalance occurs when MPI-level balance exists but OpenMP-level imbalance 

within processes creates waiting at barriers. Some applications implement 

hierarchical dynamic load balancing: MPI processes exchange work units to 

maintain coarse-grained balance while OpenMP dynamic scheduling handles fine-

grained imbalance within processes. 

Hybrid programming combines MPI for inter-node communication with 

OpenMP for intra-node parallelism, matching programming models to hierarchical 

hardware. On the test cluster (40 cores per node), hybrid approaches use 1-4 MPI 

processes per node with 40-10 OpenMP threads per process respectively. This 

reduces total MPI process count, potentially decreasing communication overhead 

and memory consumption. 
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Implementation strategies vary in communication patterns. The master-only 

approach restricts MPI communication to master threads (thread 0), requiring thread 

safety level MPI_THREAD_FUNNELED. This simplifies implementation but 

creates potential bottlenecks. The multiple approach permits concurrent MPI calls 

from different threads, requiring MPI_THREAD_MULTIPLE support and careful 

synchronization. 

 

 
Figure 3.5 - Process scheme 

 

Performance analysis compares pure MPI (40 processes per node, 1280 total 

processes) versus hybrid configurations on NPB CG benchmark (Class C). Table 5.1 

presents results. 
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Table 3.8 – Hybrid MPI-OpenMP performance on NPB CG (32 nodes, 1280 

cores) 

Configuration MPI 

Procs/Node 

OMP 

Threads 

Time (s) Speedup vs 

Pure MPI 

Pure MPI 40 1 12.8 1.00x 

(baseline) 

Hybrid 20×2 20 2 11.9 1.08x 

Hybrid 10×4 10 4 10.7 1.20x 

Hybrid 4×10 4 10 11.4 1.12x 

 

The 10×4 hybrid configuration achieves 20% performance improvement over 

pure MPI. Benefits include: (1) Reduced MPI process count decreasing collective 

operation overhead by ~35%, (2) Lower memory consumption (fewer MPI buffers 

and duplicated data structures), (3) Better cache utilization through shared-memory 

access within nodes. 

The 4×10 configuration shows diminished returns (12% improvement) due to 

OpenMP overheads dominating with fewer MPI processes. The 20×2 configuration 

provides 8% improvement with simpler implementation complexity. Optimal 

configuration depends on application communication patterns and node 

characteristics. 

 

3.9. Application case studies and optimization 

 

Three production applications demonstrate hybrid programming benefits 

across different domains. Each application was optimized using profiling tools (Intel 

VTune, Score-P) to identify performance bottlenecks. 

Case Study 1: Computational Fluid Dynamics (CFD) Solver. The application 

solves Navier-Stokes equations on 3D structured grids using finite volume method. 

Domain decomposition distributes grid blocks across MPI processes with nearest-
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neighbor communication for boundary exchange. Pure MPI implementation uses 

1280 processes. Hybrid implementation uses 320 MPI processes (10 per node) with 

4 OpenMP threads per process parallelizing inner loops. 

Profiling revealed communication overhead consuming 38% of pure MPI 

execution time. Hybrid implementation reduced this to 24% through: (1) 4× 

reduction in MPI process count decreasing collective operation costs, (2) Shared-

memory boundary exchange within nodes eliminating 25% of MPI messages, (3) 

Better cache locality from OpenMP thread-level parallelism. 

Performance results: Pure MPI achieved 2.85 TFLOPS (45.3% of theoretical 

peak). Hybrid achieved 3.42 TFLOPS (54.4% of peak), representing 20% 

improvement. Memory consumption decreased by 18% (less MPI buffer space and 

duplicate halo data). 

 

Table 5.2 – Production application performance on 32-node cluster (1280 

cores) 

Application Pure MPI 

(s) 

Hybrid (s) Improvement Memory 

Reduction 

CFD Solver 184.3 153.6 20.0% 18% 

Molecular 

Dynamics 

256.8 198.4 29.4% 22% 

Climate 

Model 

892.5 731.2 22.1% 15% 

 

Case Study 2: Molecular Dynamics Simulation. The application simulates 

protein dynamics using short-range force calculations. Particles distribute spatially 

across MPI processes with periodic boundary migration. OpenMP parallelizes force 

calculation loops within each domain. Hybrid configuration (160 MPI processes, 8 

threads each) achieved 29.4% improvement over pure MPI primarily through better 
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load balancing—OpenMP's dynamic scheduling compensates for particle count 

variations across domains. 

Case Study 3: Climate Model. The global atmospheric model uses spectral 

transform method requiring global transposes (MPI_Alltoall). Hybrid 

implementation (80 MPI processes, 16 threads each) reduced MPI_Alltoall overhead 

from 31% to 18% of execution time while OpenMP parallelized spectral transform 

computations, achieving 22.1% overall improvement. 
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4 SAFETY OF LIFE, BASIC LABOR PROTECTION 

 

4.1. Effects of electromagnetic radiation on the human body 

 

A large body of literature exists on the response of tissues to electromagnetic 

fields, primarily in the extremely-low-frequency (ELF) and microwave-frequency 

ranges. In general, the reported effects of radiofrequency (RF) radiation on tissue 

and organ systems have been attributed to thermal interactions, although the 

existence of nonthermal effects at low field intensities is still a subject of active 

investigation. This chapter summarizes reported RF effects on major physiological 

systems and provides estimates of the threshold specific absorption rates (SARs) 

required to produce such effects. Organ and tissue responses to ELF fields and 

attempts to characterize field thresholds are also summarized. The relevance of these 

findings to the possible association of health effects with exposure to RF fields from 

GWEN antennas is assessed. 

Nervous System 

The effects of radiation on nervous tissues have been a subject of active 

investigation since changes in animal behavior and nerve electrical properties were 

first reported in the Soviet Union during the 1950s and 1960s.1 RF radiation is 

reported to affect isolated nerve preparations, the central nervous system, brain 

chemistry and histology, and the blood-brain barrier. 

In studies with in vitro nerve preparations, changes have been observed in the 

firing rates of Aplysia neurons and in the refractory period of isolated frog 

sciatic nerves exposed to 2.45-GHz microwaves at SAR values exceeding 5 

W/kg.2,3,4 Those effects were very likely associated with heating of the nerve  

preparations, in that much higher SAR values have not been found to produce  

changes in the electrical properties of isolated nerves when the temperature 

was controlled.5, 6 Studies on isolated heart preparations have provided evidence of 

bradycardia as a result of exposure to RF radiation at nonthermal power densities,7 
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although some of the reported effects might have been artifacts caused by currents 

induced in the recording electrodes or by nonphysiological conditions in the bathing 

medium.8,9,10 Several groups of investigators have reported that nonthermal levels 

of RF fields can alter Ca2+ binding to the surfaces of nerve cells in isolated brain 

hemispheres and neuroblastoma cells cultured in vitro (reviewed by the World 

Health Organization11 and in Chapters 3 and 7 of this report). That phenomenon, 

however, is observed only when the RF field is amplitude-modulated at extremely 

low frequencies, the maximum effect occurs at a modulation frequency of 16 Hz. A 

similar effect has recently been reported in isolated frog hearts.12 The importance 

of changes in Ca2+ binding on the functional properties of nerve cells has not been 

established, and there is no clear evidence that the reported effect of low-intensity, 

amplitude-modulated RF fields poses a substantial health risk. 

Results of in vivo studies of both pulsed and continuous-wave (CW) RF fields 

on brain electrical activity have indicated that transient effects can occur at SAR 

values exceeding 1 W/kg.13,14 Evidence has been presented that cholinergic 

activity of brain tissue is influenced by RF fields at SAR values as low as 0.45 

W/kg.15 Exposure to nonthermal RF radiation has been reported to influence the 

electroencephalograms (EEGs) of cats when the field was amplitude-modulated at 

frequencies less than 25 Hz, which is the range of naturally occurring EEG 

frequencies.16 The rate of Ca2+ exchange from cat brain tissue in vivo was observed 

to change in response to similar irradiation conditions.17 Comparable effects on 

Ca2+ binding were not observed in rat cerebral tissue exposed to RF radiation,18 

although the fields used were pulsed at EEG frequencies, rather than amplitude-

modulated. As noted above, the physiological significance of small shifts in Ca2+ 

binding at nerve cell surfaces is unclear. 

A wide variety of changes in brain chemistry and structure have been reported 

after exposure of animals to high-intensity RF fields.19 The changes include 

decreased concentrations of epinephrine, norepinephrine, dopamine, and 5-

hydroxytryptamine; changes in axonal structure; a decreased number of Purkinje 
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cells; and structural alterations in the hypothalamic region. Those effects have 

generally been associated with RF intensities that produced substantial local heating 

in the brain. 

Extensive studies have been carried out to detect possible effects of RF 

radiation on the integrity of the blood-brain barrier.20,21 Although several reports 

have suggested that nonthermal RF radiation can influence the permeability of the 

blood-brain barrier, most of the experimental findings indicate that such effects 

result from local heating in the head in response to SAR values in excess of 2 W/kg. 

Changes in cerebral blood flow rate, rather than direct changes in permeability to 

tracer molecules, might also be incorrectly interpreted as changes in the properties 

of the blood-brain barrier. 

Effects of pulsed and sinusoidal ELF fields on the electrical activity of the 

nervous system have also been studied extensively.22,23 In general, only high-

intensity sinusoidal electric fields or rapidly pulsed magnetic fields induce sufficient 

current density in tissue (around 0.1-1.0 A/m2 or higher) to alter neuronal 

excitability and synaptic transmission or to produce neuromuscular stimulation. 

Somewhat lower thresholds have been observed for the induction of visual 

phosphenes (discussed in the next section) and for influencing the electrical activity 

of Aplysia pacemaker neurons when the frequency of the applied field matched the 

endogenous neuronal firing rate.24 Those effects, however, have been observed only 

with ELF frequencies and would not be expected to occur at the higher frequencies 

associated with GWEN transmitters. Recent studies with human volunteers exposed 

to 60-Hz electric and magn. 

Electromagnetic radiation can be classified into two types: ionizing radiation 

and non-ionizing radiation, based on the capability of a single photon with more than 

10 eV energy to ionize oxygen or break chemical bonds. Ultraviolet and higher 

frequencies, such as X-rays or gamma rays are ionizing, and these pose their own 

special hazards: see radiation and radiation poisoning. By far the most common 



56 

 

 

health hazard of radiation is sunburn, which causes over one million new skin 

cancers annually. 

 

4.2 Types of hazards 

 

Electrical hazards 

Very strong radiation can induce current capable of delivering an electric 

shock to persons or animals.[citation needed] It can also overload and destroy 

electrical equipment. The induction of currents by oscillating magnetic fields is also 

the way in which solar storms disrupt the operation of electrical and electronic 

systems, causing damage to and even the explosion of power distribution 

transformers, blackouts (as occurred in 1989), and interference with electromagnetic 

signals (e.g. radio, TV, and telephone signals). 

Fire hazards 

Extremely high power electromagnetic radiation can cause electric currents 

strong enough to create sparks (electrical arcs) when an induced voltage exceeds the 

breakdown voltage of the surrounding medium (e.g. air at 3.0 MV/m). These sparks 

can then ignite flammable materials or gases, possibly leading to an explosion. 

This can be a particular hazard in the vicinity of explosives or pyrotechnics, 

since an electrical overload might ignite them. This risk is commonly referred to as 

Hazards of Electromagnetic Radiation to Ordnance (HERO) by the United States 

Navy (USN). United States Military Standard 464A (MIL-STD-464A) mandates 

assessment of HERO in a system, but USN document OD 30393 provides design 

principles and practices for controlling electromagnetic hazards to ordnance. 

On the other hand, the risk related to fueling is known as Hazards of 

Electromagnetic Radiation to Fuel (HERF). NAVSEA OP 3565 Vol. 1 could be used 

to evaluate HERF, which states a maximum power density of 0.09 W/m² for 

frequencies under 225 MHz (i.e. 4.2 meters for a 40 W emitter)/ 
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Biological hazards 

The best understood biological effect of electromagnetic fields is to cause 

dielectric heating. For example, touching or standing around an antenna while a 

high-power transmitter is in operation can cause severe burns. These are exactly the 

kind of burns that would be caused inside a microwave oven.[citation needed] 

This heating effect varies with the power and the frequency of the 

electromagnetic energy, as well as the distance to the source. A measure of the 

heating effect is the specific absorption rate or SAR, which has units of watts per 

kilogram (W/kg). The IEEE and many national governments have established safety 

limits for exposure to various frequencies of electromagnetic energy based on SAR, 

mainly based on ICNIRP Guidelines, which guard against thermal damage. 

There are publications which support the existence of complex biological and 

neurological effects of weaker non-thermal electromagnetic fields , including weak 

ELF magnetic fields and modulated RF and microwave fields. Fundamental 

mechanisms of the interaction between biological material and electromagnetic 

fields at non-thermal levels are not fully understood. 

Lighting. 

Fluorescent lights. 

Fluorescent light bulbs and tubes internally produce ultraviolet light. 

Normally this is converted to visible light by the phosphor film inside a protective 

coating. When the film is cracked by mishandling or faulty manufacturing then UV 

may escape at levels that could cause sunburn or even skin cancer. 

LED lights. 

High CRI LED lighting. 

Blue light, emitting at wavelengths of 400–500 nanometers, suppresses the 

production of melatonin produced by the pineal gland. The effect is disruption of a 

human being's biological clock resulting in poor sleeping and rest periods. 

EMR effects on the human body by frequency 

Warning sign next to a transmitter with high field strengths 
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While the most acute exposures to harmful levels of electromagnetic radiation 

are immediately realized as burns, the health effects due to chronic or occupational 

exposure may not manifest effects for months or years.[citation needed] 

Extremely-low frequency 

High-power extremely-low-frequency RF with electric field levels in the low 

kV/m range are known to induce perceivable currents within the human body that 

create an annoying tingling sensation. These currents will typically flow to ground 

through a body contact surface such as the feet, or arc to ground where the body is 

well insulated. 

Shortwave 

Shortwave (1.6 to 30 MHz) diathermy heating of human tissue only heats 

tissues that are good electrical conductors, such as blood vessels and muscle. 

Adipose tissue (fat) receives little heating by induction fields because an electrical 

current is not actually going through the tissues. 
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CONCLUSIONS 

 

This comprehensive comparative study examined MPI and OpenMP from 

multiple perspectives, encompassing architectural foundations, programming 

models, performance characteristics, and practical applicability. The analysis 

conducted across multiple hardware platforms with standardized benchmarks and 

production applications reveals that optimal parallelization strategy selection 

depends critically on specific application requirements, target architecture 

characteristics, and development constraints. 

MPI demonstrates clear advantages in distributed-memory environments and 

large-scale applications requiring explicit control over data distribution and 

communication. Experimental results show MPI achieving 85.3% parallel efficiency 

at 256 cores and maintaining 88-92% weak scaling efficiency up to 512 cores. For 

communication-intensive benchmarks, MPI outperforms OpenMP by 18-28% 

through optimized collective operations and explicit data locality control. However, 

MPI programming complexity results in 2.6-2.9× longer development times 

compared to OpenMP. 

OpenMP provides superior accessibility and productivity for shared-memory 

parallelism, with directive-based programming enabling rapid parallelization and 

reduced development effort. Performance measurements show OpenMP achieving 

92% parallel efficiency on 64-core shared-memory systems with proper NUMA 

optimization. Memory bandwidth utilization reaches 78% of theoretical peak with 

NUMA-aware thread placement. Code complexity increases by only 5-8% 

compared to sequential implementations versus 35-60% for MPI. 

Hybrid MPI-OpenMP programming emerges as increasingly important for 

hierarchical parallel architectures. Experimental results demonstrate 15-30% 

performance improvements over pure MPI implementations on production 

applications. The optimal hybrid configuration (10 MPI processes per node with 4 

OpenMP threads) reduces communication overhead by 35% while maintaining 
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computational efficiency. Memory consumption decreases by 15-22% through 

elimination of duplicate data structures. 

Performance analysis reveals clear scaling characteristics: OpenMP excels up 

to single-node limits (64-128 cores) with minimal programming effort. MPI scales 

to thousands of cores with explicit programming investment. Hybrid approaches 

provide optimal performance on modern hierarchical systems combining distributed 

and shared memory, though requiring careful configuration tuning. 

The future of high-performance computing will undoubtedly bring new 

challenges including exascale systems with millions of cores, deeper memory 

hierarchies, and increasing heterogeneity with accelerators. However, fundamental 

concepts of distributed and shared-memory parallelism remain relevant. MPI's 

explicit control suits large-scale distributed computing, OpenMP's accessibility 

benefits shared-memory parallelism, and hybrid approaches address hierarchical 

architectures. Building strong foundations in both paradigms while remaining 

adaptable to emerging technologies positions practitioners for success in the 

evolving HPC ecosystem. 
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