Ministry of Education and Science of Ukraine
Ternopil Ivan Puluj National Technical University

Faculty of Computer Information Systems and Software Engineering

(full name of faculty)
Department of Computer Science

(full name of department)

QUALIFYING PAPER

For the degree of

Bachelor

Topic:

(degree name)

Comparative Study of MPI vs. OpenMP in High-Performance Computing

Submitted by: student 8 course, group ICH-43

specialty 122 Computer science

(tudp i Ha3Ba crienianbHOCTI)

Rauf Sadat

(signature) (surname and initials)
Supervisor Roman Zolotyi

(signature) (surname and initials)
Standards verified by

(signature) (surname and initials)
Head of Department Thor Bodnarchuk

(signature) (surname and initials)
Reviewer

(signature) (surname and initials)

Ternopil

2026

Ministry of Education and Science of Ukraine
Ternopil Ivan Puluj National Technical University

Faculty Faculty of Computer Information Systems and Software Engineering

(full name of faculty)
Department Department of Computer Science

(full name of department)

APPROVED BY
Head of Department
Bodnarchuk 1.O.

(signature) (surname and initials)

« » 2026

ASSIGNMENT
for QUALIFYING PAPER

for the degree of Bachelor

(degree name)

specialty 122 Computer science

(code and name of the specialty)

student Rauf Sadat

(surname, name, patronymic)

1. Paper topic MPI vs. OpenMP in High-Performance Computing

Paper supervisor Mr. Oleksandr Golotenko

(surname, name, patronymic, scientific degree, academic rank)

Approved by university order as of «_07 »__ 05 2025 No _ 4/7-447
2. Student’s paper submission deadline 30.01.2026

3. Initial data for the paper MPI vs. OpenMP in High-Performance Computing

4. Paper contents (list of issues to be developed)

5. List of graphic material (with exact number of required drawings, slides)

6. Advisors of paper chapters

Signature, date

Chapter Advisor’s surname, initials, and position | The assignment assignment
was given by was received by
Life safety,
basics of labor
protection

7. Date of receiving the assignment 07.07.2025

TIME SCHEDULE
LN Paper stages Paper stages deadlines Notes
1 | Analysis of the task for qualifying work. Selection
And work with literary sources.

2 | Writing chapter 1

3 | Writing chapter 2

4 | Writing chapter 3

5 | Writing chapter 4

6 | Standardization control

7 | Plagiarism check

8 | Preliminary defense of the qualifying paper

9 | Defense of the qualifying paper

Student

Rauf Sadat

(signature)

Paper supervisor

(surname and initials)

Roman Zolotyi

(signature)

(surname and initials)

ANNOTATION

Comparative Study of MPI vs. OpenMP in High-Performance Computing //
Term Paper Bachelor degree // Rauf Sadat // Ternopil Ivan Puluj National Technical
University, Faculty of Computer Information System and Software Engineering,
Department of Computer Science // Ternopil, 2026 // P. 52, Fig. — 10, Tables — 15,
Annexes — 0, References — 20.

Keywords: High-Performance Computing, Parallel Programming, MPI,
OpenMP, Distributed Memory, Shared Memory, Performance Analysis, Scalability,
Hybrid Parallelization.

This comprehensive study presents an in-depth comparative analysis of MPI
and OpenMP, examining their architectural foundations, programming models,
performance characteristics, and applicability to diverse computational workloads.

Through theoretical analysis, empirical benchmarking, and case studies, the
strengths, limitations, and optimal use cases for each paradigm were evaluated.
Performance measurements were conducted on multiple hardware platforms using
standard benchmarks.

The findings indicate that MPI excels in distributed-memory environments
while OpenMP provides superior productivity for shared-memory parallelism.
Performance analysis revealed up to 85% parallel efficiency for MPI on 512 cores
and 92% efficiency for OpenMP on 64 cores.

Hybrid MPI-OpenMP approaches were explored that leverage the
complementary strengths of both paradigms. Experimental results demonstrated 15-
30% performance improvement over pure MPI implementations on hierarchical
architectures.

This study provides practical guidance for HPC practitioners in selecting
appropriate parallelization strategies. Implementation examples, performance

models, and optimization techniques are presented.

CONTENT
LIST OF ABBREVIATIONS, SYMBOLS, AND TERMS.......ccccceerurersuecscnncens 6
INTRODUCTIONcoiouiiiirinsnrcssnncsssnssssssssssssssssssssssssssessssssssssssssssssssssssssssasssssssssns 7
1. THEORETICAL FOUNDATIONS OF PARALLEL COMPUTING. 9
1.1 Parallel computing architectures and memory models..........ccoecveercccscrnnneees 9
1.2. Analysis of parallel programming paradigms...........cccecceeeeccneccssnnecscneecsenns 13
1.3. Performance metrics and evaluation methodologyccccceeecevvnnerccsscnnns 15
2. MESSAGE PASSING INTERFACE (MPI).....cccovieivicssnncssnncssnnicssnsssasssansene 17
2.1. MPI architecture and COre CONCEPLS.....ccccerrrrrrreccssssssrrcssssssssncssssssssssssssssssecs 17
2.2. Communication operations and PAtLEINScccevevrrrecssssnnsrccsssssssecssssnsssecs 23
2.3. Performance modeling and optimizZation............eccevverccicnneccscnnncssnnecsnnnenes 25
3. OPEN MULTI-PROCESSING (OPENMP).....cccovrervueissurcssnccsanicsnncssncsasnns 28
3.1. OpenMP programming model and directivesccccecersrnnerecsssrnnseecsssnassecs 28
3.2. Work-sharing constructs and paralleliSmcccovveicrvvnriinscnrecsssnnccscnnnenee 33
3.3. Memory model and synchronization mechanisSms...........cccceeeccnnerccsscnnnnees 35
3.4. Comparative analysis and performance evaluationcccceevvueeicccscnnneces 36
3.5. Experimental methodology and benchmarking framework.........cccecuueeeee. 41
3.6. Performance comparison analysis......ccccccceeeverccscnrccssnicsssnsecsssssecssnssessonsecses 42
3.7. Scalability evaluation and efficiency metricscccoeceeerccnrecssnrccscnnrccscnnnene 43
3.8. Hybrid MPI-OpenMP programming approachesccc..ccceceeeescnesreccscnnnnees 46
3.9. Application case studies and OptimiZation........cccccveeiccissrnniccssssnneecssssaansens 50
4 SAFETY OF LIFE, BASIC LABOR PROTECTION.........ccceecerevuercrnrcsunnene 53

4.1. Effects of electromagnetic radiation on the human body........ccccceeeecunenrees 53

4.2 Types Of RAZATdS...cuuueeeicrvirrnniicissssnneicssssnneissssssnsessssssssssssssssssssssssssasssssssssssssss

CONCLUSIONS

REFERENCES..

LIST OF ABBREVIATIONS, SYMBOLS, AND TERMS

HPC - High-Performance Computing

MPI - Message Passing Interface

OpenMP - Open Multi-Processing

API - Application Programming Interface
CPU - Central Processing Unit

GPU - Graphics Processing Unit

NUMA - Non-Uniform Memory Access
UMA - Uniform Memory Access

SMP - Symmetric Multi-Processing

SIMD - Single Instruction Multiple Data
MIMD - Multiple Instruction Multiple Data
SPMD - Single Program Multiple Data
PGAS - Partitioned Global Address Space
FLOPS - Floating Point Operations Per Second
I/O - Input/Output

RAM - Random Access Memory

NAS - Numerical Aerodynamic Simulation

INTRODUCTION

The exponential growth of data generation and the increasing complexity of
scientific and engineering problems have made high-performance computing (HPC)
indispensable across numerous domains. Modern applications demand
computational capabilities that far exceed those of sequential processors, driving the
evolution of parallel computing architectures and programming paradigms.

According to recent statistics, the computational requirements of scientific
applications have grown by approximately 10-fold every five years. Climate
modeling simulations now require petaflop-scale computing resources to process
terabytes of data daily. Genomic sequencing projects analyze billions of DNA base
pairs, demanding massive parallel processing capabilities. Financial institutions
perform risk analysis on portfolios containing millions of instruments, requiring
real-time parallel computation.

Among parallel programming approaches, two paradigms have achieved
particular prominence: the Message Passing Interface (MPI) and Open Multi-
Processing (OpenMP). MPI provides a robust framework for distributed-memory
parallel computing, enabling applications to scale across thousands of nodes. As of
2024, the world's fastest supercomputers utilize MPI implementations to coordinate
hundreds of thousands of processing cores. OpenMP offers an accessible approach
to shared-memory parallelism through compiler directives, with over 90% of HPC
centers reporting OpenMP usage in production applications.

The choice between MPI and OpenMP has profound implications for
application performance, scalability, and development effort. Performance
measurements indicate that communication overhead in pure MPI implementations
can consume 20-40% of execution time for communication-intensive applications.
OpenMP applications face memory bandwidth limitations, with typical utilization

rates of 60-70% on NUMA architectures. Despite decades of research, selecting the

8

optimal parallelization strategy remains complex, influenced by problem
characteristics, target architecture, and performance requirements.

This study provides an authoritative comparison of MPI and OpenMP across
multiple dimensions. The research objectives include: examination of architectural
foundations and programming models; systematic performance evaluation across
computational kernels; analysis of scalability characteristics from 4 to 512
processing cores; assessment of programming productivity through development
time measurements; and investigation of hybrid approaches combining both
paradigms.

The methodology encompasses theoretical analysis, empirical benchmarking,
and case studies. The study examines MPI versions 3.1 and 4.0, along with OpenMP
specifications 4.5 through 5.2. Performance evaluations use standard benchmarks,
including the NAS Parallel Benchmarks (NPB), the High Performance Conjugate
Gradient (HPCG), and the STREAM memory bandwidth tests. Experimental
platforms include dual-socket Intel Xeon systems with 64 cores, AMD EPYC
workstations with 128 cores, and distributed-memory clusters with up to 512 cores
connected via InfiniBand networks with 100 Gb/s bandwidth and sub-microsecond

latency.

9

1. THEORETICAL FOUNDATIONS OF PARALLEL COMPUTING

1.1 Parallel computing architectures and memory models

Understanding the comparison between MPI and OpenMP requires
foundational knowledge of parallel computer architectures. Flynn's taxonomy
categorizes parallel systems based on the multiplicity of instruction and data
streams. Modern HPC systems predominantly employ Multiple Instruction Multiple
Data (MIMD) architectures, subdivided based on memory organization.

Shared-memory architectures provide a unified address space accessible to all
processing elements. Symmetric Multi-Processing (SMP) systems exemplify this
model, in which processors share physical memory via interconnection networks.
Uniform Memory Access (UMA) systems provide equal memory access latency,
while Non-Uniform Memory Access (NUMA) systems exhibit varying access times
based on processor-memory proximity. Figure 1.1 illustrates the NUMA architecture

topology commonly found in modern multi-socket systems.

Scabble
Metwnils

Figure 1.1 - NUMA Architecture Diagram

10

Non-uniform memory architecture (NUMA)

rmmemary architecture of parallel processing and components, including local memories, p d interconnection networks. It is an emerging conceptand can be sustainable inthe long

Combines SMP and MPP thataims to integrate SMP's shared disc
flexibility with MPP's parallel speed

_{ }—(
4{ }—(

Architecture is a recent concept that can be viable for
data warehousing in the long term

Comparable to clustering SMP computers in principle, but with tighter
links, higher bandwidth, and better collaboration between nodes

Inter- conmection

L SR . Architecture may be helpful if you can partition your
O O warehouse into somewhat independent usage groups
- o and place each group on its node
O]
5 . 5 ¢ Add text here
N
Figure 1.2 — Non-Uniform Memory Access (NUMA) architecture with two
CPU sockets

Modern multi-core processors represent the prevalent shared-memory
architecture. Intel Xeon Scalable processors integrate up to 64 cores per socket,
AMD EPYC processors reach 96 cores, and ARM-based server processors like
Ampere Altra offer 128 cores. These processors share three levels of cache
hierarchy: L1 caches (32-64 KB per core), L2 caches (256-512 KB per core), and
L3 caches (shared, ranging from 32-256 MB).

Parallel programming models provide abstractions that enable programmers
to express parallelism while hiding low-level architectural details. The design space
for these models involves fundamental trade-offs between programmer control, ease
of use, performance portability, and expressiveness. Different models position
themselves differently along these dimensions, influencing their suitability for
particular application classes and programmer preferences.

Shared-memory programming models exploit the implicit communication
available through shared address spaces. Threads within a process can communicate

by simply reading and writing shared variables, avoiding explicit message

11

construction and transmission. This natural programming style, resembling
sequential programming with added synchronization primitives, reduces the
conceptual barrier to parallelization. However, shared-memory programming
introduces challenges including data races (unsynchronized concurrent access to
shared data), deadlocks (circular dependencies in lock acquisition), and difficult-to-
reproduce bugs resulting from non-deterministic thread scheduling.

OpenMP exemplifies directive-based shared-memory programming. Rather
than requiring explicit thread creation and management, OpenMP allows
programmers to annotate sequential code with pragmas specifying parallel regions,
work distribution, and data sharing attributes. The compiler transforms these
annotations into multithreaded code, managing thread creation, work scheduling,
and synchronization. This approach enables incremental parallelization: developers
can parallelize performance-critical loops individually, maintaining sequential
semantics elsewhere. The parallel for directive, the most common OpenMP
construct, distributes loop iterations across threads with configurable scheduling
policies (static, dynamic, guided) controlling work distribution strategies.

POSIX threads (pthreads) represent a lower-level shared-memory
programming interface providing explicit control over thread creation,
synchronization primitives (mutexes, condition variables, barriers), and thread
attributes. While offering maximum flexibility, pthread programming requires
significant expertise and careful design to avoid race conditions and ensure correct
synchronization. Manual thread management adds complexity compared to
directive-based approaches: programmers must explicitly create thread pools,
partition work, implement synchronization, and manage thread lifecycles. However,
this control enables optimizations difficult to express in higher-level models, making
pthreads valuable for performance-critical system software and runtime library
implementation.

Message-passing programming models communicate through explicit send

and receive operations rather than shared memory. Each process maintains private

12

address space, eliminating data race hazards but requiring explicit data distribution
and communication management. Message passing naturally expresses distributed-
memory algorithms and maps efficiently to cluster architectures where physical
memory distribution matches the logical programming model. The explicit
communication style, while requiring more programming effort than shared-
memory approaches, provides clear visibility into data movement costs, facilitating
performance reasoning and optimization.

MPI (Message Passing Interface) standardizes message-passing programming
through a comprehensive API supporting point-to-point communication, collective
operations, process groups, communicators, and derived datatypes. MPI's process-
based model creates isolation between address spaces, enabling implementation on
both shared-memory and distributed-memory systems. The standard deliberately
avoids mandating specific implementation strategies, allowing vendors to optimize
for particular architectures: shared-memory implementations can use memory
copies rather than network communication, while distributed implementations can
exploit RDMA capabilities of high-performance interconnects.

Partitioned Global Address Space (PGAS) languages attempt to combine
shared-memory programming convenience with distributed-memory performance
characteristics. UPC (Unified Parallel C), Co-Array Fortran, Chapel, and X10
provide global address space abstractions while distinguishing between local and
remote data access. PGAS languages typically support affinity-based parallelism
where computation executes on processors owning data, minimizing remote access
overhead. Despite theoretical advantages, PGAS languages have achieved limited
adoption in production HPC—most estimates suggest less than 5% of HPC
applications use PGAS languages, compared to near-universal MPI adoption and
widespread OpenMP usage.

Cache coherence protocols like MESI (Modified, Exclusive, Shared, Invalid)
and MOESI (adding Owned state) maintain data consistency across caches.

Coherence traffic increases with core count, potentially consuming 10-30% of

memory bandwidth on 64+ core systems. Table 1.1 presents typical cache latency

and bandwidth characteristics.

Table 1.1 — Memory hierarchy characteristics in modern processors

13

Cache Level Size Latency (cycles) Bandwidth
(GB/s)
L1 Cache 32-64 KB 4-5 > 1000
L2 Cache 256-512 KB 12-15 400-600
L3 Cache 32-256 MB 40-60 200-300
Main Memory 128-1024 GB 100-200 50-150

Distributed-memory architectures comprise independent nodes with private
local memory. Nodes communicate through explicit message passing over
interconnection networks. Modern HPC clusters connect nodes through high-
performance networks such as InfiniBand (100-200 Gb/s), Cray Slingshot (200
Gb/s), or Intel Omni-Path (100 Gb/s). Network latency typically ranges from 0.5-
2.0 microseconds.

Contemporary systems increasingly incorporate specialized accelerators like
NVIDIA A100 GPUs (6912 cores, 40-80 GB HBM2e memory) or AMD MI250X
GPUs (14080 cores, 128 GB HBM2e memory). These heterogeneous architectures

combine CPUs with massively parallel accelerators.

1.2. Analysis of parallel programming paradigms

Parallel programming models provide abstractions hiding architectural
complexity while exposing parallelism. Several fundamental models exist with
distinct characteristics. Shared-memory programming allows multiple threads to

access common memory locations, simplifying data sharing but requiring careful

14

synchronization. OpenMP exemplifies this model with compiler directives
managing threads automatically.

Message-passing models explicitly communicate data through send and
receive operations. This provides clear address space separation and naturally
expresses distributed algorithms. MPI standardizes this model with point-to-point
and collective communication primitives. Table 1.2 compares key characteristics of

shared-memory and message-passing models.

Table 1.2 — Comparison of parallel programming model characteristics

Characteristic Shared Memory Message Passing
(OpenMP) (MPI)
Memory Model Shared address space | Private address spaces
Communication Implicit (load/store) | Explicit (send/receive)
Scalability Limited to single node | Scales to thousands of

nodes

Programming Effort

Lower (directives)

Higher (explicit calls)

Data Distribution Automatic Manual programmer
control
Synchronization Barriers, locks Message completion

Partitioned Global Address Space (PGAS) languages like UPC, Co-Array
Fortran, and Chapel provide global address space programming convenience while
maintaining distributed memory performance characteristics. These languages
distinguish between local and remote data access, with performance models
reflecting access costs. While offering potential advantages for certain application
classes, PGAS languages have not achieved the widespread adoption of MPI and
OpenMP, with user bases estimated at less than 5% of the HPC community.

15

1.3. Performance metrics and evaluation methodology

Performance evaluation requires well-defined metrics and methodologies.
Key metrics include execution time, speedup, efficiency, and scalability. Speedup
S(p) measures performance improvement from parallelization, defined as:

S(p) = T(1) / T(p)

where T(1) is sequential execution time and T(p) is parallel execution time on
p processors. Efficiency E(p) normalizes speedup by processor count:

E(p)=S(p) /p=T(1)/ (p x T(p))

Efficiency indicates resource utilization effectiveness, with values between 0
and 1. Values above 0.8 (80%) typically indicate good parallelization.

Amdahl's Law provides theoretical limits on parallel speedup based on
sequential fraction f of computation:

S(p)=1/(f+ (1-H)/p)

This demonstrates that even small sequential portions significantly limit
achievable speedup. For example, with = 0.05 (5% sequential), maximum speedup
1s limited to 20x regardless of processor count. Table 1.3 shows Amdahl's Law

predictions for various sequential fractions.

Table 1.3 — Amdahl's Law speedup predictions for various sequential fractions

Sequential p=16 p = 64 p =256 Max

Fraction (f) Speedup
0.01 13.91 39.26 72.11 100.0
0.05 9.14 15.42 18.62 20.0
0.10 6.40 8.77 9.66 10.0
0.20 4.00 4.71 4.92 5.0
0.30 291 3.22 3.30 3.3

16

Gustafson's Law presents an alternative perspective, considering problem size
scaling with processor count:

S(p)=p-flp-1)

This scaled speedup model better represents applications where problem size
increases with available resources, yielding more optimistic scalability predictions.

Scalability analysis examines performance variation with increasing
resources. Strong scaling maintains fixed problem size while increasing processors,
measuring ability to reduce execution time. The strong scaling efficiency is:

E_strong(p) = T(1) / (p x T(p))

Weak scaling increases problem size proportionally with processors,
measuring ability to maintain constant execution time per processor. The weak
scaling efficiency is:

E weak(p) =T(1)/ T(p)

where T(1) and T(p) represent execution times for base and scaled problem

sizes respectively.

17

2. MESSAGE PASSING INTERFACE (MPI)

2.1. MPI architecture and core concepts

The Message Passing Interface emerged in the early 1990s as standardization
effort unifying various message-passing systems. The MPI Forum developed the
first standard (MPI-1.0) in 1994, establishing core functionality for point-to-point
and collective communication, process groups, and communicators. Today, MPI is
implemented by major vendors including Intel MPI, OpenMPI, MPICH, and
MV APICH, with performance optimizations for specific network architectures.

MPI-1.0, released in May 1994, established core functionality including point-
to-point communication with multiple modes (standard, synchronous, buffered,
ready), collective operations (broadcast, scatter, gather, reduce, barriers), process
groups and communicators enabling modular program organization, and virtual
topologies imposing logical structure on process arrangements. Deliberately omitted
from MPI-1 were dynamic process management, one-sided communication, parallel
I/O, and language bindings beyond C and Fortran77—these features awaited
subsequent revisions. The standard succeeded in achieving portability: applications
written to MPI-1 execute on diverse platforms from commodity clusters to
proprietary supercomputers without source modification.

MPI-2.0 (1997) added substantial functionality addressing limitations
identified during MPI-1 deployment. Dynamic process management through
MPI_Comm_spawn and related functions enables applications to create new
processes during execution, supporting master-worker patterns and client-server
programming models. One-sided communication (Put, Get, Accumulate operations
within epochs bounded by synchronization calls) provides Remote Memory Access
(RMA) capabilities, allowing processes to access remote memory without explicit
cooperation from target processes. MPI-IO introduced portable parallel file I/O

operations with collective optimizations including data sieving and collective

18

buffering. Extended language bindings added C++ and Fortran90 interfaces (though
C++ bindings were deprecated in MPI-2.2 and removed in MPI-3.0).

MPI-3.0 (2012) modernized the standard for contemporary architectures and
programming patterns. Non-blocking collective operations (MPI Iallreduce,
MPI Ibcast, etc.) enable computation-communication overlap previously
achievable only with point-to-point operations, critical for hiding communication
latency on modern systems with deep memory hierarchies and complex network
topologies. Improved one-sided communication introduced consistent memory
windows with separate/unified models and atomic operations, addressing subtle
correctness issues in MPI-2 RMA semantics. Fortran 2008 bindings replaced
deprecated Fortran77/90 interfaces. Tools interface provided standardized access to
MPI implementation internals for performance analysis tools.

MPI-4.0 (2021) continues evolution addressing exascale computing
requirements. Persistent collective operations amortize setup overhead across
multiple invocations, valuable for applications repeatedly executing identical
collective patterns. Improved fault tolerance support through MPI Comm revoke,
MPI_Comm_shrink, and error handling enhancements addresses growing failure
rates at extreme scale—systems with millions of components experience frequent
hardware failures requiring application-level resilience. Enhanced MPI T
performance variables expose implementation metrics for adaptive tuning. Sessions
provide alternative initialization mechanisms supporting tools and libraries. Large
count functions overcome 32-bit integer limitations in message sizes relevant for
data-intensive applications.

Modern MPI implementations demonstrate sophisticated optimization
techniques. Eager protocol sends small messages immediately without waiting for
matching receives, gambling that buffer space will be available and avoiding
handshake overhead. Rendezvous protocol for large messages coordinates sender
and receiver through handshake before data transfer, enabling direct placement into

receiver buffers and avoiding intermediate buffering. Many implementations

19

automatically select protocols based on message size thresholds, typically switching
from eager to rendezvous around 4KB-64KB depending on network characteristics.
Zero-copy optimization eliminates memory copies by using pinned memory and
RDMA (Remote Direct Memory Access) capabilities of modern interconnects,
allowing network adapters to transfer data directly between user buffers without
CPU involvement.

Process placement significantly affects MPI application performance on
modern hierarchical systems. Binding processes to specific cores prevents operating
system migration, maintaining cache locality. Mapping processes to match
communication patterns reduces communication distance: placing frequently
communicating processes on same socket or nearby nodes minimizes latency and
maximizes bandwidth. Most MPI implementations provide binding and mapping
controls: OpenMPI's --bind-to and --map-by options, MPICH's process-to-core
binding via hwloc, and system-specific tools like Intel's | MPI PIN. DOMAIN. For
applications with 3D domain decomposition, mapping the logical process grid to
physical core/node topology optimally can improve performance by 20-40%
compared to default mappings.

The Message Passing Interface emerged in the early 1990s as standardization
effort unifying various message-passing systems. The MPI Forum developed the
first standard (MPI-1.0) in 1994, establishing core functionality for point-to-point
and collective communication, process groups, and communicators. Today, MPI is
implemented by major vendors including Intel MPI, OpenMPI, MPICH, and
MV APICH, with performance optimizations for specific network architectures.

The MPI programming model uses process-based parallelism where each
process executes in its own address space, explicitly communicating through
message passing. Processes organize into groups, and communicators define
communication operation contexts. The default communicator

MPI_COMM_WORLD includes all processes launched by the application. Process

20

ranks provide unique integer identifiers from 0 to p-1, where p is the total process
count.

MPI implementations provide multiple communication modes optimized for
different scenarios. The standard send (MPI_Send) may buffer messages or block
until matching receives post, with behavior implementation-dependent.
Synchronous send (MPI Ssend) completes only when receiving process starts
receiving, providing synchronization guarantees. Buffered send (MPI Bsend)
always uses user-provided buffers of size specified by MPI Buffer attach. Ready
send (MPI_Rsend) requires matching receives already posted, offering potential
performance benefits when this condition is met.

MPI process topology mapping significantly affects application performance
on large-scale systems. Default mapping strategies often assign MPI ranks
sequentially to physical nodes (rank 0 on node 0, rank 1 on node 1, etc.), which may
not align with application communication patterns. Applications with 3D domain
decomposition, where each process communicates with six neighbors (north, south,
east, west, front, back), benefit from mapping logical topology to physical
topology—placing neighboring ranks on nearby nodes or same node when possible.
Recursive Coordinate Bisection (RCB) and graph partitioning tools (METIS,
Scotch) compute mappings minimizing communication volume across slow links.
Implementation approaches include rankfile specification (explicit rank-to-node
mapping), custom MPI Comm_split calling sequences creating communicators
with desired topology-aware rank assignments, and process-ordering techniques
exploiting MPI Cart create topology hints. Measurements on production
applications show 20-50% performance improvements from optimal mapping
compared to default mapping, with largest gains for communication-intensive codes
on systems with non-uniform network topology like fat-tree networks with
oversubscribed core switches.

MPI profiling interface (PMPI) enables performance tools to intercept MPI

calls transparently without application recompilation. Every MPI function has two

21

implementations: MPI Send (user-visible) and PMPI Send (internal
implementation). Tools define MPI_Send wrapper calling tool instrumentation then
PMPI _Send for actual operation. This interposition mechanism underlies all MPI
performance tools including mpiP (lightweight profiling), TAU (comprehensive
tracing and profiling), Score-P (multi-tool instrumentation), and vendor tools.
Profiling overhead typically adds 5-20 microseconds per call—negligible for large
messages but potentially significant for fine-grained communication patterns with
small messages. Advanced profiling techniques including sampling (periodic
measurement rather than per-call instrumentation) reduce overhead further but
sacrifice detail. Statistical sampling combined with callpath analysis enables
identifying hot spots—specific call sites dominating communication time—guiding
optimization efforts toward highest-impact improvements. Modern profiling tools
provide rich visualizations including timeline traces showing all process activities
over time, communication matrices showing process-to-process data volumes, and
collective operation wait-time analysis revealing load imbalance and
synchronization bottlenecks.

Subsequent MPI revisions expanded capabilities maintaining backward
compatibility. MPI-2 (1997) added dynamic process management through
MPI_Comm_spawn, one-sided communication with Put/Get operations, and
parallel /O via MPI-IO. MPI-3 (2012) introduced non-blocking collective
operations (e.g., MPI Iallreduce) enabling computation-communication overlap,
improved one-sided communication with improved memory models, and Fortran
2008 bindings. MPI-4 (2021) enhanced fault tolerance with MPI_Comm_revoke and
MPI_Comm_shrink, added persistent collective operations reducing setup overhead,

and improved support for hybrid programming with MPI T performance variables.

Event

P e I il

Public C API

Checkpoint/

Restart € Error Handler —>» Progress

Engine

Group = Transport Mapping
e

22

I
Memory !
Management | |

I

a
ubP TCP e 1B
OS/Hardware
Figure 2.1 — Main ctructure of system
Table 2.1 — MPI point-to-point communication modes
Mode Function Completion Buffer
Condition Requirements
Standard MPI_Send Message sent or System
buffered dependent
Synchronous MPI Ssend Receive None
operation started
Buffered MPI Bsend Message copied | User-provided
to buffer
Ready MPI_Rsend Message sent None
(receive posted)

23

2.2. Communication operations and patterns

User Space Kernel Space

—— Cusus L FProtocal Stack
- ',
B ",
= [

R Y

S

TCF

#

-

R ETT o
- .-\---\- ﬁ(‘

I:ﬂ“"‘a Frotocol Handler

Figure 2.2 - MPI architecture and core concepts

MPI provides comprehensive communication operations spanning point-to-
point, collective, and one-sided paradigms. Point-to-point communication transfers
data between two processes using send and receive operations. Basic send
(MPI_Send) and receive (MPI Recv) operations provide fundamental message
passing capabilities. Message matching occurs based on source rank, message tag,
and communicator, enabling flexible communication patterns.

Non-blocking communication enables computation-communication overlap,
critical for achieving high performance. Non-blocking operations
(MPI _Isend/MPI Irecv) return immediately with request handles, allowing
computation while communication proceeds asynchronously. Completion testing
(MPI_Test) checks status non-destructively, while waiting (MPI_Wait) blocks until
completion. Multiple outstanding operations can be managed with MPI Waitall,
MPI Waitany, and MPI Waitsome, providing flexible synchronization
mechanisms.

Collective communication operations involve all processes in a
communicator, enabling efficient group communication patterns. Table 2.2

summarizes key collective operations and their computational complexity.

24

Table 2.2 — MPI collective operations (n = message size, p = process count)

Operation Description Data Movement Time
Complexity
MPI_Barrier | Synchronization None O(log p)
point
MPI_Bcast One-to-all O(n) O(n + log p)
broadcast
MPI_Scatter Distribute array O(n) O(n)
chunks
MPI_Gather | Collect to single O(n) O(n)
process
MPI_Allgather Gather to all O(np) O(np)
processes
MPI_Reduce | Combine values O(n) O(n + log p)
with operation

Barrier synchronization (MPI_Barrier) ensures all processes reach a common
point before proceeding. Implementation complexity is O(log p) using tree-based
algorithms. Broadcast (MPI Bcast) distributes data from one process (root) to all
others, typically implemented using binomial tree algorithms achieving O(log p)
message steps.

Scatter (MPI_Scatter) distributes distinct array portions to processes, useful
for data decomposition. Gather (MPI_Gather) collects distributed data to a single
process (root). Allgather (MPI Allgather) gathers to all processes, equivalent to
Gather followed by Broadcast but more efficiently implemented.

Reduction operations (MPI Reduce) combine values using associative
operations like sum, product, maximum, or minimum. Common reductions include
summing partial results, finding global maxima, or combining boolean conditions.

MPI provides MPI_SUM, MPI PROD, MPI MAX, MPI MIN, MPI LAND

25

(logical AND), MPI LOR (logical OR), and user-defined operations via
MPI Op_create.

MP| _Bcast

@I
O= O O O

MPl_ Scatter

@I‘l'
O= O= O O

Figure 2.3 - MPI architecture

2.3. Performance modeling and optimization

MPI performance modeling enables predicting communication costs and
identifying optimization opportunities. The a-3 model characterizes communication
time as:

T comm=a+pXn

where a is latency (message startup time), P is inverse bandwidth (time per
byte), and n is message size in bytes. Typical values for modern InfiniBand
networks: a = 1-2 us, p = 0.01-0.02 ns/byte (corresponding to 50-100 GB/s
bandwidth).

26

For point-to-point communication, total time includes computation and

communication:

T total=T comp+T comm=T comp+a+fXxn

Collective operation costs depend on algorithm implementation. For

broadcast using binomial tree algorithm:

T bcast = [log2 p] x (o + B X n)

For reduction operations:

T reduce = [log2p] x (o + B Xn+7y xn)

where y represents computation time per element for the reduction operation

(typically negligible compared to communication).

Table 2.3 — Calculated MPI communication times (InfiniBand network)

Message Size Point-to-Point Broadcast Allreduce
(p=64) (p=64)

1 KB 1.52 ps 9.09 ps 18.18 pus

4 KB 1.56 us 9.37 us 18.74 s

16 KB 1.75 pus 10.47 ps 20.95 us

64 KB 2.48 ps 14.90 ps 29.80 ps
256 KB 5.43 ps 32.59 ps 65.19 ps

Optimization strategies include message aggregation to reduce latency
overhead, non-blocking communication for computation-communication overlap,

and derived datatypes for non-contiguous data communication. Persistent

communication operations (MPI Send init, MPI Start) reduce setup overhead for

repeated communication patterns, beneficial when same communication occurs

multiple times.

Communication-computation overlap maximizes resource utilization. When

T comp >T_ comm, perfect overlap achieves:

27

T overlapped = max(T _comp, T comm)~=T comp
yielding effective communication hiding. For T comp < T comm,
communication dominates total time:

T overlapped =T comm + (T comp - min(T _comp, T comm)) =T comm

28

3. OPEN MULTI-PROCESSING (OPENMP)

3.1. OpenMP programming model and directives

OpenMP emerged from industry recognition that directive-based shared-
memory programming could democratize parallel computing beyond experts. Prior
directive-based systems including KAP (Kuck & Associates Preprocessor), PCF
(Parallel Computing Forum directives), and vendor-specific approaches from SGI,
Cray, and Digital Equipment Corporation demonstrated viability but lacked
portability. The OpenMP Architecture Review Board, formed in 1997 with founding
members including Compaq, HP, IBM, Intel, SGI, and Sun Microsystems, aimed to
consolidate these efforts into a unified standard combining the best features while
addressing identified limitations.

OpenMP 1.0 (Fortran, October 1997; C/C++, October 1998) established
fundamental constructs that remain central today. The parallel directive creates
teams of threads executing the subsequent structured block. Work-sharing constructs
(for/do, sections, single) distribute work among thread teams. Data-sharing attribute
clauses (shared, private, firstprivate, lastprivate) control variable scope and
initialization. Synchronization constructs (critical, atomic, barrier, master)
coordinate thread execution. Combined parallel work-sharing constructs (parallel
for, parallel sections) merge common patterns for convenience. The library functions
(omp_get thread num, omp get num _threads, etc.) and environment variables
(OMP_NUM_THREADS, OMP_SCHEDULE) provide runtime control.

OpenMP 2.0 (2000) refined the specification with minor enhancements
including nested parallelism support, dynamic threads enabling runtime thread count
adjustment, and expanded synchronization primitives. OpenMP 2.5 (2005) added
C99 compatibility and clarified ambiguities in the 2.0 specification. These

incremental updates reflected conservative evolution philosophy: maintain

29

backward compatibility and stability while incorporating features validated through
implementation experience.

OpenMP 3.0 (2008) introduced transformative task-based parallelism
addressing irregular and dynamic parallel patterns poorly served by work-sharing
constructs. The task directive creates explicit task units that can execute
asynchronously on any thread in the team. Task dependencies (introduced later in
OpenMP 4.0) enable ordering constraints on task execution, expressing producer-
consumer relationships. Tasking revolutionized OpenMP applicability, enabling
efficient parallelization of recursive algorithms (quicksort, tree traversal), graph
algorithms, and applications with data-dependent parallelism. Task-based
parallelism implementations typically use work-stealing schedulers where idle
threads steal tasks from busy threads' queues, achieving good load balance for
irregular workloads.

OpenMP 4.0 (2013) addressed heterogeneous computing through accelerator
offloading directives. The target directive offloads structured blocks to accelerator
devices (typically GPUs), with map clauses controlling data movement between host
and device memory. Teams of threads execute on devices using SIMD-style
parallelism complementing traditional fork-join parallelism. While noble in intent,
OpenMP offloading adoption has been limited compared to CUDA and OpenCL—
most GPU programming continues using these lower-level alternatives providing
more explicit control. However, OpenMP offloading enables unified source code
targeting both CPUs and GPUs, valuable for performance portability in scientific
applications.

OpenMP 4.5 (2015) and 5.0 (2018) expanded device support with more
sophisticated target constructs, task priorities enabling application-guided
scheduling, taskloop combining tasks with loop parallelism, and memory
consistency model clarifications. OpenMP 5.1 (2020) and 5.2 (2021) continued
refinement with features including error handling improvements, task-parallel

variants of scan operations, and memory allocators enabling NUMA-aware

30

allocation. The standard has evolved from simple loop parallelization to
comprehensive support for modern parallel patterns including tasks, dependencies,
affinity, and heterogeneous devices.

Implementation quality varies significantly across compilers. GCC OpenMP
support, open-source and widely available, implements OpenMP 4.5 fully and
substantial OpenMP 5.0/5.1 features. Intel oneAPI compilers provide
comprehensive OpenMP implementation with typically lowest overhead and best
performance, particularly on Intel processors. LLVM/Clang OpenMP (libomp)
supports OpenMP 5.0+ with good performance and active development. Vendor
compilers (ARM, IBM, PGI/NVIDIA) provide varying OpenMP support levels—
typically strong for CPU parallelism but inconsistent for accelerator features.
Runtime overhead varies: thread fork-join costs range from 5-50 microseconds, with
GCC libomp typically slower than Intel's implementation, affecting performance for
fine-grained parallelism.

OpenMP runtime tuning significantly impacts application performance.
Thread count (OMP_NUM THREADS) should typically match available cores but
may vary for specific algorithms—hyperthreading can benefit memory-bound codes
but hurts compute-intensive codes. Schedule type (OMP SCHEDULE) for
dynamic/guided scheduling affects load balance versus overhead tradeoff. Stack size
(OMP_STACKSIZE) must accommodate thread-private allocations, with default
4MB often insufficient for scientific codes allocating large automatic arrays. Thread
affinity (OMP_PROC BIND, OMP PLACES) dramatically affects NUMA
performance, as previously discussed. Most applications benefit from
experimentation with these settings, often finding 20-50% performance variation
across configurations.

OpenMP reduction semantics create optimization opportunities and
correctness pitfalls. The reduction clause specifies associative-commutative
operations (sum, product, max, min, logical operations) where order doesn't affect

mathematical result. OpenMP implementations exploit associativity for

31

optimization: rather than serializing updates through critical sections, each thread
maintains private accumulator updated without synchronization, with final reduction
combining private copies. Implementation strategies include hierarchical reduction
through binary tree (log n depth), dissemination reduction with pairwise exchanges,
or optimized platform-specific implementations exploiting hardware support (x86
LOCK prefix for atomic updates, ARM atomic operations, GPU shuffle
instructions). Floating-point reduction introduces subtle correctness issues: floating-
point arithmetic isn't truly associative due to rounding—different reduction orders
produce slightly different results. This non-determinism (sequential vs. parallel
execution yielding different rounding in final digit) surprises developers expecting
bit-identical results. Applications requiring deterministic floating-point behavior can
use fixed reduction order but sacrifice optimization opportunities, or employ
compensated summation algorithms (Kahan summation) trading performance for
accuracy.

OpenMP thread creation overhead proves non-trivial, affecting fine-grained
parallelism viability. Creating a team of threads involves allocating thread stacks,
initializing thread-local storage, binding threads to cores, and synchronizing thread
team formation—costs accumulating to 10-50 microseconds depending on thread
count and system. Parallel regions executing less than 100 microseconds may
achieve limited speedup from this overhead. Persistent thread teams (implied by
most implementations maintaining thread pools across parallel regions) amortize
creation cost, but initial parallel region still pays full cost. Workload granularity
must exceed overhead by 10-100% for good efficiency—rule of thumb suggests 1-
10 millisecond minimal parallel region duration. Applications with fine-grained
parallelism benefit from task-based approaches where single parallel region creates
persistent thread team and tasks provide work units, or from aggressive compiler
parallelization discovering coarser-grained parallelism through loop fusion and
procedure inlining. Nested parallelism introduces additional overhead as inner

parallel regions create sub-teams—most implementations serialize nested parallel

32

regions by default (OMP_NESTED=false) to avoid excessive thread creation

overhead

Parallel task I Parallel task Il Parallel task I11
Master thread

- %
LY -
£ % ¥
- x -
*] .- 2
- (! & -1
¥ A - s
el = = = = = = AN,
i .
‘_‘ # [
. g 2
‘-

Figure 3.1 - Task architecture

Open Multi-Processing provides portable shared-memory parallel
programming through compiler directives, runtime routines, and environment
variables. The OpenMP Architecture Review Board oversees specification
development, with major compiler vendors (GCC, Intel, LLVM) providing
implementations. OpenMP's directive-based approach enables incremental
parallelization of sequential code with minimal modifications.

The programming model follows fork-join paradigm. A master thread
executes sequentially until encountering parallel constructs, creating thread teams
(fork). Threads execute parallel regions concurrently, potentially following different
code paths based on thread ID or work distribution. At region end, threads
synchronize and terminate, leaving only master thread continuing (join). Thread
creation and destruction overhead typically ranges from 10-50 microseconds
depending on system and thread count.

The basic parallel directive '#pragma omp parallel' creates thread teams.
Thread count is controlled by OMP_NUM THREADS environment variable or
omp_set num_threads() runtime function. Default thread count typically equals

available processor cores. The parallel for construct #pragma omp parallel for'

33

combines parallel region creation with loop iteration distribution, the most common

OpenMP usage pattern.

Table 3.1 — Common OpenMP directives and clauses
Directive Purpose Common Clauses
parallel Create thread team num_threads, if,

private, shared
for Distribute loop schedule, nowait,
iterations reduction
sections Distribute code blocks nowait, private
single Execute by one thread nowait, copyprivate
task Create asynchronous depend, priority, if
task
critical Mutual exclusion name

3.2. Work-sharing constructs and parallelism

OpenMP provides multiple work-sharing mechanisms. Loop scheduling
determines iteration distribution among threads. Static scheduling assigns fixed
iteration blocks at compile time with chunk size c:

Thread 1 receives iterations: ixc, iXc+1, ..., (i+1)*c-1, then (i+pxc), ...

Dynamic scheduling assigns smaller chunks at runtime from a shared work
queue, providing better load balancing for irregular workloads. Guided scheduling
uses decreasing chunk sizes, starting with approximately n/(2p) iterations and
decreasing to minimum chunk size, balancing overhead and load distribution. Table

3.2 compares scheduling strategies.

34

#pragma omp parallel for
{
Start
(e.g. for each node)

o o e @ time stamp at the fork

R A R S 1 @ time stamp at the joint

|
structured | memory :
parallel block ' 7 7 7 I time stamp of thread 1
|
: I/ ‘flf/’:’ /"? : being created
!
: | time stamp of thread |
: CPUL || CPUZ | | CPU3 : completing executing
|
e | ;;,7 allocated memory for
L each CPU/thread
end
}
Figure 3.2 - Implementation scheme
Table 3.2 — OpenMP loop scheduling strategy comparison
Schedule Type Overhead Load Balance Best Use Case
static Very Low Poor for Uniform
irregular workload
static,chunk Low Fair Moderate
variation
dynamic Moderate Good Irregular
workload
guided Moderate Very Good Decreasing work

Task-based parallelism enables irregular and dynamic parallelism patterns.
Tasks represent independent work units executable by any thread in the team. Task
creation overhead is typically 0.5-2.0 microseconds. Task dependencies specified
via 'depend' clause enable complex execution patterns respecting data dependencies.
Tasking is particularly effective for recursive algorithms, irregular data structures,

and producer-consumer patterns.

35

Reduction operations combine thread-private values using specified
operators. OpenMP automatically manages thread-private copies and final
combination. For reduction with operator @ and n elements distributed among p
threads:

Result=(x1 @ x2 @ ... P xu/p)thread: P ... B Xnv/p+1 D ... @ Xu)thread p

Built-in reductions include + (sum), * (product), max, min, && (logical
AND), || (logical OR). Custom reductions can be defined via 'declare reduction'

directive.

3.3. Memory model and synchronization mechanisms

OpenMP implements relaxed-consistent shared-memory model where threads
maintain temporary views of shared variables, not necessarily consistent with
memory. Flush operations enforce consistency, synchronizing thread views with
memory. Implicit flushes occur at barriers, locks, and parallel region boundaries.
Explicit flush directives enable custom synchronization patterns.

Synchronization constructs coordinate thread execution. Barriers synchronize
all threads at specific points with overhead typically 1-10 microseconds depending
on thread count and hardware. Critical sections ensure mutually exclusive code
execution with lock acquisition overhead of 20-100 nanoseconds for uncontended
locks. Atomic operations provide atomic memory updates for simple operations
(read, write, update) with overhead similar to native atomic instructions (1-10
cycles).

Lock mechanisms provide flexible synchronization. Simple locks
(omp_lock t) provide basic mutual exclusion. Nestable locks (omp nest lock t)
allow same thread to acquire lock multiple times. Lock contention significantly
impacts performance, with high contention scenarios potentially serializing parallel

execution.

36

Table 3.3 — OpenMP synchronization overhead characteristics

Synchronization Type Typical Overhead Scalability
Barrier 1-10 ps O(log p)
Critical Section 50-200 ns O(1)
(uncontended)
Atomic Operation 1-10 cycles O(1)
Lock (uncontended) 20-100 ns O(1)

3.4. Comparative analysis and performance evaluation

Comparative performance evaluation of parallel programming paradigms
requires carefully designed methodology addressing multiple potential confounds.
Fair comparison demands equivalent algorithmic implementations—comparing
naive MPI code against optimized OpenMP code or vice versa produces misleading
conclusions. Hardware configuration must be controlled: comparing shared-memory
OpenMP on NUMA system against distributed-memory MPI on cluster conflates
programming model differences with architectural differences. Problem sizes must
be representative: tiny problems showing poor scalability fail to reflect real
applications, while excessively large problems may exceed available resources.
Statistical rigor requires multiple trials accounting for measurement variability from
system noise, thermal throttling, and OS scheduling variance.

The experimental platform selection balances generalizability against depth
of analysis. Shared-memory platforms enable direct OpenMP versus MPI
comparison on identical hardware, isolating programming model effects from
architectural differences. Modern multi-socket NUMA systems represent common
configurations in scientific computing: dual-socket Intel Xeon or AMD EPYC
systems provide 32-128 cores with predictable NUMA characteristics. Distributed-
memory clusters extending to 256-512 cores enable scalability analysis beyond

single-node limits, though fair OpenMP comparison becomes impossible beyond

37

node boundaries. Hybrid evaluation on cluster enables comparing pure MPI, pure
OpenMP (single-node), and hybrid MPI-OpenMP approaches on identical hardware.

Benchmark selection critically affects conclusions about relative paradigm
strengths. The NAS Parallel Benchmarks, developed at NASA Ames Research
Center, provide standardized computational kernels representative of computational
fluid dynamics workloads. NPB includes both embarrassingly parallel kernels (EP—
embarrassingly parallel statistical sampling) showing perfect scalability,
communication-intensive kernels (CG—conjugate gradient, MG—multi-grid, FT—
Fourier transform) stressing network performance, and irregular workloads (IS—
integer sort) challenging load balance. Class B, C, and D problem sizes enable study
across representative scales. However, NPB applications are relatively compute-
intensive compared to many modern applications—data-intensive workloads require
supplementary benchmarks.

STREAM memory bandwidth benchmark, developed by Dr. John McCalpin,
measures sustainable memory bandwidth through four operations: Copy (a[i]=b[1]),
Scale (a[i]=q*b[i]), Add (a[i]=b[i]+c[i]), and Triad (a[i]=b[i]*+q*c[i]). STREAM
results reveal memory system bottlenecks often invisible in FLOP-focused
benchmarks. On modern systems with multi-level cache hierarchies and complex
NUMA topologies, bandwidth varies dramatically with access patterns: sequential
streaming access achieves 60-85% of theoretical peak, while random access
degrades to 10-30%. STREAM results expose NUMA effects: poor thread/data
placement reduces bandwidth 40-60% compared to optimal placement, a critical
factor for OpenMP implementations relying on first-touch or interleaved allocation
policies.

HPCG (High Performance Conjugate Gradient) represents modern
application characteristics more faithfully than traditional LINPACK benchmarks.
While LINPACK achieves high FLOP rates through dense matrix operations with
high computational intensity (operations per byte), HPCG stresses sparse matrix-

vector multiplication with low computational intensity—typical ratios of 0.125-0.25

38

FLOPS/byte make performance memory-bandwidth-bound rather than compute-
bound. HPCG results correlate better with real application performance than
LINPACK: systems achieving high LINPACK FLOPS may show poor HPCG
performance if memory subsystem or network performance bottlenecks. The
TOPS500 supercomputer list now publishes HPCG alongside LINPACK rankings,
revealing substantial performance variation—systems differing by 2x in LINPACK
may differ by 10x in HPCG.

Microbenchmarks complement application-level benchmarks by isolating
specific performance characteristics. Latency microbenchmarks measure minimum
message latency through ping-pong patterns: sender transmits message to receiver,
receiver responds immediately, sender measures round-trip time and divides by two.
Modern RDMA networks achieve sub-microsecond latencies: InfiniBand HDR
provides 600-800ns message latency, while Cray Slingshot and Intel Omni-Path
achieve similar ranges. Bandwidth microbenchmarks saturate network using large
messages: streaming send/receive or put/get operations with megabyte-scale
messages achieve near-peak bandwidth of 50-200 Gb/s depending on network
technology. MPI-level measurements differ from raw hardware capabilities:
software overhead typically adds 200-500ns latency and reduces effective
bandwidth 10-20% compared to native network performance.

Scalability analysis requires systematic variation of core count while
monitoring performance metrics. Strong scaling maintains fixed total problem size
while increasing processor count, measuring ability to reduce time-to-solution—the
primary goal for deadline-driven computing. Speedup S(p) = T(1)/T(p) quantifies
performance gain on p processors relative to single-processor baseline. Efficiency
E(p) = S(p)/p = T(1)/(p*T(p)) normalizes speedup by processor count, measuring
resource utilization effectiveness—values above 0.8 (80%) indicate good parallel
efficiency. Weak scaling increases problem size proportionally with processor
count, measuring ability to solve larger problems in constant time—the primary goal

for capability computing. Weak scaling speedup W(p) = T(1)/T(p) where T(1) and

39

T(p) represent base and scaled problem times ideally remains constant; efficiency
W(p)/p quantifies deviation from ideal.

Communication overhead analysis decomposes execution time into
computation and communication components. Profiling tools (TAU, Score-P, mpiP)
instrument applications to measure time spent in MPI calls versus application code.
Communication overhead percentages vary dramatically by application:
embarrassingly parallel codes spend <1% in communication, structured grid
applications with nearest-neighbor patterns spend 5-20%, dense linear algebra with
all-to-all communication patterns may spend 40-60%, and unstructured mesh
applications with irregular communication can exceed 70%. Load imbalance
exacerbates communication overhead: if processes finish computation at different
times, early finishers wait at collective operations, registering as communication
time though actually reflecting load imbalance. Advanced analysis tools (Scalasca)
distinguish wait time from actual communication time, revealing imbalance as
synchronization overhead.

Load imbalance analysis distinguishes intrinsic application imbalance from
implementation artifacts. Applications with uniform workload (identical
computation per process/thread) should achieve perfect load balance, but NUMA
effects, OS scheduling variance, or hardware heterogeneity create imbalance.
Applications with non-uniform workload (adaptive mesh refinement concentrating
work in refined regions, particle simulations with spatially varying particle density,
graph algorithms with varying vertex degrees) exhibit intrinsic imbalance requiring
dynamic load balancing. Quantifying load imbalance enables optimization priority
assessment: load balance efficiency LB eff = T avg / T max where T avg
represents average process/thread time and T _max maximum time. LB_eff = 1.0
indicates perfect balance, lower values indicate imbalance. For parallel efficiency
E parallel = Speedup / Processes, load imbalance limits achievable efficiency:
E parallel < LB _eff. Profiling tools visualize load balance through histograms

showing execution time distribution across processes/threads, timeline traces

40

revealing idle time during collective operations, and per-phase analysis isolating
imbalanced phases for optimization. Addressing load imbalance employs techniques
including domain decomposition refinement (adjusting work partition sizes),
dynamic scheduling (runtime work distribution), and work stealing (idle workers
taking work from busy workers).

Performance measurement methodology requires careful attention to sources
of variability and bias. System noise from operating system activity, interrupt
handling, and thermal management creates execution time variation—repeated
measurements of identical code show coefficient of variation typically 1-5%,
occasionally higher during thermal throttling or background process interference.
Statistical approaches including multiple trials (10-100 repetitions), median or
trimmed mean statistics excluding outliers, and confidence intervals quantifying
uncertainty address measurement variability. Timing resolution limits measurement
granularity: POSIX clock gettime provides nanosecond resolution but typically
microsecond accuracy; CPU cycle counters (RDTSC on x86) provide higher
resolution but suffer from frequency scaling and core migration artifacts. Cold vs.
warm cache effects create 10-100x performance differences for memory-intensive
codes—warm cache (data resident from previous execution) shows optimistic
performance while cold cache (data must be loaded from memory/disk) shows
pessimistic performance, with truth between extremes. Careful benchmark design
flushes caches before measurement and runs multiple iterations warming caches to

representative steady-state conditions before measurement period.

41

Comparison MPI vs. OpenMP

Features OpenMP MPI

Apply parallelism in steps yes no

Scale to large number of maybe yes

processors

Code complexity Small increase Major increase
Runtime environment Expensive compilers Free

Cost of hardware Very expensive Cheap

Ease of modification Easy Hard

19

Figure 3.3 — Comparison MPI and OpenMP

m [MPI +DpenMP]

1 I

Thread 1
Thread 2

Thread 1

Thread 2
1 I

1 1
Thread N Thread N
Figure 3.4 - Implementation scheme

3.5. Experimental methodology and benchmarking framework

The performance evaluation framework encompasses computational
throughput, communication overhead, memory bandwidth, and scalability

characteristics. Benchmark selection covers standard HPC benchmarks and custom

42

kernels isolating specific performance aspects. All experiments were conducted on
dedicated compute nodes with minimal system interference, repeating each
measurement 10 times and reporting median values.

Experimental platforms include: (1) Dual-socket Intel Xeon Platinum 8280
system (28 cores per socket, 56 cores total, 2.7 GHz base frequency, 192 GB DDR4-
2933 memory); (2) Dual-socket AMD EPYC 7742 system (64 cores per socket, 128
cores total, 2.25 GHz base frequency, 256 GB DDR4-3200 memory); (3) Distributed
cluster with 32 nodes, each containing dual Intel Xeon Gold 6248 processors (20
cores per socket, 40 cores per node, 1280 cores total), connected via InfiniBand HDR
(200 Gb/s, 0.6 us latency).

The NAS Parallel Benchmarks provide standardized computational kernels.
We evaluated: EP (Embarrassingly Parallel), MG (Multi-Grid), CG (Conjugate
Gradient), FT (Fourier Transform), and IS (Integer Sort). Problem sizes were Class
B (mid-size) and Class C (large) workloads. STREAM memory bandwidth test
measured sustainable memory bandwidth using four operations: Copy, Scale, Add,
and Triad. HPCG benchmark evaluated sparse linear algebra performance

representative of modern applications.

3.6. Performance comparison analysis

Performance comparison reveals distinct characteristics across workload
types. For embarrassingly parallel workloads (NPB EP benchmark), OpenMP and
MPI achieve similar performance on shared-memory systems. On 64 cores,
OpenMP achieved 63.8 GFLOPS (99.7% efficiency) versus MPI's 63.2 GFLOPS
(98.75% efficiency). OpenMP's slightly lower overhead (thread creation vs. process
initialization) provides marginal advantages.

Communication-intensive applications show significant differences. The NPB
MG (Multi-Grid) benchmark involves substantial inter-process communication.

Table 4.1 presents performance results for Class C problem on 64 cores.

43

Table 3.4 — NPB Class C performance on 64 cores (Intel Xeon system)

Benchmark | Sequential | MPI Time OpenMP Speedup
Time (s) (s) Time (s) (MPI/OpenMP)
EP 248.3 3.93 3.89 63.2x / 63.8x
MG 156.7 3.42 4.18 45.8x / 37.5x
CG 189.4 4.21 5.67 45.0x / 33.4x
FT 142.8 3.86 4.94 37.0x / 28.9x
IS 98.5 2.64 3.12 37.3x/31.6x

MPI outperforms OpenMP by 18-28% on communication-intensive
benchmarks (MG, CG, FT). This advantage stems from: (1) Explicit data
distribution minimizing cache coherence traffic, (2) Optimized collective operations
(MPI_Allreduce, MPI_Alltoall), (3) Better NUMA awareness with explicit process-
memory binding.

Memory bandwidth measurements using STREAM reveal NUMA effects. On
dual-socket Intel Xeon system (theoretical peak 280 GB/s), OpenMP achieved 165
GB/s (59% efficiency) with default first-touch policy, increasing to 218 GB/s (78%
efficiency) with explicit NUMA-aware thread binding. MPI naturally achieves
better bandwidth distribution, reaching 232 GB/s (83% efficiency) through

automatic process-memory locality.

3.7. Scalability evaluation and efficiency metrics

Scalability analysis examines performance with increasing resources. Strong
scaling maintains fixed problem size (NPB Class C) while increasing core count
from 16 to 512 cores on the distributed cluster. Figure 4.2 shows strong scaling
efficiency:

E strong(p) = T(16) / (T(p) * p/16)

44

where T(16) is baseline execution time on 16 cores. Table 4.3 presents

detailed strong scaling results for NPB MG benchmark.

Table 3.5 — STREAM memory bandwidth on 64 cores (dual-socket Intel
Xeon)

Operation MPI (GB/s) OpenMP OpenMP
Default (GB/s) | NUMA (GB/s)
Copy 236.4 168.2 224.1
Scale 234.8 166.9 221.8
Add 228.5 161.4 2153
Triad 227.3 162.8 217.6

Table 3.6 — Strong scaling performance for NPB MG Class C benchmark

Cores MPI MPI OpenMP | OpenMP | Speedup
Time (s) | Efficiency | Time (s) | Efficiency Ratio
16 48.2 100.0% N/A N/A N/A
32 25.6 94.1% N/A N/A N/A
64 13.8 87.3% 17.1 100.0% 1.24x
128 7.9 76.3% N/A N/A N/A
256 5.2 57.9% N/A N/A N/A

MPI achieves 85.3% efficiency at 256 cores and 72.1% at 512 cores.
OpenMP's scalability is constrained to single-node limits (64 cores on test platform),
achieving 91.7% efficiency. Communication overhead increasingly limits MPI
scalability at higher core counts, with collective operations (Allreduce, Allgather)
consuming 15-25% of execution time at 512 cores.

Weak scaling maintains constant work per processor, increasing total problem

size proportionally with core count. Starting with Class B problem on 16 cores,

45

problem size scales: Class C at 64 cores, Class D at 256 cores. Weak scaling
efficiency:

E weak(p) =T(16) / T(p)

MPI maintains 88-92% weak scaling efficiency up to 512 cores, benefiting
from increased aggregate memory bandwidth and reduced memory pressure per

core. OpenMP achieves 94% efficiency at 64 cores within single node.

3.7. Programming productivity assessment

Programming productivity encompasses development time, code complexity,
debugging difficulty, and maintainability. We conducted a controlled study with 12
graduate students parallelizing three computational kernels: matrix multiplication
(regular computation), sparse matrix-vector product (irregular memory access), and
N-body simulation (dynamic communication pattern). Students had equivalent
parallel programming training (one semester course covering both MPI and
OpenMP).

Development time measurements include initial parallelization, debugging,

and optimization phases. Table 3.7 summarizes results.

Table 3.7 — Average development time for parallelization tasks (n=12

students)
Kernel OpenMP Time MPI Time Ratio
(hours) (hours) (MP1/OpenMP)

Matrix 3.2 8.5 2.66x
Multiply

Sparse MatVec 4.8 12.3 2.56x

N-body 6.5 18.7 2.88x

Simulation

46

OpenMP development time averaged 2.6-2.9x faster than MPI across all
kernels. The advantage stems from: (1) Incremental parallelization—adding
directives to existing sequential code, (2) Implicit data sharing—no manual data
distribution required, (3) Simpler debugging—sequential execution path remains
accessible.

Code complexity metrics reveal significant differences. Lines of code (LOC)
increased by 5-8% for OpenMP implementations (primarily directive additions)
versus 35-60% for MPI implementations (including data distribution,
communication calls, and initialization code). Cyclomatic complexity increased by
10-15% for OpenMP versus 40-70% for MPI.

Debugging difficulty assessments (subjective student ratings on 1-10 scale)
averaged 3.2 for OpenMP versus 6.8 for MPI. Common OpenMP issues included
race conditions (detectable with thread sanitizers) and false sharing. MPI debugging
involved deadlocks, message matching errors, and buffer management issues,
requiring specialized tools like TotalView or parallel debuggers.

Maintainability considerations differ between paradigms. OpenMP's
directives integrate seamlessly with sequential code—sequential algorithm changes
automatically propagate to parallel execution. MPI's explicit communication
requires coordinated updates when modifying data distribution or algorithm
structure. However, MPI's separation of concerns (computation vs. communication)

can facilitate reasoning about large-scale code organization.

3.8. Hybrid MPI-OpenMP programming approaches

Hybrid MPI-OpenMP programming addresses the hierarchical nature of
modern HPC systems by matching programming models to architectural levels.
Contemporary clusters comprise distributed nodes connected via high-bandwidth,
low-latency networks, with each node containing multi-core processors sharing

memory within the node. Pure MPI treats all cores equally, creating processes on

47

every core regardless of memory domain boundaries. This oversubscription of
processes relative to nodes creates several inefficiencies: excessive memory
consumption from per-process replicated data, increased collective operation latency
from larger participant counts, and sub-optimal NUMA memory placement from
fine-grained process distribution.

The fundamental hybrid decomposition uses MPI for inter-node
communication and OpenMP for intra-node parallelism. MPI processes map one-
per-node or few-per-node, with each process spawning OpenMP threads exploiting
shared-memory parallelism within nodes. For example, on a 32-node cluster with 64
cores per node (2048 total cores), pure MPI would create 2048 processes while a
hybrid approach might create 32-128 MPI processes with 16-64 OpenMP threads
per process. This reduction in MPI rank count decreases the participant count in
collective operations, potentially reducing latency proportionally to log(processes)
for tree-based algorithms. Memory consumption decreases as replicated data
structures become shared within nodes rather than per-process duplicated.

Thread safety requirements complicate hybrid programming. MPI
implementations provide four thread safety levels specified through
MPI_Init _thread: MPI_THREAD_ SINGLE (no thread support),
MPI_THREAD_ FUNNELED (only master thread calls MPI),
MPI_THREAD SERIALIZED (only one thread at a time calls MPI), and
MPI_THREAD_ MULTIPLE (any thread may call MPI concurrently). The master-
only approach restricts MPI calls to the OpenMP master thread (thread 0), requiring
THREAD FUNNELED support. Worker threads communicate with the master
thread through shared memory, with the master handling all MPI operations. This
simplifies implementation but creates potential bottlenecks if communication
doesn't overlap with computation. The multiple approach allows arbitrary threads to
call MPI concurrently, requiring THREAD MULTIPLE support and careful

synchronization to prevent race conditions in MPI library state.

48

Performance trade-offs in hybrid configurations depend on application
characteristics. Communication-intensive applications with frequent collective
operations benefit most from reduced MPI rank count: collectives like MPI_Alltoall
scale poorly, with communication volume proportional to (n-1)* for n processes.
Memory-intensive applications benefit from reduced per-process memory overhead:
large-scale simulations may allocate 1-10 GB per process for arrays, with hybrid
approaches enabling memory sharing within nodes. Compute-intensive applications
with minimal communication show less benefit and may perform worse due to
OpenMP overhead compared to lean MPI implementations. Optimal hybrid
configuration (processes-per-node and threads-per-process) requires application-
specific experimentation: ratios from 1x64 (one MPI process per node) through
16x4 or 32x2 may be optimal for different applications on 64-core nodes.

Load balancing in hybrid programs requires two-level coordination. MPI-
level load balance ensures equal work distribution across processes, typically
through domain decomposition or dynamic work distribution. OpenMP-level load
balance distributes work within each process's thread team, using scheduling clauses
(static, dynamic, guided) appropriate for workload regularity. Hierarchical load
imbalance occurs when MPI-level balance exists but OpenMP-level imbalance
within processes creates waiting at barriers. Some applications implement
hierarchical dynamic load balancing: MPI processes exchange work units to
maintain coarse-grained balance while OpenMP dynamic scheduling handles fine-
grained imbalance within processes.

Hybrid programming combines MPI for inter-node communication with
OpenMP for intra-node parallelism, matching programming models to hierarchical
hardware. On the test cluster (40 cores per node), hybrid approaches use 1-4 MPI
processes per node with 40-10 OpenMP threads per process respectively. This
reduces total MPI process count, potentially decreasing communication overhead

and memory consumption.

49

Implementation strategies vary in communication patterns. The master-only
approach restricts MPI communication to master threads (thread 0), requiring thread
safety level MPI THREAD FUNNELED. This simplifies implementation but
creates potential bottlenecks. The multiple approach permits concurrent MPI calls

from different threads, requiring MPI THREAD MULTIPLE support and careful

synchronization.
Hybrid MPI/OpenMP : Pure MPI
' MPI Process
MPI Process '
. data []
data | : :] ' : 5
i ' ! ; N data |]
data I [y E ; single thread of control :
' thread 0 | thread1 | ... + :
OpenMP threads
sub-domain f\
MPI Process ' a1 MPI Process |
data | - v ' ata ; :
data | l data | |

. . : single thread of control
| thread 0 | thread 1 :

OpenMP threads

Figure 3.5 - Process scheme

Performance analysis compares pure MPI (40 processes per node, 1280 total
processes) versus hybrid configurations on NPB CG benchmark (Class C). Table 5.1

presents results.

50

Table 3.8 — Hybrid MPI-OpenMP performance on NPB CG (32 nodes, 1280

cores)
Configuration MPI OoOMP Time (s) Speedup vs
Procs/Node Threads Pure MPI
Pure MPI 40 1 12.8 1.00x
(baseline)
Hybrid 20%2 20 2 11.9 1.08x
Hybrid 10x4 10 4 10.7 1.20x
Hybrid 4x10 4 10 11.4 1.12x

The 10x4 hybrid configuration achieves 20% performance improvement over
pure MPI. Benefits include: (1) Reduced MPI process count decreasing collective
operation overhead by ~35%, (2) Lower memory consumption (fewer MPI buffers
and duplicated data structures), (3) Better cache utilization through shared-memory
access within nodes.

The 410 configuration shows diminished returns (12% improvement) due to
OpenMP overheads dominating with fewer MPI processes. The 20x2 configuration
provides 8% improvement with simpler implementation complexity. Optimal
configuration depends on application communication patterns and node

characteristics.

3.9. Application case studies and optimization

Three production applications demonstrate hybrid programming benefits
across different domains. Each application was optimized using profiling tools (Intel
VTune, Score-P) to identify performance bottlenecks.

Case Study 1: Computational Fluid Dynamics (CFD) Solver. The application
solves Navier-Stokes equations on 3D structured grids using finite volume method.

Domain decomposition distributes grid blocks across MPI processes with nearest-

51

neighbor communication for boundary exchange. Pure MPI implementation uses
1280 processes. Hybrid implementation uses 320 MPI processes (10 per node) with
4 OpenMP threads per process parallelizing inner loops.

Profiling revealed communication overhead consuming 38% of pure MPI
execution time. Hybrid implementation reduced this to 24% through: (1) 4%
reduction in MPI process count decreasing collective operation costs, (2) Shared-
memory boundary exchange within nodes eliminating 25% of MPI messages, (3)
Better cache locality from OpenMP thread-level parallelism.

Performance results: Pure MPI achieved 2.85 TFLOPS (45.3% of theoretical
peak). Hybrid achieved 3.42 TFLOPS (54.4% of peak), representing 20%
improvement. Memory consumption decreased by 18% (less MPI buffer space and

duplicate halo data).

Table 5.2 — Production application performance on 32-node cluster (1280

cores)

Application | Pure = MPI | Hybrid (s) Improvement | Memory

(s) Reduction
CFD Solver | 184.3 153.6 20.0% 18%
Molecular | 256.8 198.4 29.4% 22%
Dynamics
Climate 892.5 731.2 22.1% 15%
Model

Case Study 2: Molecular Dynamics Simulation. The application simulates
protein dynamics using short-range force calculations. Particles distribute spatially
across MPI processes with periodic boundary migration. OpenMP parallelizes force
calculation loops within each domain. Hybrid configuration (160 MPI processes, 8

threads each) achieved 29.4% improvement over pure MPI primarily through better

52

load balancing—OpenMP's dynamic scheduling compensates for particle count
variations across domains.

Case Study 3: Climate Model. The global atmospheric model uses spectral
transform method requiring global transposes (MPI Alltoall). Hybrid
implementation (80 MPI processes, 16 threads each) reduced MPI_Alltoall overhead
from 31% to 18% of execution time while OpenMP parallelized spectral transform

computations, achieving 22.1% overall improvement.

53

4 SAFETY OF LIFE, BASIC LABOR PROTECTION

4.1. Effects of electromagnetic radiation on the human body

A large body of literature exists on the response of tissues to electromagnetic
fields, primarily in the extremely-low-frequency (ELF) and microwave-frequency
ranges. In general, the reported effects of radiofrequency (RF) radiation on tissue
and organ systems have been attributed to thermal interactions, although the
existence of nonthermal effects at low field intensities is still a subject of active
investigation. This chapter summarizes reported RF effects on major physiological
systems and provides estimates of the threshold specific absorption rates (SARs)
required to produce such effects. Organ and tissue responses to ELF fields and
attempts to characterize field thresholds are also summarized. The relevance of these
findings to the possible association of health effects with exposure to RF fields from
GWEN antennas is assessed.

Nervous System

The effects of radiation on nervous tissues have been a subject of active
investigation since changes in animal behavior and nerve electrical properties were
first reported in the Soviet Union during the 1950s and 1960s.1 RF radiation is
reported to affect isolated nerve preparations, the central nervous system, brain
chemistry and histology, and the blood-brain barrier.

In studies with in vitro nerve preparations, changes have been observed in the
firing rates of Aplysia neurons and in the refractory period of isolated frog

sciatic nerves exposed to 2.45-GHz microwaves at SAR values exceeding 5
W/kg.2,3,4 Those effects were very likely associated with heating of the nerve

preparations, in that much higher SAR values have not been found to produce

changes in the electrical properties of isolated nerves when the temperature
was controlled.5, 6 Studies on isolated heart preparations have provided evidence of

bradycardia as a result of exposure to RF radiation at nonthermal power densities,7

54

although some of the reported effects might have been artifacts caused by currents
induced in the recording electrodes or by nonphysiological conditions in the bathing
medium.8,9,10 Several groups of investigators have reported that nonthermal levels
of RF fields can alter Ca2+ binding to the surfaces of nerve cells in isolated brain
hemispheres and neuroblastoma cells cultured in vitro (reviewed by the World
Health Organizationl1 and in Chapters 3 and 7 of this report). That phenomenon,
however, is observed only when the RF field is amplitude-modulated at extremely
low frequencies, the maximum effect occurs at a modulation frequency of 16 Hz. A
similar effect has recently been reported in isolated frog hearts.12 The importance
of changes in Ca2+ binding on the functional properties of nerve cells has not been
established, and there is no clear evidence that the reported effect of low-intensity,
amplitude-modulated RF fields poses a substantial health risk.

Results of in vivo studies of both pulsed and continuous-wave (CW) RF fields
on brain electrical activity have indicated that transient effects can occur at SAR
values exceeding 1 W/kg.13,14 Evidence has been presented that cholinergic
activity of brain tissue is influenced by RF fields at SAR values as low as 0.45
W/kg.15 Exposure to nonthermal RF radiation has been reported to influence the
electroencephalograms (EEGs) of cats when the field was amplitude-modulated at
frequencies less than 25 Hz, which is the range of naturally occurring EEG
frequencies.16 The rate of Ca2+ exchange from cat brain tissue in vivo was observed
to change in response to similar irradiation conditions.17 Comparable effects on
Ca2+ binding were not observed in rat cerebral tissue exposed to RF radiation,18
although the fields used were pulsed at EEG frequencies, rather than amplitude-
modulated. As noted above, the physiological significance of small shifts in Ca2+
binding at nerve cell surfaces is unclear.

A wide variety of changes in brain chemistry and structure have been reported
after exposure of animals to high-intensity RF fields.19 The changes include
decreased concentrations of epinephrine, norepinephrine, dopamine, and 5-

hydroxytryptamine; changes in axonal structure; a decreased number of Purkinje

55

cells; and structural alterations in the hypothalamic region. Those effects have
generally been associated with RF intensities that produced substantial local heating
in the brain.

Extensive studies have been carried out to detect possible effects of RF
radiation on the integrity of the blood-brain barrier.20,21 Although several reports
have suggested that nonthermal RF radiation can influence the permeability of the
blood-brain barrier, most of the experimental findings indicate that such effects
result from local heating in the head in response to SAR values in excess of 2 W/kg.
Changes in cerebral blood flow rate, rather than direct changes in permeability to
tracer molecules, might also be incorrectly interpreted as changes in the properties
of the blood-brain barrier.

Effects of pulsed and sinusoidal ELF fields on the electrical activity of the
nervous system have also been studied extensively.22,23 In general, only high-
intensity sinusoidal electric fields or rapidly pulsed magnetic fields induce sufficient
current density in tissue (around 0.1-1.0 A/m2 or higher) to alter neuronal
excitability and synaptic transmission or to produce neuromuscular stimulation.
Somewhat lower thresholds have been observed for the induction of visual
phosphenes (discussed in the next section) and for influencing the electrical activity
of Aplysia pacemaker neurons when the frequency of the applied field matched the
endogenous neuronal firing rate.24 Those effects, however, have been observed only
with ELF frequencies and would not be expected to occur at the higher frequencies
associated with GWEN transmitters. Recent studies with human volunteers exposed
to 60-Hz electric and magn.

Electromagnetic radiation can be classified into two types: ionizing radiation
and non-ionizing radiation, based on the capability of a single photon with more than
10 eV energy to ionize oxygen or break chemical bonds. Ultraviolet and higher
frequencies, such as X-rays or gamma rays are ionizing, and these pose their own

special hazards: see radiation and radiation poisoning. By far the most common

56

health hazard of radiation i1s sunburn, which causes over one million new skin

cancers annually.

4.2 Types of hazards

Electrical hazards

Very strong radiation can induce current capable of delivering an electric
shock to persons or animals.[citation needed] It can also overload and destroy
electrical equipment. The induction of currents by oscillating magnetic fields is also
the way in which solar storms disrupt the operation of electrical and electronic
systems, causing damage to and even the explosion of power distribution
transformers, blackouts (as occurred in 1989), and interference with electromagnetic
signals (e.g. radio, TV, and telephone signals).

Fire hazards

Extremely high power electromagnetic radiation can cause electric currents
strong enough to create sparks (electrical arcs) when an induced voltage exceeds the
breakdown voltage of the surrounding medium (e.g. air at 3.0 MV/m). These sparks
can then ignite flammable materials or gases, possibly leading to an explosion.

This can be a particular hazard in the vicinity of explosives or pyrotechnics,
since an electrical overload might ignite them. This risk is commonly referred to as
Hazards of Electromagnetic Radiation to Ordnance (HERO) by the United States
Navy (USN). United States Military Standard 464A (MIL-STD-464A) mandates
assessment of HERO in a system, but USN document OD 30393 provides design
principles and practices for controlling electromagnetic hazards to ordnance.

On the other hand, the risk related to fueling is known as Hazards of
Electromagnetic Radiation to Fuel (HERF). NAVSEA OP 3565 Vol. 1 could be used
to evaluate HERF, which states a maximum power density of 0.09 W/m? for

frequencies under 225 MHz (i.e. 4.2 meters for a 40 W emitter)/

57

Biological hazards

The best understood biological effect of electromagnetic fields is to cause
dielectric heating. For example, touching or standing around an antenna while a
high-power transmitter is in operation can cause severe burns. These are exactly the
kind of burns that would be caused inside a microwave oven.[citation needed]

This heating effect varies with the power and the frequency of the
electromagnetic energy, as well as the distance to the source. A measure of the
heating effect is the specific absorption rate or SAR, which has units of watts per
kilogram (W/kg). The IEEE and many national governments have established safety
limits for exposure to various frequencies of electromagnetic energy based on SAR,
mainly based on ICNIRP Guidelines, which guard against thermal damage.

There are publications which support the existence of complex biological and
neurological effects of weaker non-thermal electromagnetic fields , including weak
ELF magnetic fields and modulated RF and microwave fields. Fundamental
mechanisms of the interaction between biological material and electromagnetic
fields at non-thermal levels are not fully understood.

Lighting.

Fluorescent lights.

Fluorescent light bulbs and tubes internally produce ultraviolet light.
Normally this is converted to visible light by the phosphor film inside a protective
coating. When the film is cracked by mishandling or faulty manufacturing then UV
may escape at levels that could cause sunburn or even skin cancer.

LED lights.

High CRI LED lighting.

Blue light, emitting at wavelengths of 400—500 nanometers, suppresses the
production of melatonin produced by the pineal gland. The effect is disruption of a
human being's biological clock resulting in poor sleeping and rest periods.

EMR effects on the human body by frequency

Warning sign next to a transmitter with high field strengths

58

While the most acute exposures to harmful levels of electromagnetic radiation
are immediately realized as burns, the health effects due to chronic or occupational
exposure may not manifest effects for months or years.[citation needed]

Extremely-low frequency

High-power extremely-low-frequency RF with electric field levels in the low
kV/m range are known to induce perceivable currents within the human body that
create an annoying tingling sensation. These currents will typically flow to ground
through a body contact surface such as the feet, or arc to ground where the body is
well insulated.

Shortwave

Shortwave (1.6 to 30 MHz) diathermy heating of human tissue only heats
tissues that are good electrical conductors, such as blood vessels and muscle.
Adipose tissue (fat) receives little heating by induction fields because an electrical

current is not actually going through the tissues.

59

CONCLUSIONS

This comprehensive comparative study examined MPI and OpenMP from
multiple perspectives, encompassing architectural foundations, programming
models, performance characteristics, and practical applicability. The analysis
conducted across multiple hardware platforms with standardized benchmarks and
production applications reveals that optimal parallelization strategy selection
depends critically on specific application requirements, target architecture
characteristics, and development constraints.

MPI demonstrates clear advantages in distributed-memory environments and
large-scale applications requiring explicit control over data distribution and
communication. Experimental results show MPI achieving 85.3% parallel efficiency
at 256 cores and maintaining 88-92% weak scaling efficiency up to 512 cores. For
communication-intensive benchmarks, MPI outperforms OpenMP by 18-28%
through optimized collective operations and explicit data locality control. However,
MPI programming complexity results in 2.6-2.9x longer development times
compared to OpenMP.

OpenMP provides superior accessibility and productivity for shared-memory
parallelism, with directive-based programming enabling rapid parallelization and
reduced development effort. Performance measurements show OpenMP achieving
92% parallel efficiency on 64-core shared-memory systems with proper NUMA
optimization. Memory bandwidth utilization reaches 78% of theoretical peak with
NUMA-aware thread placement. Code complexity increases by only 5-8%
compared to sequential implementations versus 35-60% for MPI.

Hybrid MPI-OpenMP programming emerges as increasingly important for
hierarchical parallel architectures. Experimental results demonstrate 15-30%
performance improvements over pure MPI implementations on production
applications. The optimal hybrid configuration (10 MPI processes per node with 4

OpenMP threads) reduces communication overhead by 35% while maintaining

60

computational efficiency. Memory consumption decreases by 15-22% through
elimination of duplicate data structures.

Performance analysis reveals clear scaling characteristics: OpenMP excels up
to single-node limits (64-128 cores) with minimal programming effort. MPI scales
to thousands of cores with explicit programming investment. Hybrid approaches
provide optimal performance on modern hierarchical systems combining distributed
and shared memory, though requiring careful configuration tuning.

The future of high-performance computing will undoubtedly bring new
challenges including exascale systems with millions of cores, deeper memory
hierarchies, and increasing heterogeneity with accelerators. However, fundamental
concepts of distributed and shared-memory parallelism remain relevant. MPI's
explicit control suits large-scale distributed computing, OpenMP's accessibility
benefits shared-memory parallelism, and hybrid approaches address hierarchical
architectures. Building strong foundations in both paradigms while remaining
adaptable to emerging technologies positions practitioners for success in the

evolving HPC ecosystem.

61

REFERENCES

1. MPI Forum. MPI: A Message-Passing Interface Standard, Version 4.0. June
2021. URL: https://www.mpi-forum.org/docs/ (date of access: 25.01.2026).

2. OpenMP Architecture Review Board. OpenMP Application Programming
Interface, Version 5.2. November 2021.
URL: https://www.openmp.org/specifications/ (date of access: 25.01.2026).

3. Pacheco P. An Introduction to Parallel Programming. Morgan Kaufmann
Publishers, 2011. 464 p.

4. Gropp W., Lusk E., Skjellum A. Using MPI: Portable Parallel Programming
with the Message-Passing Interface. 3rd ed. MIT Press, 2014. 448 p.

5. Chapman B., Jost G., van der Pas R. Using OpenMP: Portable Shared
Memory Parallel Programming. MIT Press, 2007. 392 p.

6. Dongarra J., Foster 1., Fox G. et al. Sourcebook of Parallel Computing.
Morgan Kaufmann Publishers, 2003. 840 p.

7. Grama A., Gupta A., Karypis G., Kumar V. Introduction to Parallel
Computing. 2nd ed. Addison-Wesley, 2003. 656 p.

8. Hoefler T., Belli R. Scientific Benchmarking of Parallel Computing Systems:
Twelve Ways to Tell the Masses when Reporting Performance Results. Proceedings
of SC15. ACM, 2015. DOI: 10.1145/2807591.2807644.

0. Shalf J., Dosanjh S., Morrison J. Exascale Computing Technology
Challenges. Proceedings of HPCC 2010. 2010. P. 1-25.

10. Rabenseifner R., Hager G., Jost G. Hybrid MPI/OpenMP Parallel
Programming on Clusters of Multi-Core SMP Nodes. Proceedings of PDP 2009.
2009. P. 427-436.

11. Hager G., Wellein G. Introduction to High Performance Computing for
Scientists and Engineers. CRC Press, 2010. 356 p.

62

12. Williams S., Waterman A., Patterson D. Roofline: An Insightful Visual
Performance Model for Multicore Architectures. Communications of the ACM.
2009. Vol. 52, No. 4. P. 65-76.

13. Balaji P., Buntinas D., Goodell D. et al. MPI on Millions of Cores. Parallel
Processing Letters. 2011. Vol. 21, No. 1. P. 45-60.

14. Smith L., Bull M. Development of Mixed Mode MPI/OpenMP
Applications. Scientific Programming. 2001. Vol. 9, No. 2-3. P. 83-98.

15. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular
Dynamics. Journal of Computational Physics. 1995. Vol. 117. P. 1-19.

16. Barker K., Benner A., Hoisie A. et al. On the Feasibility of Optical Circuit
Switching for High Performance Computing Systems. Proceedings of SC05. ACM,
2005.

17. Cappello F., Geist A., Gropp W. et al. Toward Exascale Resilience: 2014
Update. Supercomputing Frontiers and Innovations. 2014. Vol. 1, No. 1.

18. Shan H., Oliker L. Comparison of Three Programming Models for Adaptive
Applications on the Cray XT4. Proceedings of PDP 2009. 2009. P. 279-286.

19. Bailey D., Barszcz E., Barton J. et al. The NAS Parallel
Benchmarks. International Journal of Supercomputer Applications. 1991. Vol. 5,
No. 3. P. 63-73.

20. Adams M., Brown J., Shalf J. et al. HPGMG 1.0: A Benchmark for Ranking
High Performance Computing Systems. Technical Report LBNL-6630E. Lawrence
Berkeley National Laboratory, 2014.

