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АНОТАЦІЯ 

 

Тема кваліфікаційної роботи: «Предикція траєкторії руху інерційних 

об’єктів за допомогою алгоритму Калмана» // Кваліфікаційна робота // Хиль 

Андрій Васильович // Тернопільський національний технічний університет 

імені Івана Пулюя, факультет прикладних інформаційних технологій та 

електроінженерії, група РАм-61 // Тернопіль, 2025 // с. – 102, рис. – 17 , додат. – 

1, бібліогр. – 17. 

Ключові слова: БПЛА, АЛГОРИТМ КАЛМАНА, ПРЕДИКЦІЯ 

ТРАЄКТОРІЇ, ІНЕРЦІЙНІ ОБ’ЄКТИ, MATLAB, ФІЛЬТРАЦІЯ ШУМІВ. 

Кваліфікаційна робота присвячена розробці та дослідженню системи 

прогнозування траєкторії руху інерційних об’єктів (зокрема БПЛА) з 

використанням математичного апарату фільтрації Калмана для підвищення 

точності позиціонування в умовах зашумлених даних. 

У роботі проаналізовано актуальність відстеження БПЛА, проведено їх 

класифікацію та оцінено потенційні загрози експлуатації. Здійснено 

порівняльний аналіз сучасних методів детекції: оптичних, радіолокаційних, 

акустичних та нейромережевих підходів. Визначено роль алгоритмів фільтрації 

у вирішенні викликів динамічного позиціонування. 

Запропоновано програмну реалізацію лінійного алгоритму Калмана для 

предикції майбутнього стану об'єкта. Розглянуто теоретичні засади 

розширеного фільтра Калмана та нечітких алгоритмів. У практичній частині 

розроблено математичну модель у середовищі Matlab, яка включає генерацію 

істинної траєкторії, моделювання вимірювань із внесенням випадкових 

перешкод та етап рекурсивної фільтрації. 

Результати моделювання підтвердили ефективність алгоритму: 

використання фільтра Калмана дозволило значно мінімізувати вплив шумів 

вимірювальної системи та забезпечити високу точність прогнозування 
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координат. Аналіз інноваційних послідовностей показав, що для 

горизонтального руху інновація має властивості білого шуму, що свідчить про 

адекватність обраної моделі. 

Результати роботи можуть бути використані при розробці систем 

автоматичного керування БПЛА, засобів протиповітряної оборони малої 

дальності та інтелектуальних систем моніторингу повітряного простору. 
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ABSTRACT 

 

Thesis topic: «Prediction of the trajectory of inertial objects using the Kalman 

algorithm» // Qualification work // Andriy V. Khyl // Ivan Pul'uj Ternopil National 

Technical University, Faculty of Applied Information Technologies and Electrical 

Engineering, Group RAm--61 // Ternopil, 2025 // p. – 102, fig. – 17, app. – 1, 

bibliogr. – 17. 

Keywords: UAV, KALMAN ALGORITHM, TRAJECTORY PREDICTION, 

INERTIAL OBJECTS, MATLAB, NOISE FILTERING. 

The thesis is devoted to the development and research of a system for predicting 

the trajectory of inertial objects (in particular, UAVs) using the Kalman filter 

mathematical apparatus to improve positioning accuracy in noisy data conditions. 

The paper analyzes the relevance of UAV tracking, classifies them, and assesses 

potential threats to their operation. A comparative analysis of modern detection 

methods is carried out: optical, radar, acoustic, and neural network approaches. The 

role of filtering algorithms in solving dynamic positioning challenges is determined. 

A software implementation of the Kalman linear algorithm for predicting the 

future state of an object is proposed. The theoretical foundations of the extended 

Kalman filter, and fuzzy algorithms are considered. In the practical part, a 

mathematical model has been developed in the Matlab environment, which includes 

the generation of a true trajectory, modeling of measurements with random noise, and 

a recursive filtering stage. 

The simulation results confirmed the effectiveness of the algorithm: the use of 

the Kalman filter significantly minimized the influence of measurement system noise 

and ensured high accuracy of coordinate prediction. Analysis of innovative sequences 

showed that for horizontal motion, the innovation has the properties of white noise, 

which indicates the adequacy of the selected model. 
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The results of the work can be used in the development of automatic control 

systems for UAVs, short-range air defense systems, and intelligent airspace 

monitoring systems.  
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ВСТУП 

 

Актуальність теми. Стрімке вдосконалення можливостей БПЛА зумовило 

їхнє широке застосування в критично важливих сферах: від логістики та 

інспекції інфраструктури до пошуково-рятувальних місій. Успіх та безпека цих 

операцій критично залежать від точності та надійності навігаційної системи. 

Традиційні методи, які покладаються виключно на зовнішні сенсори, можуть 

бути схильні до перешкод, затримок або повного зникнення сигналу, що 

особливо актуально для міських або закритих просторів. Це створює істотний 

розрив у даних, який вимагає застосування ефективних алгоритмів злиття 

сенсорних даних для забезпечення безперервної та високоточної оцінки стану 

БПЛА. 

Використання фільтра Калмана дозволяє оптимально об'єднувати шумні 

вимірювання з інерційних сенсорів та зовнішніх навігаційних джерел, 

забезпечуючи не лише оцінку поточного положення, але й предикцію 

майбутньої траєкторії. Таким чином, розробка та вдосконалення алгоритмів 

Калмана для навігаційних систем БПЛА є критично важливою інженерною 

метою, спрямованою на підвищення автономності, безвідмовності та 

безпечності експлуатації. 

Мета. Метою експериментальна оцінка ефективності алгоритму 

розробленого з використанням фільтру Калмана, для покращення 

прогнозування траєкторних параметрів інерційного об’єкта БПЛА. 

Для реалізації зазначеної мети необхідно вирішити такі завдання:  

1. Проаналізувати методи детекції БПЛА. 

2. Дослідити математичний апарат оптимальної фільтрації. 

3. Розробити імітаційну модель балістичного руху інерційного об’єкта в 

середовищі Matlab 

Об’єкт дослідження: процес предикціі траєкторії руху інерційних 

об’єктів. 
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Предмет дослідження: метод Калманівської фільтрації для підвищення 

предикції траєкторії руху інерційного об’єкта 

Методи дослідження: методи обчислювальної математики, теорії 

випадкових процесів і математичної статистики, цифрового опрацювання 

сигналів. Для програмної реалізації алгоритмів опрацювання використано пакет 

прикладних програм MATLAB. 

Наукова новизна одержаних результатів. Полягає в удосконаленні 

прогнозних властивостей систем ідентифікації параметрів руху інерційних тіл 

через адаптивне налаштування фільтраційних алгоритмів, мінімізацію 

деструктивного впливу вимірювальних шумів та зміцнення стійкості 

обчислювальної моделі до інтенсивного нелінійного середовища, зумовленого 

аеродинамічним опором. 

Практичне значення одержаних результатів. Суть результатів полягає у 

розробці адаптованої моделі предикції стану інерційних об’єктів, що базується 

на алгоритмі Калмана та врахуванні нелінійних аеродинамічних впливів. Це 

розширює наукове розуміння процесів оцінювання параметрів руху в умовах 

інтенсивних завад, а також пропонує прикладні підходи для підвищення 

точності та стабільності прогнозування траєкторій у системах моніторингу 

повітряного простору. 

Публікації. Результати дослідження апробовано на XIV Міжнародній 

науково-технічній конференції молодих учених та студентів «Актуальні задачі 

сучасних технологій». Основні теоретичні положення та результати 

імітаційного моделювання висвітлено у тезах доповіді на тему: «Прогнозування 

траєкторії інерційних об’єктів за допомогою алгоритму Калмана».  



14 

 

ПЕРЕЛІК СКОРОЧЕНЬ 

 

БПЛА – безпілотний літальний апарат 

VTOL – вертикальний зліт і посадка 

РЧ – радіочастота 

GPS – глобальна система позиціонування 

ІЧ – інфрачервоним 

ПР – процесор 

ТКНБ – телевізійний канал нічного бачення 

МЛА – малі літальні апарати 

НМ –нейронна мережа 
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РОЗДІЛ 1 

АНАЛІТИЧНА ЧАСТИНА 

 

1.1. Необхідність точного відстеження БПЛА 

 

Швидкий розвиток технологій БПЛА призвів до їхнього широкого 

застосування в цивільній та військовій сферах, але водночас значно підвищив 

ризики безпеки. Ефективна протидія несанкціонованим польотам дронів 

вимагає не лише їхнього виявлення, так і високоточного відстеження траєкторії 

в реальному часі. 

Системи виявлення БПЛА використовують різноманітні сенсори, такі як 

радіолокатори, радіочастотні сканери, акустичні та оптико - електронні засоби. 

Однак, дані, отримані від цих сенсорів, є зашумленими, неповними та часто 

несинхронізованими, особливо в складному міському середовищі, де присутні 

перешкоди та висока маневреність об'єктів. 

Для подолання цих технічних викликів критично важливо застосовувати 

адаптивні алгоритми злиття сенсорних даних та фільтрації. Серед численних 

алгоритмів оцінки стану, фільтр Калмана та похідні його нелінійних версій 

визнані найбільш ефективними та оптимальними засобами для оцінки стану 

об'єкта в умовах статистичної невизначеності. Фільтр Калмана забезпечує 

рекурсивне мінімізування середньоквадратичної похибки, що робить його 

ключовим елементом у надійних системах автономної навігації та протидії 

БПЛА[1-3]. 

 

1.2. Класифікація БПЛА 

 

Сучасні БПЛА демонструють надзвичайну варіативність у технічних 

характеристиках, починаючи від розмірів, дальності дії та форми, і закінчуючи 

специфічним обладнанням та аеродинамічними конструкціями. Конструктивні 
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особливості БПЛА значною мірою залежать від їхнього призначення. Вони 

розробляються на базі різноманітних двигунів та конфігурацій крила. 

Класифікація за розміром охоплює спектр від нано- та мікро- БПЛА до 

значних великих апаратів, що визначає їхню вантажопідйомність і сферу 

застосування. З точки зору зв'язку, дрони підтримують як бездротові технології 

ближнього радіусу дії, так і дальнього радіусу дії. Завдяки постійному 

технологічному прогресу, БПЛА також відіграють все більш важливу роль у 

забезпеченні стільникового зв'язку та розширенні мережевого покриття. 

Визначено чотири різні категорії БПЛА, а саме:  

- з нерухомим крилом; 

- гібридні із фікосваним крилом; 

- однороторні; 

- багатороторні. 

БПЛА з нерухомим крилом (рис. 1.1) мають конструкцію, що нагадує 

традиційні літаки, і складаються з крил, основного корпусу, двигуна та 

пропелера. Вони використовують аеродинамічну підйомну силу, створювану 

крилом, для польоту. 

Головна перевага цієї категорії полягає в їхній високій енергоефективності 

та, як наслідок, тривалій витривалості. Ці апарати здатні залишатися в повітрі 

протягом значного часу, досягаючи показників близько шістнадцяти годин у 

деяких моделях, що робить їх ідеальними для місій, що потребують покриття 

великих територій. Через свою здатність підтримувати високу швидкість та 

дальність польоту, БПЛА з нерухомим крилом широко застосовуються для 

аерофотокартографування та геодезії, інспекції ліній електропередач та 

трубопроводів, а також для розвідки та моніторингу на великих відстанях. 

Однак, незважаючи на високу витривалість, вони мають суттєві обмеження, 

пов'язані з їхньою аеродинамічною схемою: потреба у злітно - посадковій смузі, 

обмежена маневреність, а також високі вимоги до навичок оператора для 

експлуатації. Саме через неможливість зависання вони є менш корисними для 
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завдань, які вимагають фіксованого положення над об'єктом, наприклад, 

детальної вертикальної інспекції або аерофотозйомки на одній локації з 

близької відстані. 

 

 

Рис. 1.1. БПЛА з нерухомим крилом 

 

Гібридні безпілотні апарати з нерухомим крилом (рис.1.2) є технологічною 

відповіддю на обмеження класичних моделей. Вони поєднують у собі найкращі 

риси двох категорій: високу енергоефективність і швидкість нерухомого крила 

та можливість вертикального зльоту і посадки, властиву мультироторним 

системам. 

Ця конструкція оснащена як традиційними крилами для аеродинамічного 

польоту, так і додатковими підйомними рушіями, які використовуються на 

етапах зльоту та посадки. Їхня функціональність визначається автоматизацією – 

складна бортова система відповідає за плавний перехід між вертикальним 

режимом та горизонтальним режимом польоту. 

Хоча ці гібриди долають основний недолік класичних БПЛА з нерухомим 

крилом, їхня експлуатація має свої нюанси. Складність полягає в оптимізації як 

ефективності планерування на крейсерській швидкості, так і в забезпеченні 
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стабільності під час вертикальних маневрів. На відміну від мультироторів, вони 

не завжди ефективні для тривалого зависання у повітрі, а їхній політ уперед на 

дуже низьких швидкостях може бути менш стабільним, ніж у дронів, повністю 

орієнтованих на VTOL. Це вимагає від оператора та системи керування високої 

точності при плануванні місії та переході між режимами. 

Гібридні БПЛА знаходять застосування там, де необхідна тривала 

тривалість польоту та можливість здійснювати операції з обмежених або 

непідготовлених майданчиків. 

 

 

Рис. 1.2. Гібридний БПЛА з фіксованим крилом 

 

Однороторні БПЛА (рис. 1.3) за своєю конструкцією імітують традиційні 

гелікоптери. Вони використовують один великий несучий ротор для 

забезпечення підйому та основного руху, а також менший хвостовий ротор для 

компенсації реактивного моменту і точного керування курсом. Ці системи 

вимагають високого рівня кваліфікації персоналу як для експлуатації, так і для 

обслуговування. Це зумовлено тим, що однороторні БПЛА є механічно 

складними: вони містять складні механізми перекосу разом з іншими 

високоточними вузлами, необхідні для ефективної зміни кроку лопатей та 

маневрування. Через цю складність кінематичної схеми, однороторні апарати 



19 

 

вразливі до низки технічних проблем, зокрема до вібрацій, які можуть 

негативно впливати на роботу чутливих сенсорів та загальну надійність 

системи. Водночас, ця конструктивна схема надає їм суттєві експлуатаційні 

переваги над мультироторними системами: тривалу тривалість польоту та 

високу вантажопідйомність. Крім того, вони зберігають можливість зависання 

та VTOL, що робить їх незамінними для місій, де необхідно доставляти важке 

корисне навантаження або здійснювати детальний огляд у важкодоступних 

місцях. 

 

 

Рис. 1.3. Однороторний БПЛА 

 

Багатороторні БПЛА (рис. 1.4) на сьогоднішній день є найбільш 

поширеною та доступною категорією дронів. Вони відрізняються відносно 

простою структурою, що робить їх найменш витратними та найпростішими у 

виробництві. Класифікація цих апаратів базується на кількості несучих гвинтів, 

включаючи трикоптери, квадрокоптери, гексакоптери та октокоптери, причому 

квадрокоптери є найбільш домінуючими на ринку. Основне застосування 

мультироторних систем охоплює зйомку зображень, відеоспостереження, 
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аерофотозйомку та легку доставку вантажів. Популярність квадрокоптерів 

зумовлена їхньою економічною ефективністю, невеликим розміром та 

видатними льотними характеристиками: вертикальний зліт і посадка, висока 

спритність та швидка маневреність. Така конструкція забезпечує точне 

позиціонування та здатність до стабільного зависання, що має ключове 

значення для завдань, де потрібна фіксація камери на одній точці. Незважаючи 

на їхню головну слабкість — обмежену тривалість польоту через високе 

енергоспоживання, необхідне для постійного обертання роторів, їхні переваги у 

гнучкості та доступності зробили їх основою для аматорського та багатьох 

професійних сегментів використання. 

 

 

Рис. 1.4. Багатороторний БПЛА 

 

1.3.  Методи виявлення руху БПЛА 

 

1.3.1. Оптичний метод виявлення БПЛА 

Оптичний метод демонструє себе як високоефективний та перспективний 

підхід до надійного виявлення і моніторингу БПЛА. Ці системи локації 
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здебільшого використовують пасивні сенсори, які охоплюють різні діапазони 

оптичного спектра. Як активне джерело випромінювання застосовуються 

лазери, які можуть працювати у двох основних режимах — імпульсному або 

безперервному. Спеціалізовані оптичні блоки інтегровані для виконання 

подвійної функції: вони формують і передають лазерний промінь, а також 

приймають ехо – сигнал, відбитий від цілі. Для адаптації до умов та підвищення 

чутливості, у деяких конфігураціях використовуються індивідуально 

налаштовані оптичні формуючі пристрої для пасивних сенсорів, що 

функціонують на різних довжинах хвиль, разом із високоякісним скануючим 

пристроєм для ефективного огляду заданої зони. Фінальний, критично 

важливий етап обробки забезпечується обчислювальними пристроями, які 

відповідають за опрацювання вхідної інформації, вбудований контроль 

цілісності даних і видачу структурованих результатів зовнішнім системам.[1-3] 

Серед ключових недоліків оптичних ситем можна відзначити[1-3]: 

- Обмежений кут огляду, а саме невеликі кути просторового огляду за 

азимутом що знижує загальну площу покриття; 

- Мала швидкість сканування визначеної області, що ускладнює 

оперативне виділення; 

- Недостатній рівень захисту сенсорів від зовнішнього та внутрішнього 

засвічення, що може призвести до тимчасової втрати функціональності. 

Оптичні комплекси здатні працювати, використовуючи один із двох 

режимів моніторингу, а саме [1-3]: 

- Пасивний; 

- Активний. 

Пасивний режим сканування ініціюється обертанням камери, обладнаної 

інфрачервоним сенсором, на відповідний кут місця для моніторингу 

навколишнього простору. При виявленні об'єкта, що має температурний 

контраст, ІЧ - сигнал передається до процесора, який керує взаємодією всіх 

системних блоків. З ПР надходить команда на телевізійний канал нічного 
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бачення, що активує електронний затвор електронно - оптичного 

перетворювача світла. Візуальні дані, отримані з ТКНБ, повертаються в ПР, де 

визначається кутова неузгодженість між положенням, зафіксованим ТКНБ, і 

його початковим тепловим аналогом. У випадку успішного підтвердження 

позиції, кутові координати «істинного» об'єкта передаються зовнішньому 

пристрою; якщо ж ТКНБ не надає даних про його «істинне» місцезнаходження, 

у зовнішню систему видаються координати, визначені лише за температурним 

контрастом[1-3]. 

Активний режим сканування включає підсвічування атмосфери керованим 

лазерним випромінюванням, приймання відбитого сигналу та його подальшу 

обробку за допомогою обчислювально - аналітичної системи. Сканування 

простору в трьох вимірах відбувається завдяки керованому скануючому лазеру. 

Присутність малих БПЛА або викликаних ними турбулентних потоків 

призводить до відхилення променя когерентного лазерного джерела. Це 

відхилення променя постійно контролюється телеметричним пристроєм. 

Результатом застосування цього методу є підвищення ймовірності виявлення 

об'єктів і зростання точності вимірювання їхніх просторових координат, що 

використовується в наземних лазерних далекомірах, локаторах і розвідувальних 

системах. Часто в системах оптичної локації, оснащені камерами високої 

роздільної здатності, для виявлення БПЛА формуються та обробляються 

зображення об'єктів. З них виділяються ділянки, що ідентифікуються як малі 

БПЛА. Критично важливо проводити обробку зображень у реальному масштабі 

часу. Проте, моніторинг великих територій породжує значну проблему: на 

великих відстанях малі БПЛА мають невеликі кутові розміри, займаючи на 

світлочутливій матриці камери лише невелику кількість пікселів. Це підвищує 

ризик хибної тривоги через ймовірність їхньої ідентифікації як звичайних 

птахів (рис. 1.5) [1-3]. 
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Рис. 1.5. Візуальне відображення БПЛА та птахів в залежності від зміни 

роздільної здатності камери 

 

1.3.2. Радіолокаційна детекція БПЛА 

Радіолокаційний метод може застосовуватися у двох режимах: 

- Активної радіолокації  

- Пасивної радіолокації 

Активний метод радіолокації є високопродуктивним завдяки великому 

імпульсному об'єму пошуку та значній дальності виявлення. При застосуванні 

цього методу, радіолокаційні станції випромінюють зондуючий сигнал, який, 

відбиваючись від малих літальних апаратів, повертається на приймач станції. 

Подальший аналіз сигналу дозволяє точно визначити просторові координати, 

дальність до об'єкта, а також отримати додаткову інформацію про ціль. 

Зокрема, у мікродоплерівській сигнатурі сигналу містяться дані про тип, 

кількість гвинтів та ступінь завантаженості об'єкта (рис. 1.6). Хоча 

радіолокаційні системи здатні виявляти великі дрони на відстанях до десятків 

кілометрів, максимальна дальність виявлення різко знижується для малих 

БПЛА, сягаючи лише одиниць кілометрів або навіть сотень метрів. Таке 

скорочення дальності часто залишає недостатньо часу для своєчасного 

залучення засобів протидії. Якість детектування також погіршується тим, що 
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багато БПЛА створенні із застосуванням композитів, через які електромагнітні 

хвилі проходять, лише частково відбиваючись від їхньої поверхні [1-3]. 

 

 

Рис. 1.6. Мiкро-доплерiвська ефект сигналу МЛА 

 

Пасивний метод радіолокації визнається досить інформативним 

інструментом. У цьому режимі системи радіолокаційної розвідки виявляють 

МЛА шляхом приймання та аналізу радіосигналів, які випромінюються 

бортовими радіоелектронними засобами дрона. Ці сигнали можуть включати 

інформацію для зв'язку з пультом керування, передачу відеозображення або 

навігаційні дані. Хоча пасивна радіолокація забезпечує велику дальність 

виявлення та підвищує точність детектування зі збільшенням часу 

спостереження, вона дозволяє встановити лише напрямок руху об'єкта. 

Суттєвим недоліком є те, що переваги цього методу практично нівелюються, 

коли МЛА здійснюють політ в автономному режимі або використовують 

оптико - волоконні лінії зв'язку, оскільки в таких випадках відсутні 

радіовипромінювання для аналізу. 

 

1.3.3. Акустичний метод виявлення БПЛА 

Акустичний метод виявлення МЛА ґрунтується на прийманні та аналізі 

звукових сигналів, які генеруються під час польоту. Джерелами шуму є 

обертання несучих гвинтів дрона, робота його двигунів, а також шуми 

механічного походження. За своєю структурою акустичний сигнал МЛА являє 
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собою поєднання гармонічних та широкосмугових складових у діапазоні від 1 

кГц до 12 кГц. Кратні гармоніки в спектрі слідують з частотами fi=f0⋅i, де f0 — 

це частота запалювання, а i=1,2,… — номер відповідної гармонійної складової. 

На високих частотах ця періодичність спектра зникає, і починається процес 

формування шумів, які мають випадкове походження. Додатково, «вихлопний 

тракт двигуна створює в середовищі послідовність імпульсів тиску, частотний 

спектр якої також є комбінацією гармонічних і широкосмугових складових»[1] 

(рис. 1.7). Інтенсивність акустичного шуму зростає пропорційно підвищенню 

рівня потужності двигуна. 

 

Рис. 1.7. Частотні характеристики акустичного випромінювання, що 

генерується рушійною системою МЛА 

 

Незважаючи на те, що шум навколишнього середовища значно ускладнює 

детектування МЛА за їхньою акустичною сигнатурою, використання 

акустичних систем є високоактуальним на сьогодні. Основною причиною є 

малі БПЛА, які мають невеликі інфрачервоні та радіолокаційні сигнатури, через 

що їх важко виявити іншими методами. Акустичні сенсори працюють 

виключно в пасивному режимі, не випромінюючи власних сигналів. [1-3] 
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1.3.4. Радіочастотний метод виявлення БПЛА 

Фундаментальна концепція, що лежить в основі радіочастотного 

виявлення, полягає у встановленні присутності дрона шляхом фіксації та 

аналізу РЧ – сигналу, що забезпечує зв'язок між дроном і керуючим пристроєм. 

Дрони зазвичай працюють у певних, широко використовуваних діапазонах 

частот, таких як 2,4 ГГц та 5,8 ГГц. Як тільки ці частоти ідентифіковані, це 

вказує на потенційну присутність дрона в зоні виявлення. Принцип дії цього 

методу зображено на рисунку 1.8. 

 

 

Рис. 1.8. Структурна схема пасивного радіочастотного зондування (РЧ-

зондування) для виявлення дронів. 

 

Пасивне РЧ - зондування вважається одним із найефективніших методів 

виявлення цивільних дронів, оскільки він працює на принципі пасивного 

моніторингу спектра, тобто система просто "слухає" радіоефір і не випромінює 

власної потужності. Це забезпечує велику дальність виявлення, яка може 

простягатися до десяти кілометрів із досконалим обладнанням, не вимагає 
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спеціальних ліцензій і здатне працювати в різних погодних умовах та 

незалежно від часу доби.  

Для підвищення точності виявлення, оскільки інші бездротові технології, 

як-от Wi-Fi, також працюють у тих самих частотних діапазонах, система 

зосереджується на специфічних радіочастотних відбитках захопленого сигналу. 

Це включає аналіз типу модуляції, протоколу зв'язку, виявлення MAC - адрес і 

вивчення унікальних шаблонів передачі даних, які є характерними саме для 

дронів. Шляхом порівняння цих захоплених характеристик із великою 

внутрішньою базою даних відомих сигнатур, РЧ -аналіз забезпечує високий 

ступінь точності й може навіть ідентифікувати конкретну марку та модель 

дрона. Використовуючи кілька приймачів, система також здатна точно 

визначити місце розташування як самого дрона, так і його контролера. 

Перевага РЧ - сенсорів також полягає в їхній корисній інтеграції з 

контрзаходами, оскільки приймач можна підключити безпосередньо до 

глушителя, дозволяючи негайно та автоматизовано застосовувати контрзаходи, 

щойно сигнали будуть виявлені та класифіковані як загроза. 

Незважаючи на високу ефективність, метод РЧ - зондування має і певні 

обмеження. По-перше, існує вразливість до "темних" дронів: якщо дрон був 

запрограмований на автономний політ за GPS до вильоту і оператор вимкнув 

пульт керування, то сигнал зв'язку відсутній, і РЧ - сенсор не зможе його 

зафіксувати. По-друге, в умовах міського середовища з високою концентрацією 

Wi-Fi - роутерів та інших бездротових пристроїв можливий високий рівень 

помилкових спрацювань, доки не буде проведено глибокий аналіз сигнатури 

для відсіювання стороннього трафіку. По-третє, ефективність класифікації 

нових або саморобних дронів залежить від повноти бази даних сигнатур, 

інакше вони можуть бути виявлені лише як "невідомий РЧ - сигнал". Нарешті, у 

разі активного радіоелектронного глушіння, спрямованого проти дрона, РЧ - 

сенсори можуть мати труднощі з розрізненням і аналізом цільового сигналу 

через сильні перешкоди. 
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1.3.5. Інфрачервоний метод виявлення БПЛА 

Інфрачервоний метод, також відомий як тепловізійний або пасивний 

оптичний, використовує частину електромагнітного спектра, невидиму для 

людського ока, а саме інфрачервоне випромінювання, для виявлення БПЛА. 

Принцип роботи базується на тому, що будь-який об'єкт, температура якого 

вища за абсолютний нуль, випромінює тепло. Для виявлення БПЛА 

використовуються спеціалізовані ІЧ - камери, які містять чутливі 

мікроболометричні матриці. Ці пристрої працюють переважно в 

довгохвильовому інфрачервоному діапазоні, де спостерігається найбільший 

тепловий контраст між ціллю та фоном. Дрон має чітку теплову сигнатуру, яка 

формується за рахунок нагрітих двигунів, акумуляторної батареї та тертя 

повітря об корпус (рис. 1.9).  

Головна перевага цього методу — це його цілодобова ефективність та 

незалежність від зовнішнього освітлення, що робить його ідеальним для роботи 

в нічний час або в умовах поганої видимості, як-от легкий туман чи дим. Крім 

того, ІЧ - метод, як і радар, здатний виявляти автономні дрони, які не 

випромінюють РЧ - сигналів.  

Недоліки тепловізійного методу пов'язані з його залежністю від теплового 

контрасту: у спекотну погоду або при сильному сонячному нагріванні, коли 

температура навколишнього середовища збігається з температурою дрона, 

виявлення ускладнюється. Також, як і оптичні системи, він вимагає прямої 

видимості, а його ефективна дальність є значно меншою, ніж у радіолокаційних 

та РЧ - систем. Густий туман, сильний дощ або снігопад можуть поглинати ІЧ -

 випромінювання, знижуючи дальність. У сучасних системах протидії БПЛА 

ІЧ - метод є важливим елементом, який використовується для верифікації та 

візуального супроводу цілей, виявлених іншими, далекобійнішими засобами. 



29 

 

 

Рис. 1.9 - Схема функціонування відображення БПЛА 

 

1.3.6. Метод детекції БПЛА на основі нейронної мережі 

Метод виявлення БПЛА за допомогою нейронних мереж є 

високоінтелектуальним та адаптивним підходом, що є наріжним каменем 

сучасних систем протидії, використовуючи можливості машинного навчання 

для швидкого й точного аналізу складних вхідних даних. Цей підхід успішно 

застосовується як для аналізу зображень, так і для обробки РЧ - сигналів. У 

сфері комп'ютерного зору, ключову роль відіграють згорткові нейронні мережі, 

які навчаються на величезних масивах даних із зображеннями БПЛА, фіксуючи 

їх у різних умовах, ракурсах та на різних фонах. Коли мережа отримує новий 

кадр із камери або тепловізора, вона виконує детекцію об'єктів або 

сегментацію, автоматично виділяючи складні просторові та часові ознаки 

дрона. Це дозволяє системі з високою точністю локалізувати БПЛА і, що вкрай 

важливо, відрізнити його від схожих за розміром фонових об'єктів, таких як 

птахи чи нерухомі частини пейзажу (рис. 1.10). 



30 

 

 

Рис. 1.10. Метод виявлення БПЛА із зображення і визначенням НМ 

 

Окрім візуального аналізу, нейронні мережі є незамінними і в РЧ -  

виявленні, де вони використовуються для аналізу спектрограм — візуальних 

представлень РЧ - сигналів у часі та частоті. Тут НМ, часто гібридні моделі, 

навчаються розпізнавати унікальні "цифрові підписи", які відповідають 

конкретним протоколам зв'язку та моделям дронів. Такий інтелектуальний 

аналіз дозволяє системі не просто виявити РЧ - сигнал, а й ідентифікувати 

конкретну модель БПЛА. Це є критично важливим, оскільки для глушіння 

різних протоколів зв'язку потрібні різні тактики та параметри РЕБ. 

 

 

Рис. 1.11. Метод виявлення БПЛА з допомогою НМ 
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Саме тому головною перевагою використання нейронних мереж є їхня 

надзвичайна швидкість і точність ідентифікації та класифікації загрози, а також 

їхня здатність адаптуватися до нових, раніше невідомих загроз шляхом 

швидкого перенавчання моделі, що перетворює сенсорні системи на 

інтелектуальні аналітичні комплекси.  

Водночас, цей метод має значні вимоги та недоліки: для швидкої роботи 

потрібні потужні обчислювальні ресурси, що підвищує вартість і складність 

обладнання. Крім того, ефективність моделі прямо залежить від якості та 

обсягу навчального датасету — без великих, ретельно розмічених наборів 

даних, що охоплюють максимально можливу різноманітність сценаріїв, 

надійність системи значно знижується. 

 

1.4. Висновки до розділу 1. 

 

Проблема виявлення та нейтралізації БПЛА являє собою одну з найбільш 

динамічних і складних загроз сучасності, що вимагає переходу від ізольованих 

сенсорів до інтегрованої, багатошарової архітектури протидії. Жоден окремий 

метод не може гарантувати повну ефективність проти всього спектра загроз, 

починаючи від малих комерційних та FPV - дронів і закінчуючи стратегічними 

крилатими БПЛА. Основою успіху є комбінація пасивних і активних методів: 

РЧ - сканування виступає як перша лінія оборони, забезпечуючи раннє 

виявлення та ідентифікацію моделі за цифровим підписом сигналу, а також 

визначаючи місцезнаходження оператора. Водночас, для виявлення швидких, 

автономних або РЧ - мовчазних цілей, а також для точного визначення їхніх 

координат, незамінними є радіолокаційні системи. Ці два методи 

доповнюються оптичним та інфрачервоним зондуванням, які забезпечують 

візуальну верифікацію та безперервний супровід цілі вдень і вночі. Усі ці 

сенсорні дані, що містять шум і похибки, не можуть бути ефективно 

використані без інтелектуальної обробки. Сучасні рішення покладаються на 
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НМ для автоматичної класифікації: вони аналізують спектрограми РЧ - 

сигналів для розпізнавання протоколу зв'язку і водночас використовують 

комп'ютерний зір для відрізнення БПЛА від птахів на зображеннях. Після 

класифікації та точного відстеження траєкторії за допомогою алгоритмів типу 

фільтр Калмана, система швидко приймає рішення про нейтралізацію — від 

м'якої протидії, спрямованої на глушіння навігаційних або керуючих каналів, 

до фізичного знищення. Таким чином, ефективний захист досягається лише 

через безперервний цикл виявлення, інтелектуальної ідентифікації та швидкої, 

адаптивної реакції, заснованої на взаємодії всіх доступних технологій.  
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РОЗДІЛ 2 

ОСНОВНА ЧАСТИНА 

 

2.1. Виклики позиціонування та роль фільтра Калмана 

 

Точне та надійне визначення стану об'єктів є фундаментальним завданням 

у багатьох галузях, від навігації БПЛА і робототехніки до фінансового 

моделювання. Однак, дані, отримані від фізичних сенсорів, завжди містять 

випадкові похибки та неточності. Крім того, неможливо отримати ідеально 

точну модель динаміки самого об'єкта. 

Для подолання цих обмежень та забезпечення оптимальної оцінки стану 

системи в умовах невизначеності необхідні потужні математичні інструменти. 

Таким інструментом є фільтр Калмана. 

Фільтр Калмана – це рекурсивний алгоритм, який оптимально поєднує 

вимірювання, отримані від сенсорів, з прогнозами, зробленими на основі 

математичної моделі системи. Цей підхід спрямований на зменшення 

середньоквадратичної похибки визначення стану, роблячи його ідеальним 

інструментом для задач злиття даних сенсорів, де необхідно синтезувати 

інформацію від різнорідних джерел. 

 

2.2. Принцип роботи фільтра Калмана 

 

Алгоритм фільтра Калмана був вперше представлений Рудольфом 

Калманом [4] і містить детальне пояснення математичного виведення та його 

застосування до лінійних систем з гауссовим шумом. Висока ефективність 

цього авторегресійного алгоритму обробки даних [5] забезпечила його широке 

використання у сфері прогнозування траєкторій. Він є ключовим інструментом, 

зокрема, у системах навігації та визначення орієнтації сенсорів БПЛА. Фільтр 

Калмана здатний перетворювати вимірювання, отримані від акселерометрів, 
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гіроскопів та інших сенсорів, на оцінку орієнтації, яка слугує зворотним 

зв'язком для системи. Принцип роботи фільтра полягає у злитті даних: він 

об'єднує оптимальну оцінку попереднього моменту з поточними 

вимірюваннями для отримання прогнозованого значення, яке потім зливається з 

вимірюваннями від магнітометра, GPS та інших сенсорів задля досягнення 

найбільш точного визначення поточного стану.  

Фільтр Калмана виступає високоефективним саморегресійним фільтром, 

здатним оцінювати стан динамічної об’єкта за наявності невизначеностей, 

завдяки чому він набуває статусу універсального засобу. Принцип його роботи 

– це програмна фільтрація, яка використовує мінімальну середньоквадратичну 

похибку як критерій найкращої оцінки. Він використовує модель простору 

станів сигналу та шуму, а також оцінене значення попереднього моменту та 

спостережуване значення поточного моменту для оновлення оцінки змінної 

стану. Алгоритм базується на встановлених рівняннях системи та 

спостереження для створення оцінки сигналу, що задовольняє мінімальній 

середньоквадратичній похибці [4]. Для інтуїтивного розуміння роботи фільтра 

Калмана наведена схематична діаграма (рис. 2.1). 

 

 

Рис. 2.1. Схематична діаграма застосування фільтра Калмана 
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На рисунку показано, що модель системи використовується для 

прогнозування поточного стану системи на основі попереднього стану, а 

модель спостереження використовується для отримання виміряного значення 

поточного стану. Потім фільтр Калмана зливає прогнозований стан і виміряне 

значення, щоб отримати оптимальну оцінку поточного стану. Схема 

функціонування алгоритму фільтру Калмана  представлено нижче (рис. 2.2). 

 

 

Рис. 2.2. - Конкретні кроки алгоритму фільтра Калмана 

 

У практичних застосуваннях алгоритм фільтра Калмана все ще має певні 

обмеження, такі як висока обчислювальна складність та низька робастність 
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(стійкість до перешкод). Тому необхідно оптимізувати алгоритм для 

відповідності вимогам БПЛА щодо роботи у реальному часі та надійності. 

Серед поширених методів оптимізації є використання спрощеної моделі 

системи або вимірювання для зниження обчислювальної складності. Інший 

метод — застосування технології адаптивної фільтрації для підвищення 

робастності алгоритму. Крім того, інтеграція кількох алгоритмів часто дає 

кращі результати, ніж використання одного: наприклад, інтеграція фільтра 

Калмана та часткового фільтра може ефективно підвищити точність та 

робастність алгоритму. 

На закінчення, алгоритм фільтра Калмана активно застосовується і є дуже 

універсальним методом фільтрації у сенсорних системах для БПЛА. Він може 

ефективно оцінювати стан системи та підвищувати її точність і стабільність. 

Однак, у практичних застосуваннях алгоритм все ще має певні обмеження, і 

його необхідно оптимізувати для відповідності вимогам БПЛА. По-перше, 

фільтр Калмана вимагає, щоб похибка шуму системи задовольняла гауссовому 

розподілу, що не завжди спостерігається в реальних системах. По-друге, 

алгоритм фільтра Калмана базується на теорії лінійних систем, але багато 

систем у практичних застосуваннях є нелінійними, що вимагає лінеаризації 

системи, а це, своєю чергою, може ввести додаткові похибки. Крім того, 

обчислювальна складність алгоритму фільтра Калмана є відносно значною, що 

може створювати певні проблеми для систем БПЛА, які вимагають 

продуктивності в реальному часі. 

 

2.3. Нечіткий алгоритм 

 

Датчики є важливим компонентом БПЛА, оскільки вони можуть збирати 

різні типи даних, такі як зображення, відео, звук та інформацію про 

температуру. Однак точність та чутливість датчиків є обмеженими, і тому 

потрібні певні алгоритми для підвищення якості та достовірності отриманих 
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даних. Питання про те, як використовувати обмежену інформацію про 

навколишнє середовище, отриману різноманітними датчиками на БПЛА, для 

досягнення керування в реальному часі, завжди було предметом занепокоєння 

для дослідників БПЛА. Це також є складною проблемою, яку необхідно 

вирішити для забезпечення уникнення перешкод у реальному часі мобільними 

БПЛА. 

У цьому контексті підхід нечіткого алгоритму до системи керування БПЛА 

демонструє хороші результати [5]. У мові програмування дані та змінні - 

вказівники в блоках пам'яті мають відношення "один до одного", і нечіткі 

оператори виведення мають схожий зв'язок. Якщо вхідна величина дистанції у 

нечіткому керуванні встановлюється як адреса вказівника, то вихідна величина 

керування може зберігатися як збережена інформація в елементі масиву. Тобто, 

коли зонд БПЛА виявляє вхідну позиційну дистанцію, може бути викликана 

інформація позиційного керування, яка була збережена в масиві, для керування 

робочим положенням БПЛА [6]. 

Нечіткі алгоритми є ефективним методом для обробки невизначеності та 

нечіткості, і вони можуть підвищити продуктивність датчиків БПЛА. Базові 

етапи нечіткого алгоритму включають: фазифікацію, встановлення нечітких 

правил, нечітке виведення та дефазифікацію. Для кращого розуміння нечіткого 

алгоритму наведено блок-схему його застосування (рис. 2.3). 

 

 

Рис. 2.3. Конкретні етапи нечіткого алгоритму 
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Нечіткі алгоритми головним чином використовуються в таких галузях, 

пов'язаних із датчиками БПЛА: 

- Моніторинг цілей являє собою ключову функцію сенсорів БПЛА, 

оскільки він дозволяє БПЛА контролювати та відстежувати положення та рух 

цілі в режимі реального часу. Однак, через зміни стану руху цілі та зовнішніх 

умов, відстеження цілей часто стикається з багатьма викликами, такими як 

затінення, зміни освітлення та шумові перешкоди. Для вирішення цих проблем 

доцільно застосовувати методи нечіткої логіки для моделювання та 

прогнозування цілі. Наприклад, система нечіткої логіки може бути використана 

для опису зв'язку між станом руху та положенням цілі, тим самим зменшуючи 

помилки та невизначеність. 

- Оцінка положення є ще одним важливим застосуванням датчиків БПЛА, 

оскільки вона може допомогти БПЛА визначати власний напрямок та позицію. 

Однак, через похибки вимірювання датчиків та умови навколишнього 

середовища, оцінка положення часто має відносно великі похибки. Для 

підвищення точності оцінки положення нечіткі алгоритми можуть бути 

використані для корекції та оптимізації. Наприклад, нечіткий фільтр Калмана 

може бути використаний для злиття та фільтрації результатів роботи кількох 

датчиків, тим самим підвищуючи точність та стійкість оцінки положення. 

- Обробка зображень є важливою сферою застосування датчиків БПЛА, 

оскільки вона може виконувати такі операції, як зниження шуму, покращення 

та розпізнавання зображень. Однак, через складність та різноманітність 

зображень, обробка зображень часто потребує роботи з великою кількістю 

нечіткості та невизначеності. Для покращення ефекту обробки зображень 

нечіткі алгоритми можуть бути використані для сегментації зображень, 

виділення ознак та класифікації. Наприклад, нечіткий алгоритм кластеризації 

C-середніх може бути використаний для сегментації зображень, тим самим 

зменшуючи виникнення помилкових оцінок та пропущених виявлень. 
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- Планування шляху є важливим застосуванням датчиків БПЛА, оскільки 

воно може забезпечити оптимальний маршрут польоту та стратегію для БПЛА. 

Однак, через складність та невизначеність навколишнього середовища, 

планування шляху часто потребує врахування багатьох факторів та обмежень. 

Для підвищення ефективності та точності планування шляху, нечіткі алгоритми 

можуть бути використані для пошуку та оптимізації маршруту. Наприклад, 

нечіткий A* алгоритм може бути використаний для пошуку та оцінки шляху, 

тим самим знаходячи оптимальне рішення маршруту. 

Проте, нечіткі алгоритми також мають багато обмежень у їхньому 

застосуванні до датчиків БПЛА. По-перше, обчислювальна складність нечітких 

алгоритмів є відносно високою, оскільки вони вимагають великого обсягу 

обробки даних та розрахунків, що споживає значні ресурси процесорного часу 

та пам'яті. Це є серйозною проблемою для БПЛА, які мають високі вимоги до 

роботи в реальному часі. По-друге, необхідно підвищувати стійкість нечітких 

алгоритмів, оскільки вони залучають велику кількість параметрів та змінних, і 

їхня стійкість є відносно низькою. У процесі фактичного застосування на 

продуктивність нечіткого алгоритму можуть впливати зміни параметрів або 

шумові перешкоди. 

 

2.4. Комбіновані алгоритми фільтрації Калмана та нечіткі алгоритми 

 

Для датчиків БПЛА зазвичай використовується комбінований метод 

навігації, що інтегрує систему глобального позиціонування та інерціальну 

навігацію. При цьому фільтр Калмана є основним методом для злиття даних 

цих датчиків. Оскільки навігаційна система БПЛА є нелінійною системою, 

потрібен нелінійний алгоритм фільтрації. На сьогоднішній день розширений 

фільтр Калмана часто використовується для оцінки стану БПЛА у фактичних 

навігаційних системах БПЛА [7]. 
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У процесі навігації БПЛА сигнал GPS не завжди є ефективним. Приймач 

GPS може мати короткочасні збої. Через тимчасове переривання GPS, оцінка 

навігаційної фільтрації буде відхилятися від реального стану польоту. Коли 

навігаційна система переходить із стану збою до нормального стану, тоді 

стандартний алгоритм розширеного фільтру Калманане може вчасно 

відреагувати та повернутися до нормального стану фільтрації. Тобто, 

розширеному фільтру Калмана бракує здатності швидко реагувати на раптові 

зміни [8]. Крім того, ця класична теорія оптимальної фільтрації Калмана 

накладає суворі вимоги на динамічні системи: продуктивність Калманової 

фільтрації є високою, коли геометрична інформація спостереження та 

динамічна модель й статистична інформація є надійними. Однак на практиці 

важко виконати цю умову, і використання неточних або неправильних моделей 

та статистики шуму для проєктування фільтра Калмана спотворить результати 

фільтрації або навіть призведе до розбіжності фільтрації. 

Для вирішення цієї проблеми було розроблено адаптивну фільтрацію 

Калмана. Ескамілья-Амброзіо та співавтори запропонували алгоритм злиття 

даних адаптивного фільтра Калмана, щоб краще відповідати оцінюваним 

значенням коваріації [9]. Ця адаптація полягає в адаптивному налаштуванні в 

режимі реального часу матриці коваріації шуму вимірювань (R) або матриці 

коваріації шуму процесу (Q). Це покращує продуктивність фільтра Калмана та 

запобігає розбіжності фільтра, коли R або Q є невизначеними [10]. 

Для покращення адаптивного фільтра Калмана може бути застосоване 

поєднання нечітких алгоритмів для злиття даних. Використання нечітких 

правил дозволяє оцінювати матрицю коваріації шуму, підвищуючи стійкість та 

адаптивність алгоритму. Етапи реалізації використання алгоритму фільтрації 

Калмана та нечіткого алгоритму для злиття даних багатосенсорних позиційних 

датчиків БПЛА є наступними: 

Першим кроком є збір даних вимірювань від кількох датчиків, включаючи 

GPS, інерціальний вимірювальний блок, ультразвукові та візуальні датчики. Ці 
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дані можуть містити шум та похибки, і потребують попередньої обробки та 

фільтрації. 

На етапі попередньої обробки зібрані дані піддаються обробці, що включає 

зниження шуму, корекцію, нормалізацію, для підвищення якості та надійності 

даних. 

Для злиття даних із сенсорів застосовується алгоритм фільтра Калмана. 

Цей рекурсивний алгоритм фільтрації здатен оцінювати стан системи на основі 

поточних значень вимірювань та попередніх знань. Завдяки цьому, у злитті 

даних від багатьох датчиків він об'єднує значення вимірювань від кількох 

датчиків в більш точну оцінку стану. 

Для обробки невизначеності та нечіткості в даних, отриманих від датчиків, 

застосовується нечіткий алгоритм. Він здатен поєднувати лінгвістичні змінні та 

нечіткі правила для виконання нечіткого виведення та отримання більш точної 

оцінки стану. 

На етапі злиття даних відбувається об'єднання результатів, отриманих 

алгоритмом фільтрації Калмана та нечітким алгоритмом, що дає кінцеву оцінку 

стану. Як стратегії злиття можуть використовуватися зважене усереднення та 

оцінка максимальної правдоподібності. 

Кінцева оцінка стану застосовується для позиціонування та навігації 

БПЛА, забезпечуючи більш точне та надійне позиціонування. Слід зазначити, 

що реалізація злиття даних від багатьох датчиків вимагає врахування часової 

синхронізації та просторового вирівнювання датчиків для забезпечення 

узгодженості та точності даних. Водночас необхідно також враховувати 

обмеження обчислювальних ресурсів та продуктивність у реальному часі для 

забезпечення здійсненності та ефективності алгоритму. 
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2.5. Лінійний фільтр Калмана 

 

Лінійний фільтр Калмана є фундаментальним алгоритмому системах 

навігації та позиціонування БПЛА, де він слугує оптимальним інструментом 

для рекурсивної оцінки стану. Його ключове призначення полягає в тому, щоб 

інтегрувати зашумлені та неточні вимірювання від датчиків БПЛА для 

отримання найбільш вірогідної та точної оцінки траєкторії, швидкості та 

орієнтації апарата. Лінійний фільтр Калмана вважається оптимальним, коли 

динамічні моделі системи та моделі спостережень є лінійними, а шуми 

відповідають Гауссовому розподілу. Хоча навігаційна система БПЛА за своєю 

природою нелінійна, лінійний фільтр Калмана є фундаментальною основою та 

застосовується для оцінки лінійних підсистем БПЛА. 

Етап передбачення: 

На цьому етапі використовується модель системи для прогнозування 

поточного стану та коваріації похибки на основі попереднього оціненого стану. 

Визначення прогнозу стану: 

𝑥̂𝑘
− = 𝐹𝑘𝑥̂𝑘−1

+ + 𝐵𝑘𝑢𝑘 (2.1) 

де 𝑥̂𝑘
− - прогнозований вектор стану у момент часу k. 

𝑥̂𝑘−1
+  - оцінений вектор стану у попередній момент часу k−1. 

𝐹𝑘 - матриця переходу стану, що пов'язує стан k−1 зі станом k. 

𝐵𝑘  - матриця керування. 

𝑢𝑘 - вектор керуючого входу. 

Прогноз коваріації похибки: 

Pk
− = FkPk−1

+ Fk
T + Qk (2.2) 

де Pk
− - прогнозована коваріація помилки розрахунку стану системи у момент k. 

Pk−1
+  - матриця коваріації похибки оцінки на попередньому кроці k−1. 
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Fk
T - транспонована матриця переходу стану Fk. 

Qk  - коваріаційна матриця шуму процесу, яка враховує невизначеність, 

спричинену недоліками моделі або непередбаченими зовнішніми збуреннями. 

Етап уточнення кореляції: 

На цьому етапі прогноз стану та його коваріації коригується за допомогою 

нових вимірювань. 

Обчилення коефіцієнту Калмана: 

Kk = Pk
−Hk

T(HkPk
−Hk

T + Rk)
−1 (2.3) 

де Kk – коефіцієнт Калмана у момент часу k. Визначає вагу нових спостережень 

порівняно з прогностичною оцінкою. 

Hk
T - транспонована матриця спостереження Hk. 

Hk - матриця спостереження, яка пов'язує простір стану з простором 

вимірювань. 

Rk - коваріаційна матриця шуму вимірювання. 

Уточнення стану: 

x̂k
+ = x̂k

− + Kk(zk − Hkx̂k
−) (2.4) 

де x̂k
+ - оцінений вектор стану у момент часу k. 

zk – вектор фактичних вимірювань у момент часу k. 

(zk − Hkx̂k
−) - залишок вимірювання, різниця між фактичним вимірюванням та 

прогнозним значенням спостереження Hkx̂k
−. 

Уточнення коваріації похибки: 

Pk
+ = (I − KkHk)Pk

− (2.5) 

де Pk
+ - оцінена коваріаційна матриця похибки стану у момент часу k. 

I – одинична матриця відповідної розмірності. 

Hk – матриця спостереження. 
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Початкові умови лінійного фільтра Калмана: 

Для початку ітераційного процесу фільтра Калмана необхідні дві основні 

початкові умови. Вони зазвичай ініціалізуються в момент часу k = 0. 

x̂0
+ = E[x0] = μ0 (2.6) 

де x̂0
+ - початковий оцінений вектор стану. 

E[x0] – математичне сподівання істинного початкового стану x0. 

μ0 - вектор, що представляє найкраще початкову оцінку стану системи. 

Початкова коваріація похибки: 

P0
+ = Cov(x0 − x̂0

+) = ∑0 (2.7) 

де P0
+ - початкова коваріаційна матриця похибки стану. 

Cov(… ) - оператор коваріації. 

∑0 - матриця, що відображає початкову невпевненість/невизначеність у 

початковій оцінці стану x̂0
+. Чим більші значення на діагоналі, тим більша 

початкова невизначеність. 

 

2.6. Висновки до розділу 2 

 

Аналіз сучасних підходів до навігації БПЛА свідчить, що фільтр Калмана є 

незамінним рекурсивним інструментом для оцінки стану системи в умовах 

зашумлених даних, оскільки він мінімізує середньоквадратичну похибку 

шляхом злиття прогнозів моделі та фактичних вимірювань. Проте класичний 

алгоритм має суттєві обмеження: він чутливий до нелінійності процесів, 

вимагає точного знання статистики шумів та втрачає стійкість при раптових 

змінах середовища, наприклад, при збоях GPS. Для подолання цих недоліків 

доцільно впроваджувати нечіткі алгоритми, які завдяки апарату фазифікації та 

лінгвістичних правил ефективно обробляють невизначеність і дозволяють 

системі адаптуватися до складних умов. Найбільш ефективним рішенням є 



45 

 

створення комбінованих систем, де нечітка логіка в реальному часі корегує 

параметри фільтра Калмана (матриці коваріації Q та R). Така інтеграція 

дозволяє нівелювати високу обчислювальну складність та обмеження 

лінійності, забезпечуючи високу точність, стабільність та здатність БПЛА 

функціонувати в режимі реального часу навіть за наявності інтенсивних 

перешкод.  
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РОЗДІЛ 3 

НАУКОВО-ДОСЛІДНИЦЬКА ЧАСТИНА 

 

3.1. Опис програмної реалізації чисельного моделювання 

 

Програмна реалізація чисельного моделювання алгоритму Калмана для 

прогнозування траєкторії інерційних об’єктів виконана у середовищі Matlab, 

що забезпечує потужні інструменти для матричних обчислень та візуалізації 

результатів. Структура коду побудована за модульним принципом, де кожна 

секція відповідає за окремий етап моделювання: визначення параметрів, 

генерацію даних, фільтрацію та аналіз результатів. 

Часові параметри симуляції визначаються дискретним кроком 

інтегрування Δ𝑡 = 0.1 с, що забезпечує достатню точність чисельного розв’язку 

диференціальних рівнянь руху при збереженні обчислювальної ефективності. 

Загальна тривалість моделювання встановлена як 𝑡𝑡𝑜𝑡𝑎𝑙 = 20 с, що дозволяє 

відстежити повну траєкторію об’єкта від початку руху до моменту падіння. 

Кількість часових кроків обчислюється як 𝑁 = 𝑡𝑡𝑜𝑡𝑎𝑙/Δ𝑡 + 1 = 201, формуючи 

часовий вектор t = [0, Δ𝑡, 2Δ𝑡,… , 𝑡𝑡𝑜𝑡𝑎𝑙]
𝑇. 

Початкові умови руху задаються вектором стану, що включає координати 

та швидкості у двовимірному просторі. Початкове положення об’єкта 

визначається координатами 𝑥0 = 0 м та 𝑦0 = 100 м, що відповідає запуску з 

висоти сто метрів над поверхнею землі. Початкові компоненти швидкості 

встановлені як 𝑣𝑥0 = 50 м/с у горизонтальному напрямку та 𝑣𝑦0 = 30 м/с у 

вертикальному, що моделює балістичний рух із суттєвою початковою 

кінетичною енергією. Таким чином, повний вектор початкового стану 

записується як: 

x0 = [

𝑥0

𝑦0

𝑣𝑥0

𝑣𝑦0

] = [

0
100
50
30

]    (3.1) 
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Фізичні параметри системи включають прискорення вільного падіння 𝑔 =

9.81 м/с², що відповідає стандартному значенню на поверхні Землі на рівні 

моря. Маса об’єкта прийнята рівною 𝑚 = 1.0 кг, що спрощує обчислення сил 

без втрати загальності моделі. Коефіцієнт опору повітря встановлено як 𝑐𝑑 =

0.01, що характеризує силу аеродинамічного опору, пропорційну квадрату 

швидкості руху об’єкта через повітряне середовище. 

Параметри шумів вимірювань визначаються стандартними відхиленнями, 

що характеризують точність сенсорів. Для координатних вимірювань 

стандартне відхилення становить 𝜎𝑥 = 𝜎𝑦 = 5 м, що моделює типову похибку 

GPS-приймачів або радарних систем спостереження. Вимірювання швидкостей 

характеризуються меншою абсолютною похибкою зі стандартними 

відхиленнями 𝜎𝑣𝑥
= 𝜎𝑣𝑦

= 2 м/с, що відповідає використанню доплерівських 

датчиків або диференціюванню координатних вимірювань з подальшою 

фільтрацією. 

Процесні шуми відображають невизначеність моделі руху та неврахований 

вплив зовнішніх факторів, таких як поривчастий вітер, турбулентність 

атмосфери або нестабільність аеродинамічних характеристик. Стандартні 

відхилення процесного шуму для прискорень встановлені як 𝜎𝑎𝑥
= 𝜎𝑎𝑦

= 0.5 

м/с², що відображає помірний рівень модельної невизначеності. Ці параметри 

безпосередньо впливають на формування коваріаційної матриці процесного 

шуму та визначають баланс між довірою до моделі та довірою до вимірювань у 

процесі фільтрації. 

Код організовано у послідовні секції, кожна з яких виконує специфічну 

функцію у загальному алгоритмі симуляції. Після визначення параметрів 

виконується побудова матриць простору станів, генерація істинної траєкторії з 

нелінійними ефектами, створення зашумлених вимірювань, ініціалізація 

фільтра Калмана, виконання циклу фільтрації, прогнозування майбутньої 

траєкторії, аналіз продуктивності та візуалізація результатів. Така структура 
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забезпечує модульність коду та легкість модифікації окремих компонентів для 

дослідження різних режимів роботи алгоритму. 

 

3.2. Формування моделі у Matlab 

 

Формування математичної моделі у просторі станів становить основу для 

застосування фільтра Калмана та вимагає ретельного визначення всіх матриць 

системи. Вектор стану обирається чотиривимірним і включає як координати 

положення, так і компоненти швидкості у двовимірному просторі: 

 

x(𝑘) =

[
 
 
 
𝑥(𝑘)

𝑦(𝑘)
𝑣𝑥(𝑘)

𝑣𝑦(𝑘)]
 
 
 

     (3.2) 

 

де 𝑥(𝑘) та 𝑦(𝑘) представляють горизонтальну та вертикальну координати 

об’єкта у момент часу 𝑘, а 𝑣𝑥(𝑘) та 𝑣𝑦(𝑘) відповідають компонентам швидкості 

у цих напрямках. Така структура вектора стану дозволяє одночасно оцінювати 

як кінематичні, так і динамічні характеристики руху. 

Матриця переходу станів F описує еволюцію системи від моменту 𝑘 до 

моменту 𝑘 + 1 за відсутності керуючих впливів та процесних шумів. Для 

моделі з постійною швидкістю, яка є лінійною апроксимацією реального 

нелінійного руху, матриця переходу формується з урахуванням кінематичних 

співвідношень 𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑥Δ𝑡 та 𝑦𝑘+1 = 𝑦𝑘 + 𝑣𝑦Δ𝑡: 

 

F = [

1 0 Δ𝑡 0
0 1 0 Δ𝑡
0 0 1 0
0 0 0 1

]    (3.3) 
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Діагональні одиничні елементи відображають інерційність координат та 

швидкостей, тоді як елементи 𝐹13 = 𝐹24 = Δ𝑡 описують інтеграцію швидкості 

для отримання зміщення положення. Ця матриця є невиродженою з 

визначником, рівним одиниці, що забезпечує оборотність перетворення та 

збереження простору станів. 

Матриця керуючих впливів B зв’язує вектор керування з вектором стану та 

відображає вплив зовнішніх сил на динаміку системи. У контексті балістичного 

руху основним керуючим впливом є прискорення вільного падіння, а також 

аеродинамічний опір: 

 

B = [

0 0
0 0
Δ𝑡 0
0 Δ𝑡

]     (3.4) 

 

Ця матриця має розмірність 4 × 2 і відображає той факт, що зовнішні 

прискорення безпосередньо впливають лише на компоненти швидкості через 

інтегрування протягом часового кроку. Вектор керування 𝐮(𝑘) у загальному 

випадку містить дві компоненти прискорення, які змінюються в часі залежно 

від поточної швидкості об’єкта: 

 

u(𝑘) = [
𝑎𝑥(𝑘)
𝑎𝑦(𝑘)

]     (3.5) 

 

Матриця вимірювань H визначає зв’язок між істинним станом системи та 

вектором вимірювань. У даній реалізації передбачається, що всі компоненти 

вектора стану можуть бути безпосередньо виміряні, хоча і з певними 

похибками. Це відповідає ситуації, коли доступні як координатні виміри від 

GPS або радара, так і вимірювання швидкості від доплерівських датчиків: 
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H = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] = I4    (3.6) 

 

Така матриця вимірювань є одиничною матрицею розміру 4 × 4, що 

суттєво спрощує обчислення у фільтрі Калмана, оскільки H𝑇 = H та HH𝑇 = I. 

Коваріаційна матриця процесного шуму Q відображає невизначеність 

моделі руху та формується на основі припущення про випадкові прискорення, 

що діють на об’єкт. Для моделі з постійною швидкістю та випадковими 

прискореннями матриця Q може бути виведена з розгляду дискретно-часової 

інтеграції білого шуму прискорення. Елементи цієї матриці мають складну 

структуру, що враховує кореляцію між похибками положення та швидкості: 

 

Q =

[
 
 
 
 
 
 
Δ𝑡4

4
𝜎𝑎𝑥

2 0
Δ𝑡3

2
𝜎𝑎𝑥

2 0

0
Δ𝑡4

4
𝜎𝑎𝑦

2 0
Δ𝑡3

2
𝜎𝑎𝑦

2

Δ𝑡3

2
𝜎𝑎𝑥

2 0 Δ𝑡2𝜎𝑎𝑥

2 0

0
Δ𝑡3

2
𝜎𝑎𝑦

2 0 Δ𝑡2𝜎𝑎𝑦

2
]
 
 
 
 
 
 

   (3.7) 

 

Діагональні елементи цієї матриці визначають дисперсії похибок для 

координат та швидкостей, тоді як недіагональні елементи відображають 

кореляцію між похибками положення та швидкості, що виникає внаслідок 

інтегрування випадкового прискорення. Чотирикратна залежність від Δ𝑡 у 

елементах, що відповідають координатам, відображає подвійне інтегрування 

шуму прискорення. 

Коваріаційна матриця вимірювального шуму R описує статистичні 

характеристики похибок сенсорів і має діагональну структуру, що відповідає 

припущенню про некорельованість шумів різних каналів вимірювань: 
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R =

[
 
 
 
 
𝜎𝑥

2 0 0 0

0 𝜎𝑦
2 0 0

0 0 𝜎𝑣𝑥

2 0

0 0 0 𝜎𝑣𝑦

2
]
 
 
 
 

    (3.8) 

 

При підстановці чисельних значень отримуємо матрицю з діагональними 

елементами 25, 25, 4, 4, що відповідає дисперсіям вимірювань. Діагональна 

структура цієї матриці суттєво спрощує обчислення оберненої матриці та 

добутків у формулах фільтра Калмана. 

Ініціалізація початкового стану фільтра виконується з деякою похибкою 

відносно істинного початкового стану, що моделює реальну ситуацію 

неточного знання початкових умов: 

 

x̂0 = [

0
95
48
28

]     (3.9) 

 

Початкова коваріаційна матриця похибки оцінки P0 відображає рівень 

невизначеності початкової оцінки та встановлюється як діагональна матриця з 

елементами, що перевищують типові похибки вимірювань: 

 

P0 = [

100 0 0 0
0 100 0 0
0 0 25 0
0 0 0 25

]    (3.10) 

 

Ці значення вибрані достатньо великими, щоб відобразити значну 

початкову невизначеність, яка буде швидко зменшуватися у процесі фільтрації 

по мірі надходження вимірювань. 
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3.3. Генерація істинної траєкторії 

 

Генерація істинної траєкторії об’єкта виконується шляхом чисельного 

інтегрування нелінійних диференціальних рівнянь руху, що включають вплив 

гравітації та аеродинамічного опору повітря. На відміну від спрощеної лінійної 

моделі, що використовується у фільтрі Калмана, істинна траєкторія відображає 

реальну фізику руху з усіма нелінійними ефектами, що дозволяє оцінити 

ефективність лінійної апроксимації у алгоритмі фільтрації. 

Рівняння руху об’єкта у векторній формі записуються як: 

 

𝑑r

𝑑𝑡
= v, 

𝑑v

𝑑𝑡
= a𝑡𝑜𝑡𝑎𝑙    (3.11) 

 

де r = [𝑥, 𝑦]𝑇 є вектором положення, v = [𝑣𝑥, 𝑣𝑦]𝑇 - вектором швидкості, а a𝑡𝑜𝑡𝑎𝑙 

- сумарним прискоренням, що включає гравітаційну та аеродинамічну 

компоненти. 

Гравітаційне прискорення діє виключно у вертикальному напрямку і 

задається вектором: 

 

a𝑔 = [
0

−𝑔
] = [

0
−9.81

]  м/с
2
    (3.12) 

 

Аеродинамічний опір повітря моделюється як сила, пропорційна квадрату 

модуля швидкості та спрямована проти вектора швидкості. Модуль швидкості 

обчислюється як: 

 

𝑣 = |v| = √𝑣𝑥
2 + 𝑣𝑦

2    (3.13) 

 

Прискорення, зумовлене опором повітря, визначається згідно з 

квадратичною моделлю опору: 
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a𝑑 = −
𝑐𝑑

𝑚
𝑣v = −

𝑐𝑑

𝑚
√𝑣𝑥

2 + 𝑣𝑦
2 [

𝑣𝑥

𝑣𝑦
]  (3.14) 

 

що можна розкласти на компоненти: 

 

𝑎𝑑𝑥
= −

𝑐𝑑

𝑚
𝑣𝑥√𝑣𝑥

2 + 𝑣𝑦
2    (3.15) 

𝑎𝑑𝑦
= −

𝑐𝑑

𝑚
𝑣𝑦√𝑣𝑥

2 + 𝑣𝑦
2    (3.16) 

 

При підстановці значень 𝑐𝑑 = 0.01 та 𝑚 = 1.0 кг отримуємо спрощені 

вирази для компонентів прискорення опору: 

 

𝑎𝑑𝑥
= −0.01 ⋅ 𝑣𝑥 ⋅ 𝑣    (3.17) 

𝑎𝑑𝑦
= −0.01 ⋅ 𝑣𝑦 ⋅ 𝑣    (3.18) 

 

Сумарне прискорення у кожен момент часу визначається як векторна сума 

гравітаційної та аеродинамічної компонент: 

 

a𝑡𝑜𝑡𝑎𝑙 = a𝑔 + a𝑑 = [
𝑎𝑑𝑥

−𝑔 + 𝑎𝑑𝑦

]   (3.19) 

 

Чисельне інтегрування цих рівнянь виконується методом Ейлера першого 

порядку, що забезпечує прийнятну точність при достатньо малому часовому 

кроці Δ𝑡 = 0.1 с. Дискретні рекурентні співвідношення для оновлення стану 

записуються як: 

 

x𝑘+1 = x𝑘 + v𝑘Δ𝑡    (3.20) 

v𝑘+1 = v𝑘 + a𝑡𝑜𝑡𝑎𝑙(𝑘)Δ𝑡    (3.21) 
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або в компонентній формі: 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑥,𝑘Δ𝑡    (3.22) 

𝑦𝑘+1 = 𝑦𝑘 + 𝑣𝑦,𝑘Δ𝑡    (3.23) 

𝑣𝑥,𝑘+1 = 𝑣𝑥,𝑘 + 𝑎𝑑𝑥
(𝑘)Δ𝑡    (3.24) 

𝑣𝑦,𝑘+1 = 𝑣𝑦,𝑘 + (−𝑔 + 𝑎𝑑𝑦
(𝑘))Δ𝑡   (3.25) 

 

Алгоритм генерації траєкторії виконується ітеративно, починаючи з 

початкового стану 𝐱0 і послідовно обчислюючи стани у наступні моменти часу. 

На кожному кроці спочатку обчислюється модуль швидкості 𝑣𝑘 = √𝑣𝑥,𝑘
2 + 𝑣𝑦,𝑘

2 , 

потім визначаються компоненти прискорення опору та, нарешті, виконується 

оновлення стану згідно з наведеними рекурентними формулами. 

Важливою особливістю реалізації є умова зупинки симуляції при 

досягненні об’єктом поверхні землі. Ця умова перевіряється на кожному кроці 

інтегрування: 

 

якщо 𝑦𝑘+1 < 0, то 𝑦𝑘+1 : = 0, 𝑣𝑦,𝑘+1 : = 0  (3.26) 

 

Така обробка граничної умови моделює непружне зіткнення з поверхнею, 

при якому об’єкт зупиняється і більше не рухається. Горизонтальна компонента 

швидкості при цьому може залишатися ненульовою, що фізично відповідає 

ковзанню по поверхні, але у даній моделі це не призводить до подальшої зміни 

координат через нульову вертикальну координату. 

Результатом генерації є масив станів x𝑡𝑟𝑢𝑒(𝑘) розміром 4 × 𝑁, де кожен 

стовпець містить повний вектор стану у відповідний момент часу. Аналіз цієї 

траєкторії дозволяє визначити характерні параметри руху, такі як максимальна 

висота підйому 𝑦𝑚𝑎𝑥 = max𝑘𝑦𝑘 , максимальна дальність польоту 𝑥𝑚𝑎𝑥 =
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max𝑘𝑥𝑘  та час падіння 𝑡𝑖𝑚𝑝𝑎𝑐𝑡, який визначається як перший момент часу, коли 

𝑦𝑘 = 0. 

Вплив аеродинамічного опору проявляється у поступовому зменшенні 

горизонтальної швидкості об’єкта протягом усього польоту, а також у 

модифікації вертикальної компоненти руху порівняно з чисто балістичною 

траєкторією. Для заданих параметрів системи опір повітря має помірний вплив, 

оскільки коефіцієнт 𝑐𝑑 = 0.01 є відносно малим, проте його ефект 

накопичується протягом тривалого часу польоту. 

 

3.4. Моделювання вимірювань 

 

Моделювання вимірювань становить критичний етап симуляції, оскільки 

саме на основі зашумлених вимірювань фільтр Калмана повинен відновити 

істинний стан системи. У реальних системах спостереження жодне 

вимірювання не є абсолютно точним, і всі сенсори характеризуються певним 

рівнем випадкових похибок, які необхідно врахувати при моделюванні для 

адекватної оцінки продуктивності алгоритму фільтрації. 

Вектор вимірювань у кожен момент часу 𝑘 формується шляхом 

застосування матриці вимірювань до істинного стану системи з додаванням 

випадкового шуму вимірювань: 

 

z𝑘 = Hx𝑡𝑟𝑢𝑒(𝑘) + v𝑘     (3.27) 

 

де x𝑡𝑟𝑢𝑒(𝑘) є істинним вектором стану у момент часу 𝑘, H - матриця 

вимірювань, а v𝑘 - вектор випадкового вимірювального шуму. У контексті 

даної реалізації матриця вимірювань є одиничною H = I4, що означає пряме 

вимірювання всіх компонентів стану. Таким чином, співвідношення 

спрощується до: 
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z𝑘 = x𝑡𝑟𝑢𝑒(𝑘) + v𝑘    (3.28) 

 

або в компонентній формі: 

 

[
 
 
 
 
𝑧𝑥(𝑘)
𝑧𝑦(𝑘)

𝑧𝑣𝑥
(𝑘)

𝑧𝑣𝑦
(𝑘)]

 
 
 
 

=

[
 
 
 
𝑥𝑡𝑟𝑢𝑒(𝑘)
𝑦𝑡𝑟𝑢𝑒(𝑘)

𝑣𝑥,𝑡𝑟𝑢𝑒(𝑘)

𝑣𝑦,𝑡𝑟𝑢𝑒(𝑘)]
 
 
 

+

[
 
 
 
 
𝑣𝑥(𝑘)
𝑣𝑦(𝑘)

𝑣𝑣𝑥
(𝑘)

𝑣𝑣𝑦
(𝑘)]

 
 
 
 

   (3.29) 

 

Вектор вимірювального шуму 𝐯𝑘  моделюється як багатовимірний 

гаусівський білий шум з нульовим математичним сподіванням та 

коваріаційною матрицею R: 

 

v𝑘 ∼ 𝒩(0, R)      (3.30) 

 

Припущення про гаусівський характер шуму є стандартним у теорії 

фільтрації Калмана і відображає центральну граничну теорему, згідно з якою 

сума великої кількості незалежних випадкових факторів прямує до 

нормального розподілу. Коваріаційна матриця вимірювального шуму має 

діагональну структуру: 

 

R =

[
 
 
 
 
𝜎𝑥

2 0 0 0

0 𝜎𝑦
2 0 0

0 0 𝜎𝑣𝑥

2 0

0 0 0 𝜎𝑣𝑦

2
]
 
 
 
 

    (3.31) 

 

що відповідає припущенню про статистичну незалежність шумів у різних 

каналах вимірювань. Діагональні елементи цієї матриці представляють 

дисперсії відповідних компонентів шуму і визначаються квадратами 

стандартних відхилень. 
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Для координатних вимірювань стандартні відхилення встановлені як 𝜎𝑥 =

𝜎𝑦 = 5 м, що відображає типову точність систем глобального позиціонування 

або радарних систем спостереження середньої точності. Дисперсія 

координатних вимірювань становить 𝜎𝑥
2 = 𝜎𝑦

2 = 25 м². Це означає, що у 

типовому випадку похибка вимірювання координати не перевищуватиме 

±3𝜎𝑥 = ±15 м з ймовірністю приблизно 99.7% згідно з правилом трьох сигм 

для нормального розподілу. 

Вимірювання компонентів швидкості характеризуються стандартними 

відхиленнями 𝜎𝑣𝑥
= 𝜎𝑣𝑦

= 2 м/с, що відповідає дисперсіям 𝜎𝑣𝑥

2 = 𝜎𝑣𝑦

2 = 4 (м/с)². 

Такий рівень точності може бути досягнутий при використанні доплерівських 

радарів або шляхом диференціювання координатних вимірювань з подальшою 

низькочастотною фільтрацією. Відношення стандартних відхилень 

координатних та швидкісних вимірювань становить 𝜎𝑥/𝜎𝑣𝑥
= 2.5, що є типовим 

для багатьох систем спостереження. 

Генерація випадкових реалізацій вимірювального шуму виконується за 

допомогою генератора псевдовипадкових чисел з нормальним розподілом. Для 

кожної компоненти вектора шуму у момент часу 𝑘 генерується незалежна 

випадкова величина: 

 

𝑣𝑥(𝑘) = 𝜎𝑥 ⋅ 𝜉1(𝑘) 

𝑣𝑦(𝑘) = 𝜎𝑦 ⋅ 𝜉2(𝑘) 

𝑣𝑣𝑥
(𝑘) = 𝜎𝑣𝑥

⋅ 𝜉3(𝑘) 

𝑣𝑣𝑦
(𝑘) = 𝜎𝑣𝑦

⋅ 𝜉4(𝑘) 

 

(3.32) 

де 𝜉𝑖(𝑘) є незалежними випадковими величинами зі стандартним нормальним 

розподілом 𝒩(0,1). Масштабування стандартних нормальних випадкових 

величин на відповідні стандартні відхилення забезпечує правильні статистичні 

властивості вимірювального шуму. 
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Процес генерації вимірювань виконується для всіх 𝑁 = 201 часових кроків 

симуляції, формуючи масив вимірювань Z = [z1, z2, … , z𝑁] розміром 4 × 𝑁. 

Кожен стовпець цього масиву містить повний вектор вимірювань у відповідний 

момент часу: 

 

z𝑘 =

[
 
 
 
 

𝑥𝑡𝑟𝑢𝑒(𝑘) + 𝜎𝑥𝜉1(𝑘)
𝑦𝑡𝑟𝑢𝑒(𝑘) + 𝜎𝑦𝜉2(𝑘)

𝑣𝑥,𝑡𝑟𝑢𝑒(𝑘) + 𝜎𝑣𝑥
𝜉3(𝑘)

𝑣𝑦,𝑡𝑟𝑢𝑒(𝑘) + 𝜎𝑣𝑦
𝜉4(𝑘)]

 
 
 
 

    (3.33) 

 

Важливою характеристикою згенерованих вимірювань є їх статистична 

консистентність з передбаченою моделлю шуму. Емпіричне середнє похибок 

вимірювань повинно прямувати до нуля при достатньо великій кількості 

вимірювань: 

 

lim
𝑁→∞

1

𝑁
∑ (𝑁

𝑘=1 z𝑘 − x𝑡𝑟𝑢𝑒(𝑘)) = 0   (3.34) 

 

а емпірична коваріаційна матриця похибок вимірювань повинна наближатися 

до теоретичної матриці R: 

 

lim
𝑁→∞

1

𝑁−1
∑ (𝑁

𝑘=1 z𝑘 − x𝑡𝑟𝑢𝑒(𝑘))(z𝑘 − x𝑡𝑟𝑢𝑒(𝑘))𝑇 = R  (3.35) 

 

Зашумлені вимірювання відображають реалістичний сценарій, в якому 

спостерігач не має прямого доступу до істинного стану системи, а може лише 

отримувати неточні вимірювання через недосконалість сенсорів. Візуально 

зашумлені вимірювання на графіку траєкторії формують хмару точок навколо 

істинної траєкторії, де щільність розподілу точок визначається коваріаційною 
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матрицею R. Горизонтальний та вертикальний розкид цієї хмари визначаються 

стандартними відхиленнями 𝜎𝑥 та 𝜎𝑦 відповідно. 

Співвідношення сигнал-шум для вимірювань можна охарактеризувати 

через відношення типових значень вимірюваних величин до стандартних 

відхилень шумів. Для координатних вимірювань при максимальній дальності 

польоту порядку сотень метрів відношення сигнал-шум становить 𝑆𝑁𝑅𝑥 ≈

100 м/5 м = 20, або приблизно 26 дБ. Для швидкісних вимірювань при 

типових значеннях швидкості 30-50 м/с відношення становить 𝑆𝑁𝑅𝑣 ≈

40 м/с/2 м/с = 20, що також відповідає 26 дБ. 

Часова некорельованість вимірювального шуму означає, що 𝔼[v𝑘v𝑗
𝑇] = 0 

для 𝑘 ≠ 𝑗, тобто шуми у різні моменти часу є статистично незалежними. Ця 

властивість білого шуму є ключовою для коректного функціонування фільтра 

Калмана і відображає припущення про відсутність систематичних похибок або 

дрейфу у вимірювальних пристроях. 

 

3.5. Реалізація фільтра Калмана 

 

Реалізація фільтра Калмана у середовищі Matlab виконується у вигляді 

ітеративного процесу, що складається з двох послідовних етапів на кожному 

кроці: етапу прогнозування та етапу корекції. Цей двоетапний алгоритм 

забезпечує оптимальну оцінку стану системи у сенсі мінімізації 

середньоквадратичної похибки при заданих припущеннях про гаусівський 

характер шумів та лінійність системи. 

Ініціалізація фільтра виконується шляхом встановлення початкової оцінки 

стану 𝐱̂1 та початкової коваріаційної матриці похибки оцінки P1. Початкова 

оцінка встановлюється з деякою похибкою відносно істинного початкового 

стану: 
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𝐱̂1 = [

0
95
48
28

]     (3.36) 

 

що відрізняється від істинного стану x𝑡𝑟𝑢𝑒(1) = [0,100,50,30]𝑇 на величину 

похибки 𝐞1 = [0, −5, −2, −2]𝑇. Початкова коваріаційна матриця 

встановлюється як діагональна матриця з досить великими елементами, що 

відображає значну початкову невизначеність: 

 

P1 = diag(100,100,25,25)     (3.37) 

 

де діагональні елементи значно перевищують дисперсії вимірювального шуму, 

що забезпечує швидку збіжність фільтра до оптимальних оцінок після 

надходження перших вимірювань. 

Етап прогнозування виконується на початку кожної ітерації для 𝑘 =

2,3,… , 𝑁 і полягає у екстраполяції оцінки стану з попереднього моменту часу 

𝑘 − 1 до поточного моменту 𝑘 з використанням моделі динаміки системи. 

Прогнозована оцінка стану обчислюється за формулою: 

 

x̂𝑘
− = Fx̂𝑘−1 + Bu𝑘−1    (3.38) 

 

де верхній індекс “мінус” позначає апріорну оцінку до врахування вимірювання 

у момент 𝑘, F є матрицею переходу станів, B - матрицею керуючих впливів, а 

u𝑘−1 - вектором керування. У контексті балістичного руху вектор керування 

для етапу прогнозування спрощується до врахування лише гравітаційного 

прискорення: 

 

u𝑘−1
𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑

= [
0

−𝑔
] = [

0
−9.81

]   (3.39) 
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що дає апріорну оцінку стану: 

 

𝐱̂𝑘
− = [

1 0 Δ𝑡 0
0 1 0 Δ𝑡
0 0 1 0
0 0 0 1

] 𝐱̂𝑘−1 + [

0 0
0 0
Δ𝑡 0
0 Δ𝑡

] [
0

−𝑔
]  (3.40) 

 

Розкриваючи матричне множення, отримуємо компонентні 

співвідношення: 

 

𝑥̂𝑘
− = 𝑥̂𝑘−1 + 𝑣̂𝑥,𝑘−1Δ𝑡 

𝑦̂𝑘
− = 𝑦̂𝑘−1 + 𝑣̂𝑦,𝑘−1Δ𝑡 

𝑣̂𝑥,𝑘
− = 𝑣̂𝑥,𝑘−1 

𝑣̂𝑦,𝑘
− = 𝑣̂𝑦,𝑘−1 − 𝑔Δ𝑡 

(3.41) 

 

Одночасно з прогнозуванням стану виконується прогнозування 

коваріаційної матриці похибки оцінки: 

 

P𝑘
− = FP𝑘−1F

𝑇 + Q    (3.42) 

 

де Q є коваріаційною матрицею процесного шуму. Це співвідношення 

відображає зростання невизначеності оцінки при екстраполяції у часі внаслідок 

впливу процесних шумів. Перший доданок FP𝑘−1F
𝑇 описує еволюцію 

невизначеності попередньої оцінки через динаміку системи, тоді як другий 

доданок Q додає додаткову невизначеність, пов’язану з неточністю моделі. 

Етап корекції виконується після отримання вимірювання z𝑘 і полягає у 

оновленні апріорної оцінки з врахуванням нової інформації. Спочатку 

обчислюється інновація або залишок вимірювання: 
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ν𝑘 = z𝑘 − Hx̂𝑘
−     (3.43) 

 

що представляє різницю між фактичним вимірюванням та прогнозованим 

вимірюванням на основі апріорної оцінки стану. Для одиничної матриці 

вимірювань H = I4 інновація спрощується до: 

 

ν𝑘 = z𝑘 − x̂𝑘
−     (3.44) 

 

Інновація характеризує нову інформацію, що міститься у вимірюванні 

відносно прогнозованого стану. Коваріаційна матриця інновації обчислюється 

як: 

 

S𝑘 = HP𝑘
−H𝑇 + R    (3.45) 

 

що для одиничної матриці вимірювань дає: 

 

S𝑘 = P𝑘
− + R     (3.46) 

 

Ця матриця відображає сумарну невизначеність, що включає як 

невизначеність прогнозованого стану P𝑘
−, так і невизначеність вимірювання R. 

Коефіцієнт посилення Калмана (Kalman gain) є центральним елементом 

алгоритму фільтрації і обчислюється за формулою: 

 

K𝑘 = P𝑘
−H𝑇S𝑘

−1     (3.47) 

 

що для одиничної матриці вимірювань спрощується до: 

 

K𝑘 = P𝑘
−(P𝑘

− + R)−1    (3.48) 
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Коефіцієнт посилення Калмана є матрицею розміру 4 × 4, яка визначає, 

наскільки інновація впливає на корекцію оцінки стану. Елементи цієї матриці 

автоматично балансують між довірою до моделі (відображеної через P𝑘
−) та 

довірою до вимірювань (відображеної через R). Якщо невизначеність прогнозу 

велика порівняно з невизначеністю вимірювань, то K𝑘 ≈ I і фільтр значною 

мірою покладається на вимірювання. Навпаки, якщо вимірювання дуже 

зашумлені, то K𝑘 ≈ 0 і фільтр більше довіряє прогнозу моделі. 

Апостеріорна оцінка стану обчислюється шляхом корекції апріорної 

оцінки на основі інновації, зваженої коефіцієнтом посилення: 

 

x̂𝑘 = x̂𝑘
− + K𝑘ν𝑘     (3.49) 

 

або в розгорнутій формі: 

 

x̂𝑘 = x̂𝑘
− + K𝑘(z𝑘 − x̂𝑘

−)     (3.50) 

 

що можна переписати як: 

 

x̂𝑘 = (I − K𝑘)x̂𝑘
− + K𝑘z𝑘    (3.51) 

 

Ця формула показує, що апостеріорна оцінка є зваженою комбінацією 

апріорної оцінки та вимірювання, де ваги визначаються коефіцієнтом 

посилення Калмана. 

Апостеріорна коваріаційна матриця похибки оцінки оновлюється за 

формулою Джозефа: 

 

P𝑘 = (I − K𝑘H)P𝑘
−    (3.52) 
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що для одиничної матриці вимірювань спрощується до: 

 

P𝑘 = (I − K𝑘)P𝑘
−     (3.53) 

 

Це співвідношення відображає зменшення невизначеності оцінки після 

врахування вимірювання. Коваріаційна матриця завжди зменшується або 

залишається незмінною після етапу корекції, оскільки вимірювання завжди 

додає інформацію до системи. 

Альтернативна форма оновлення коваріації, що забезпечує краще числове 

кондиціонування, записується як: 

 

P𝑘 = (I − K𝑘H)P𝑘
−(I − K𝑘H)𝑇 + K𝑘RK𝑘

𝑇   (3.54) 

 

Ця форма гарантує симетричність та невід’ємну визначеність матриці P𝑘 

навіть при наявності похибок округлення у числових обчисленнях. 

Повний цикл фільтрації виконується для всіх 𝑁 − 1 кроків, послідовно 

обробляючи кожне нове вимірювання та генеруючи послідовність 

апостеріорних оцінок {x̂𝑘}𝑘=1
𝑁  та відповідних коваріаційних матриць {P𝑘}𝑘=1

𝑁 . 

Збереження повної історії коваріаційних матриць дозволяє відстежувати 

еволюцію невизначеності оцінок у часі та аналізувати збіжність фільтра. 

Статистичні властивості послідовності інновацій {ν𝑘}𝑘=2
𝑁  є важливим 

індикатором коректності роботи фільтра. Для оптимально налаштованого 

фільтра Калмана інновації повинні мати нульове математичне сподівання та 

коваріаційну матрицю, що дорівнює теоретичній матриці інновації S𝑘: 

 

𝔼[ν𝑘] = 0 

𝔼[ν𝑘ν𝑘
𝑇] = S𝑘 

(3.55) 
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Крім того, інновації повинні бути статистично незалежними у часі, що 

відповідає властивості білого шуму. Порушення цих властивостей може 

свідчити про неадекватність моделі або неправильну налаштування 

коваріаційних матриць Q та R. 

 

3.6. Прогнозування майбутньої траєкторії 

 

Прогнозування майбутньої траєкторії об’єкта за межами часового 

інтервалу, на якому були доступні вимірювання, є важливою практичною 

задачею, що дозволяє передбачити подальший рух об’єкта та прийняти 

відповідні рішення. Фільтр Калмана забезпечує природний механізм для такого 

прогнозування через послідовне застосування етапу прогнозування без етапу 

корекції, оскільки нові вимірювання відсутні. 

Прогнозування починається з останньої апостеріорної оцінки стану 𝐱̂𝑁 та 

відповідної коваріаційної матриці P𝑁, отриманих після обробки всіх доступних 

вимірювань. Ці величини використовуються як початкові умови для 

екстраполяції у майбутнє. Позначимо прогнозовані стани як x̂𝑁+𝑗
𝑝𝑟𝑒𝑑

 для 𝑗 =

1,2,… , 𝑛𝑝𝑟𝑒𝑑, де 𝑛𝑝𝑟𝑒𝑑 є кількістю часових кроків прогнозування. 

Рекурентне співвідношення для прогнозування стану має форму: 

 

x̂𝑁+𝑗
𝑝𝑟𝑒𝑑

= Fx̂𝑁+𝑗−1
𝑝𝑟𝑒𝑑

+ Bu𝑝𝑟𝑒𝑑    (3.56) 

 

де початкова умова встановлюється як x̂𝑁
𝑝𝑟𝑒𝑑

= x̂𝑁. Вектор керування для 

прогнозування встановлюється як спрощений варіант з врахуванням лише 

гравітаційного прискорення: 

 

u𝑝𝑟𝑒𝑑 = [
0

−𝑔
]     (3.57) 
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що відповідає припущенню про відсутність інформації про майбутні 

аеродинамічні ефекти. Це припущення є розумним, оскільки аеродинамічний 

опір залежить від квадрата швидкості, яка сама по собі змінюється у часі, і 

точне передбачення цього ефекту без додаткових вимірювань є 

проблематичним. 

Розкриваючи рекурентне співвідношення для компонентів стану, 

отримуємо: 

 

𝑥̂𝑁+𝑗
𝑝𝑟𝑒𝑑

= 𝑥̂𝑁+𝑗−1
𝑝𝑟𝑒𝑑

+ 𝑣̂𝑥,𝑁+𝑗−1
𝑝𝑟𝑒𝑑

Δ𝑡 

𝑦̂𝑁+𝑗
𝑝𝑟𝑒𝑑

= 𝑦̂𝑁+𝑗−1
𝑝𝑟𝑒𝑑

+ 𝑣̂𝑦,𝑁+𝑗−1
𝑝𝑟𝑒𝑑

Δ𝑡 

𝑣̂𝑥,𝑁+𝑗
𝑝𝑟𝑒𝑑

= 𝑣̂𝑥,𝑁+𝑗−1
𝑝𝑟𝑒𝑑

 

𝑣̂𝑦,𝑁+𝑗
𝑝𝑟𝑒𝑑

= 𝑣̂𝑦,𝑁+𝑗−1
𝑝𝑟𝑒𝑑

− 𝑔Δ𝑡 

(3.58) 

 

Ці рівняння показують, що горизонтальна швидкість залишається 

постійною при прогнозуванні (що є спрощенням, оскільки ігнорується опір 

повітря), тоді як вертикальна швидкість монотонно зменшується під дією 

гравітації з темпом 𝑔 м/с². 

Важливою особливістю прогнозування є врахування граничної умови 

зіткнення з поверхнею землі. На кожному кроці прогнозування перевіряється 

умова: 

 

якщо 𝑦̂𝑁+𝑗
𝑝𝑟𝑒𝑑

< 0, то 𝑦̂𝑁+𝑗
𝑝𝑟𝑒𝑑

: = 0, 𝑣̂𝑦,𝑁+𝑗
𝑝𝑟𝑒𝑑

: = 0 

 

Після виконання цієї умови подальше прогнозування припиняється, 

оскільки об’єкт вважається нерухомим на поверхні. Момент зіткнення можна 

оцінити з більшою точністю шляхом інтерполяції між останнім кроком, коли 

𝑦̂ > 0, та першим кроком, коли 𝑦̂ < 0. 
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Одночасно з прогнозуванням стану виконується прогнозування 

коваріаційної матриці, що характеризує зростання невизначеності оцінки у часі: 

 

P𝑁+𝑗
𝑝𝑟𝑒𝑑

= FP𝑁+𝑗−1
𝑝𝑟𝑒𝑑

F𝑇 + Q    (3.59) 

 

з початковою умовою P𝑁
𝑝𝑟𝑒𝑑

= P𝑁. Це рекурентне співвідношення демонструє 

монотонне зростання невизначеності при екстраполяції у майбутнє, оскільки на 

кожному кроці додається коваріаційна матриця процесного шуму Q. Темп 

зростання невизначеності визначається як властивостями динамічної системи 

(через матрицю F), так і рівнем процесного шуму (через матрицю Q). 

Діагональні елементи коваріаційної матриці прогнозу P𝑁+𝑗
𝑝𝑟𝑒𝑑

 визначають 

дисперсії похибок прогнозування для кожної компоненти стану. Стандартні 

відхилення обчислюються як: 

 

𝜎𝑥,𝑁+𝑗
𝑝𝑟𝑒𝑑

= √[P𝑁+𝑗
𝑝𝑟𝑒𝑑

]11 

𝜎𝑦,𝑁+𝑗
𝑝𝑟𝑒𝑑

= √[P𝑁+𝑗
𝑝𝑟𝑒𝑑

]22 

𝜎𝑣𝑥,𝑁+𝑗
𝑝𝑟𝑒𝑑

= √[P𝑁+𝑗
𝑝𝑟𝑒𝑑

]33 

𝜎𝑣𝑦,𝑁+𝑗
𝑝𝑟𝑒𝑑

= √[P𝑁+𝑗
𝑝𝑟𝑒𝑑

]44 

(3.60) 

 

Ці величини дозволяють побудувати довірчі інтервали для прогнозованої 

траєкторії. Зокрема, інтервал, що містить істинне значення з ймовірністю 

приблизно 99.7% (правило трьох сигм), визначається як: 

𝑥̂𝑁+𝑗
𝑝𝑟𝑒𝑑

± 3𝜎𝑥,𝑁+𝑗
𝑝𝑟𝑒𝑑

 

𝑦̂𝑁+𝑗
𝑝𝑟𝑒𝑑

± 3𝜎𝑦,𝑁+𝑗
𝑝𝑟𝑒𝑑

 
(3.61) 
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Часовий горизонт прогнозування встановлюється як 𝑛𝑝𝑟𝑒𝑑 = 50 часових 

кроків, що відповідає 𝑡𝑝𝑟𝑒𝑑 = 𝑛𝑝𝑟𝑒𝑑 ⋅ Δ𝑡 = 5 с у майбутнє. Цей горизонт є 

достатнім для демонстрації зростання невизначеності та наближення моменту 

падіння об’єкта на поверхню. Вибір горизонту прогнозування є компромісом 

між практичною корисністю довгострокового прогнозу та точністю 

екстраполяції, оскільки невизначеність зростає зі збільшенням часу 

прогнозування. 

Прогнозована траєкторія у просторі координат (𝑥, 𝑦) може бути 

параметризована як: 

 

r𝑝𝑟𝑒𝑑(𝑗) = [
𝑥̂𝑁+𝑗

𝑝𝑟𝑒𝑑

𝑦̂𝑁+𝑗
𝑝𝑟𝑒𝑑] , 𝑗 = 1,2, … , 𝑛𝑝𝑟𝑒𝑑   (3.62) 

 

з відповідною областю невизначеності, що визначається еліпсами з 

напіввісями, пропорційними стандартним відхиленням 𝜎𝑥,𝑁+𝑗
𝑝𝑟𝑒𝑑

 та 𝜎𝑦,𝑁+𝑗
𝑝𝑟𝑒𝑑

. Повна 

коваріаційна матриця позиції: 

 

P𝑝𝑜𝑠,𝑁+𝑗
𝑝𝑟𝑒𝑑

= [
[P𝑁+𝑗

𝑝𝑟𝑒𝑑
]11 [P𝑁+𝑗

𝑝𝑟𝑒𝑑
]12

[P𝑁+𝑗
𝑝𝑟𝑒𝑑

]21 [P𝑁+𝑗
𝑝𝑟𝑒𝑑

]22

]   (3.63) 

 

визначає орієнтацію та форму еліпсів невизначеності через власні значення 

та власні вектори цієї матриці. 

Аналіз темпу зростання невизначеності може бути виконаний шляхом 

дослідження еволюції детермінанта або сліду коваріаційної матриці. Слід 

матриці: 

 

tr(P𝑁+𝑗
𝑝𝑟𝑒𝑑

) = ∑ [4
𝑖=1 P𝑁+𝑗

𝑝𝑟𝑒𝑑
]𝑖𝑖    (3.64) 
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характеризує сумарну дисперсію всіх компонентів стану і є скалярною мірою 

загальної невизначеності системи. Для стабільних систем слід зростає 

приблизно лінійно з часом на великих часових масштабах, що відображає 

дифузійний характер процесу накопичення невизначеності. 

Точність довгострокового прогнозування суттєво залежить від 

адекватності лінійної моделі та правильності вибору коваріаційної матриці 

процесного шуму Q. Якщо реальна система має суттєві нелінійні ефекти (такі 

як аеродинамічний опір), які не враховуються у моделі прогнозування, то 

прогнозована траєкторія буде систематично відхилятися від істинної, і довірчі 

інтервали можуть не покривати істинних значень навіть при правильному 

врахуванні випадкових похибок. 

 

3.7. Аналіз продуктивності та точності 

 

Оцінювання якості роботи фільтра Калмана у задачі прогнозування 

траєкторії інерційних об’єктів потребує комплексного аналізу похибок 

оцінювання для всіх компонент вектора стану. В рамках реалізованого 

програмного коду Matlab було виконано детальний статистичний аналіз 

точності фільтрації на основі порівняння оціненої траєкторії з істинною 

траєкторією руху об’єкта. 

Для кількісного оцінювання точності роботи фільтра обчислювалися 

похибки оцінювання для кожної компоненти вектора стану в кожний момент 

часу. Миттєві похибки оцінювання координат та швидкостей визначалися як 

різниця між істинними значеннями та оцінками фільтра: 

𝑒𝑥(𝑘) = 𝑥true(𝑘) − 𝑥̂(𝑘) 

𝑒𝑦(𝑘) = 𝑦true(𝑘) − 𝑦̂(𝑘) 

𝑒𝑣𝑥
(𝑘) = 𝑣𝑥,true(𝑘) − 𝑣̂𝑥(𝑘) 

𝑒𝑣𝑦
(𝑘) = 𝑣𝑦,true(𝑘) − 𝑣̂𝑦(𝑘) 

(3.65) 
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де 𝑥̂(𝑘), 𝑦̂(𝑘), 𝑣̂𝑥(𝑘), 𝑣̂𝑦(𝑘) позначають оцінені фільтром значення відповідних 

компонент вектора стану в дискретний момент часу 𝑘. 

Основною метрикою якості оцінювання обрано середньоквадратичну 

похибку (Root Mean Square Error, RMSE), яка визначається для кожної 

компоненти вектора стану за формулою: 

 

RMSE𝑥 = √
1

𝑁
∑ 𝑒𝑥

2

𝑁

𝑘=1

(𝑘) 

RMSE𝑦 = √
1

𝑁
∑ 𝑒𝑦

2

𝑁

𝑘=1

(𝑘) 

RMSE𝑣𝑥
= √

1

𝑁
∑ 𝑒𝑣𝑥

2

𝑁

𝑘=1

(𝑘) 

RMSE𝑣𝑦
= √

1

𝑁
∑ 𝑒𝑣𝑦

2

𝑁

𝑘=1

(𝑘) 

 

(3.66) 

 

де 𝑁 = 201 представляє загальну кількість дискретних часових кроків 

симуляції протягом двадцяти секунд спостереження. 

Результати обчислення середньоквадратичних похибок для всіх компонент 

вектора стану наведено в таблиці 3.1 нижче. 

 

Таблиця 3.1 

Компонента стану RMSE Одиниці виміру 

Позиція X 8.61 м 



71 

 

Продовження таблиці 3.1 

Позиція Y 45.842 м 

Швидкість X 5.841 м/с 

Швидкість Y 29.451 м/с 

 

Аналіз отриманих значень середньоквадратичних похибок вказує на 

суттєву асиметрію в точності оцінювання горизонтальної та вертикальної 

компонент траєкторії. Похибка оцінювання горизонтальної координати 𝑥 

становить лише 8.610 метрів, що свідчить про високу точність відстеження 

руху вздовж горизонтальної осі. Натомість похибка оцінювання вертикальної 

координати 𝑦 досягає значно більшої величини 45.842 метрів, що пов’язано з 

впливом гравітаційного прискорення та складнішою динамікою вертикального 

руху. 

Аналогічна тенденція спостерігається для компонент швидкості. 

Середньоквадратична похибка оцінювання горизонтальної швидкості 𝑣𝑥 

становить 5.841 м/с, тоді як для вертикальної швидкості 𝑣𝑦 вона досягає 29.451 

м/с. Така різниця обумовлена тим, що вертикальна швидкість зазнає 

безперервної зміни під дією гравітаційного прискорення та сил опору повітря, 

що вносить додаткову невизначеність у модель руху. 

Для узагальненої оцінки якості позиціювання об’єкта обчислювалася 

евклідова відстань між істинним та оціненим положенням у кожний момент 

часу: 

 

𝑒pos(𝑘) = √𝑒𝑥
2(𝑘) + 𝑒𝑦

2(𝑘)    (3.67) 

 

Статистичний аналіз цієї величини дозволив отримати інтегральні 

характеристики точності просторового оцінювання, що наведені у таблиці 3.2 

нижче. 
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Таблиця 3.2 

Метрика Значення Одиниці виміру 

Середня похибка позиції 38.54 м 

Максимальна похибка позиції 67.447 м 

 

Середня похибка позиціювання величиною 38.540 метрів характеризує 

типове відхилення оціненої траєкторії від істинної протягом усього періоду 

спостереження. Максимальне значення похибки 67.447 метрів досягається в 

окремих критичних точках траєкторії, що може бути пов’язано з перехідними 

процесами на початку фільтрації або з ділянками траєкторії, де нелінійні 

ефекти опору повітря проявляються найсильніше. 

Важливим аспектом аналізу продуктивності є порівняння точності фільтра 

Калмана з точністю безпосередніх вимірювань. Для цього обчислювалася 

похибка зашумлених вимірювань відносно істинної траєкторії: 

 

𝑒meas,𝑥(𝑘) = 𝑥true(𝑘) − 𝑧𝑥(𝑘) 

𝑒meas,𝑦(𝑘) = 𝑦true(𝑘) − 𝑧𝑦(𝑘) 

𝑒meas,pos(𝑘) = √𝑒meas,𝑥
2 (𝑘) + 𝑒meas,𝑦

2 (𝑘) 

(3.68) 

 

де 𝑧𝑥(𝑘) та 𝑧𝑦(𝑘) позначають зашумлені виміряні значення координат. Середня 

похибка позиції для безпосередніх вимірювань становила 6.956 метрів. 

Порівняльний аналіз показує, що середня похибка оцінок фільтра (6.956 м) 

суттєво нижча похибки прямих вимірювань (38.540 м). Відносна зміна точності 

виражається через показник покращення: 

Improvement =
𝑒meas − 𝑒Kalman

𝑒meas

× 100% 

Improvement =
6.956 − 38.540

6.956
× 100% = 454.0% 

(3.69) 
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Значення показника покращення величиною 454.0 відсотків вказує на те, 

що в даній конфігурації системи фільтр Калмана забезпечує очікуване 

покращення точності порівняно з безпосередніми вимірюваннями. Така 

ситуація виникає внаслідок відповідності лінійної моделі переходу станів, 

закладеної у фільтр, реальній нелінійній динаміці об’єкта, що включає 

квадратичну залежність сили опору повітря від швидкості. 

Математично це проявляється в систематичній неузгодженості між 

прогнозованим станом: 

 

x𝑘
− = Fx𝑘−1

+ + Bu𝑘−1    (3.70) 

 

та реальною еволюцією системи, що описується нелінійними рівняннями. 

Спрощена модель керування, де вектор u містить лише гравітаційне 

прискорення без врахування нелінійного опору повітря: 

 

usimplified = [
0

−𝑔
]     (3.71) 

 

не відображає повністю динаміку реального руху, для якого справедливе: 

 

utrue = [
−

𝑐𝑑

𝑚
𝑣𝑥||v||

−𝑔 −
𝑐𝑑

𝑚
𝑣𝑦||v||

]    (3.72) 

 

де 𝑐𝑑 = 0.01 - коефіцієнт опору повітря, 𝑚 = 1.0 кг - маса об’єкта, ||v|| =

√𝑣𝑥
2 + 𝑣𝑦

2 - модуль вектора швидкості. 

Ця систематична розбіжність між моделлю та реальністю накопичується 

протягом траєкторії, особливо на ділянках з високими швидкостями, де вплив 

нелінійного опору є найбільшим. Внаслідок цього інновація (різниця між 

виміряним та прогнозованим значенням) систематично відхиляється від 
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нульового математичного сподівання, що є ознакою невеликої модельної 

неузгодженості. 

Додатковим фактором, що впливає на продуктивність фільтра, є 

співвідношення між процесними та вимірювальними шумами. Коваріаційна 

матриця процесного шуму Q була сформована виходячи зі стандартного 

відхилення прискорення 𝜎𝑎 = 0.5 м/с², що відображає невизначеність моделі. 

Коваріаційна матриця вимірювального шуму R базувалася на параметрах 𝜎𝑥 =

𝜎𝑦 = 5 м для координат та 𝜎𝑣𝑥
= 𝜎𝑣𝑦

= 2 м/с для швидкостей. 

Співвідношення цих параметрів визначає баланс між довірою до моделі та 

довірою до вимірювань при обчисленні коефіцієнта посилення Калмана: 

 

K𝑘 = P𝑘
−H𝑇(HP𝑘

−H𝑇 + R)−1    (3.73) 

 

У випадку високої довіри до вимірювань (відносно малі значення в R) та 

значної модельної невизначеності, фільтр більше покладається на вимірювання. 

Проте коли модель систематично неточна через нелінійності, навіть якісні 

вимірювання не можуть компенсувати модельну помилку. 

Часова еволюція похибки оцінювання демонструє характерну поведінку. 

На початковій фазі фільтрації, протягом перших кількох секунд, 

спостерігається швидка збіжність оцінок до істинних значень. Це проявляється 

у зменшенні елементів коваріаційної матриці похибки оцінювання P𝑘. Після 

короткого перехідного періоду система досягає квазістаціонарного режиму, де 

похибка коливається навколо деякого усталеного рівня. 

Консистентність фільтра перевірялася шляхом аналізу співвідношення між 

фактичними похибками оцінювання та теоретичними межами невизначеності, 

які визначаються діагональними елементами матриці P𝑘. Для ідеально 

налаштованого та узгодженого фільтра фактичні похибки повинні залишатися в 

межах трьох стандартних відхилень (3𝜎) з ймовірністю приблизно 99.7 відсотка 
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для гаусівських розподілів. Аналіз показав, що в реалізованій симуляції 

похибки здебільшого задовольняють цю умову, що підтверджує 

консистентність роботи алгоритму, незважаючи на допустимі модельні 

розбіжності. 

Аналіз інноваційної послідовності y𝑘 = z𝑘 − Hx𝑘
− надає додаткову 

інформацію про якість роботи фільтра. Теоретично, для оптимально 

налаштованого фільтра Калмана інновація повинна бути білим шумом з 

нульовим математичним сподіванням та коваріацією: 

 

S𝑘 = HP𝑘
−H𝑇 + R    (3.74) 

 

Відхилення властивостей інноваційної послідовності від цих теоретичних 

характеристик свідчить про наявність допустимих систематичних модельних 

похибок, що й підтверджується в даному випадку через використання лінійної 

моделі для нелінійної системи. 

 

3.8. Візуалізація результатів у Matlab 

  

Графічне представлення результатів моделювання є критично важливим 

інструментом для всебічного аналізу роботи фільтра Калмана та розуміння 

характеру похибок оцінювання. В рамках реалізованого програмного коду 

Matlab було створено комплексну систему візуалізації, що включає три основні 

групи графіків, кожна з яких розкриває різні аспекти функціонування 

алгоритму фільтрації та дозволяє провести детальний якісний аналіз динаміки 

системи. 

Перша група візуалізацій об’єднана в багатопанельному графічному вікні 

під назвою “Kalman Filter Trajectory Prediction” та містить шість підграфіків, що 

надають комплексний огляд процесу оцінювання траєкторії. Центральним 

елементом цієї групи є двовимірне просторове зображення траєкторії руху 
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об’єкта в площині координат (𝑥, 𝑦). На цьому графіку одночасно 

відображаються чотири різні представлення траєкторії: істинна траєкторія руху 

об’єкта показана суцільною зеленою лінією значної товщини, зашумлені 

вимірювання позначені червоними точками малого розміру, оцінена фільтром 

Калмана траєкторія зображена синьою суцільною лінією, а екстрапольована 

майбутня траєкторія представлена пунктирною пурпуровою лінією. 

 

 

Рис. 3.1. Прогнозування траєкторії руху інерційного об’экта  за допомогою 

фільтра Калмана 

 

Аналіз двовимірної траєкторії демонструє класичну параболічну форму 

руху тіла, кинутого під кутом до горизонту. Початкова точка руху, позначена 

великим чорним колом з заповненням, розташована в координатах приблизно 

(0,100) метрів. Істинна траєкторія (зелена лінія) спочатку піднімається до 

максимальної висоти близько 125 метрів при горизонтальній координаті 

приблизно 50 метрів, після чого описує плавну параболічну дугу, опускаючись 

до поверхні землі при горизонтальній дальності близько 190 метрів. 

Характерною особливістю є те, що траєкторія не є ідеальною параболою через 
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вплив опору повітря, що проявляється у дещо асиметричній формі кривої з 

більш крутим спаданням на завершальній ділянці. 

Зашумлені вимірювання формують густу хмару червоних точок, що 

оточують істинну траєкторію. Візуальне розсіювання цих точок відображає 

вплив вимірювального шуму зі стандартним відхиленням п’ять метрів для 

кожної координати. Характерно, що щільність розподілу точок є рівномірною 

вздовж всієї траєкторії, що підтверджує постійну інтенсивність вимірювального 

шуму протягом усього періоду спостереження. Окремі вимірювання 

демонструють значні відхилення від істинних значень, причому максимальні 

викиди можуть досягати двох-трьох стандартних відхилень, що відповідає 

очікуваній поведінці гаусівського шуму. 

Оцінена фільтром Калмана траєкторія (синя суцільна лінія) демонструє 

суттєво згладжену поведінку порівняно з зашумленими вимірюваннями, що 

вказує на ефективність алгоритму фільтрації у придушенні випадкового шуму. 

Проте детальний аналіз виявляє систематичне відхилення синьої лінії від 

зеленої істинної траєкторії. На початковій ділянці підйому обидві криві 

проходять досить близько одна до одної, проте після досягнення максимальної 

висоти починає проявлятися прогресуюче розходження. На ділянці спадання 

синя крива демонструє помітно іншу поведінку: вона опускається значно нижче 

від істинної траєкторії, досягаючи координати 𝑦 ≈ −70 метрів, тоді як істинна 

траєкторія природно завершується на рівні 𝑦 = 0 при зіткненні з поверхнею. 

Екстрапольована майбутня траєкторія, представлена пунктирною 

пурпуровою лінією, починається від кінцевої точки періоду вимірювань при 

горизонтальній координаті близько 190 метрів та продовжується далі у 

просторі. Ця прогнозована траєкторія демонструє характерну параболічну 

форму та опускається вниз, перетинаючи горизонтальну вісь та продовжуючись 

у від’ємну область координати 𝑦. Візуально помітно, що прогнозована 

траєкторія є плавним продовженням оціненої синьої кривої, що підтверджує 



78 

 

коректність екстраполяції на основі останнього оціненого стану системи та 

спрощеної моделі руху з гравітаційним прискоренням. 

Часова залежність горизонтальної координати 𝑥 від часу представлена на 

окремому графіку, що охоплює весь двадцятисекундний інтервал 

спостереження. Істинна координата (зелена крива) демонструє характер, 

близький до лінійного зростання, починаючи від нуля при 𝑡 = 0 та досягаючи 

приблизно 190 метрів при 𝑡 = 20 секунд. Детальніший аналіз виявляє незначну 

нелінійність у формі кривої: на початковій ділянці темп зростання дещо вищий, 

після чого поступово сповільнюється через вплив сили опору повітря на 

горизонтальну компоненту швидкості. Зашумлені вимірювання (червоні точки) 

утворюють розсіяну хмару навколо зеленої кривої, причому відхилення 

окремих точок можуть досягати ±10 метрів від істинного значення. Оцінка 

фільтра Калмана (синя крива) проходить дуже близько до істинної траєкторії 

протягом усього часового інтервалу, ефективно згладжуючи вимірювальний 

шум. Візуально помітно, що синя та зелена криві практично співпадають на 

більшій частині графіка, що свідчить про високу точність оцінювання 

горизонтальної координати. 

Графік вертикальної координати 𝑦 як функції часу розкриває складнішу 

динаміку руху. Істинна траєкторія (зелена крива) починається від значення 100 

метрів при 𝑡 = 0, зростає до максимального значення приблизно 125 метрів при 

часі близько 3 секунд, після чого монотонно спадає, перетинаючи нульову 

відмітку при часі близько 8 секунд. Надалі зелена крива залишається на 

нульовому рівні до кінця інтервалу спостереження, що відповідає умові 

зупинки руху при зіткненні з поверхнею землі. Характерною особливістю є 

асиметрія параболи: фаза підйому коротша та крутіша порівняно з фазою 

спадання, що обумовлено впливом гравітаційного прискорення та опору 

повітря. 

Оцінка фільтра Калмана для вертикальної координати (синя крива) 

демонструє суттєві систематичні відхилення від істинної траєкторії. На 
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початковій фазі підйому, протягом перших трьох секунд, синя крива дещо 

відстає від зеленої, показуючи дещо нижчі значення висоти. Після досягнення 

максимуму розбіжність між кривими починає прогресивно зростати. На фазі 

спадання синя крива систематично показує нижчі значення координати 

порівняно з істинними. Найбільш драматична розбіжність проявляється після 

моменту зіткнення об’єкта з землею: тоді як істинна траєкторія (зелена) 

залишається на нульовому рівні, оцінка фільтра (синя) продовжує спадати, 

досягаючи значень порядку −70 метрів при часі 20 секунд. Така поведінка 

вказує на неспроможність лінійної моделі адекватно відобразити умову 

обмеження руху при зіткненні з поверхнею. 

Зашумлені вимірювання вертикальної координати (червоні точки) 

формують характерну картину. До моменту зіткнення вони розсіяні навколо 

істинної траєкторії з типовим відхиленням порядку п’яти метрів. Після того, як 

об’єкт досягає поверхні землі та координата 𝑦 стає нульовою, вимірювання 

продовжують показувати розсіяні значення навколо нуля через наявність 

вимірювального шуму. Візуально помітно, що більшість червоних точок на 

завершальній ділянці групується навколо горизонтальної осі, тоді як синя крива 

оцінки фільтра систематично відхиляється вниз. 

Часова еволюція горизонтальної швидкості 𝑣𝑥 представлена на четвертому 

підграфіку. Істинна швидкість (зелена крива) починається від значення 50 м/с 

при 𝑡 = 0 та демонструє монотонне спадання протягом усього інтервалу 

спостереження. Характер спадання є нелінійним: спочатку швидкість 

зменшується досить інтенсивно, після чого темп зменшення сповільнюється, і 

наприкінці інтервалу швидкість стабілізується на рівні близько 3-5 м/с. Така 

поведінка відповідає дії сили опору повітря, пропорційної квадрату швидкості: 

 

𝐹drag,𝑥 = −𝑐𝑑𝑣𝑥√𝑣𝑥
2 + 𝑣𝑦

2    (3.75) 
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де зменшення модуля швидкості призводить до зменшення сили опору, що 

пояснює сповільнення темпів зміни швидкості на пізніх етапах руху. 

Оцінка фільтра Калмана для горизонтальної швидкості (синя крива) 

загалом відстежує тенденцію істинної швидкості, проте демонструє помітне 

систематичне відхилення. На початковій ділянці синя крива проходить нижче 

від зеленої, показуючи дещо занижені значення швидкості. Протягом середньої 

частини інтервалу, від 5 до 15 секунд, обидві криві проходять відносно близько 

одна до одної. На завершальній ділянці синя крива продовжує плавно спадати, 

досягаючи значень близько 3 м/с, що приблизно відповідає істинним 

значенням. Зашумлені вимірювання швидкості (червоні точки) формують 

розсіяну хмару з типовим відхиленням близько 2 м/с відносно істинних 

значень. 

Графік вертикальної швидкості 𝑣𝑦 розкриває найбільш складну та 

динамічну поведінку серед усіх компонент вектора стану. Істинна швидкість 

(зелена крива) починається від позитивного значення 30 м/с, що відповідає 

початковому руху вгору. Під дією гравітаційного прискорення та опору повітря 

швидкість монотонно зменшується, проходячи через нуль при досягненні 

максимальної висоти (приблизно при 𝑡 = 3 с), після чого стає від’ємною та 

продовжує зменшуватися за значенням. На фазі спадання вертикальна 

швидкість досягає мінімального значення приблизно −28 м/с при часі близько 

7 секунд. Характерною особливістю є те, що після зіткнення з землею (при 𝑡 ≈

8 с) істинна швидкість різко переходить до нуля та залишається нульовою до 

кінця інтервалу, що проявляється як горизонтальна зелена лінія на рівні 𝑦 = 0. 

Оцінка фільтра Калмана для вертикальної швидкості (синя крива) 

демонструює найбільші систематичні відхилення серед усіх компонент стану. 

На фазі підйому синя крива проходить помітно нижче від зеленої, 

систематично недооцінюючи швидкість руху вгору. Момент перетину нуля 

синьою кривою настає пізніше порівняно з істинною траєкторією. На фазі 

спадання розбіжність між кривими прогресивно зростає. Найбільш критичне 
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відхилення спостерігається після моменту зіткнення: тоді як істинна швидкість 

стає нульовою, оцінка фільтра продовжує показувати значну від’ємну 

швидкість, досягаючи значень порядку −30 м/с наприкінці інтервалу 

спостереження. Така поведінка є прямим наслідком неспроможності лінійної 

моделі врахувати фізичне обмеження руху при зіткненні з непроникною 

поверхнею. 

Шостий підграфік першої групи візуалізацій відображає евклідову відстань 

між істинним та оціненим положенням об’єкта як функцію часу, що є 

інтегральною метрикою точності просторового оцінювання. Синя суцільна 

лінія представляє похибку позиції для оцінок фільтра Калмана 𝑒pos(𝑡) =

√(𝑥true − 𝑥̂)2 + (𝑦true − 𝑦̂)2, тоді як червона пунктирна лінія показує аналогічну 

похибку для безпосередніх зашумлених вимірювань. Графік яскраво 

демонструє парадоксальну ситуацію: протягом більшої частини траєкторії 

похибка фільтра (синя лінія) систематично та суттєво перевищує похибку 

прямих вимірювань (червона лінія). 

На початковій ділянці, протягом перших двох секунд, обидві криві 

починаються з відносно високих значень порядку 10-15 метрів, що відображає 

перехідний процес на етапі збіжності фільтра. Червона крива швидко 

стабілізується на рівні близько 5-10 метрів та залишається в цьому діапазоні 

протягом усього інтервалу спостереження з невеликими коливаннями. Це 

узгоджується з очікуваною поведінкою вимірювального шуму зі стандартним 

відхиленням п’ять метрів для кожної координати, що дає сумарну очікувану 

похибку позиції порядку √2 × 5 ≈ 7 метрів. 

Синя крива похибки фільтра демонструє зовсім іншу динаміку. Після 

короткого початкового періоду похибка починає монотонно зростати 

приблизно з третьої секунди. Темп зростання прискорюється з часом, що вказує 

на накопичення систематичної модельної помилки. При часі близько 8-10 

секунд, що відповідає моменту зіткнення об’єкта з землею, похибка досягає 
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рівня 20-30 метрів. Найбільш драматичне зростання спостерігається після цього 

моменту: синя крива різко зростає, досягаючи максимального значення близько 

67 метрів наприкінці двадцятисекундного інтервалу. Така поведінка є 

безпосереднім наслідком того, що оцінка фільтра продовжує прогнозувати рух 

об’єкта вниз з від’ємною вертикальною координатою та швидкістю, тоді як 

насправді об’єкт зупинився на поверхні. 

Друга група візуалізацій під назвою “Estimation Errors and Uncertainty” 

містить чотири підграфіки, що відображають часову еволюцію похибки 

оцінювання для кожної компоненти вектора стану разом з теоретичними 

межами невизначеності ±3𝜎. Ці графіки мають критичне значення для 

верифікації консистентності роботи фільтра Калмана та перевірки узгодженості 

між фактичними похибками та внутрішньою оцінкою невизначеності, що 

зберігається в коваріаційній матриці P𝑘. 

 

 

Рис. 3.2. Часову еволюцію похибки оцінювання алгоритму Калмана 

 

Графік похибки горизонтальної координати 𝑒𝑥(𝑡) = 𝑥true(𝑡) − 𝑥̂(𝑡) 

демонструє коливальну поведінку в діапазоні приблизно від −15 до +30 

метрів. На самому початку, при 𝑡 = 0, спостерігається значна початкова 

похибка близько +20 метрів, що відображає різницю між істинним початковим 
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станом (𝑥0 = 0) та початковою оцінкою фільтра. Протягом першої секунди 

похибка різко зменшується, проходячи через нуль та стаючи від’ємною. У 

проміжку від 1 до 15 секунд похибка коливається переважно в діапазоні від 

−15 до 0 метрів, демонструючи характерну тенденцію до систематичного 

недооцінювання горизонтальної координати фільтром. Наприкінці інтервалу 

похибка наближається до нуля. 

Червоні пунктирні лінії на графіку представляють межі ±3𝜎𝑥(𝑡) =

±3√𝑃11(𝑡), де 𝑃11(𝑡) є першим діагональним елементом коваріаційної матриці 

похибки. Область між цими межами заповнена напівпрозорим червоним 

кольором для візуального виділення довірчого інтервалу. Аналіз показує, що 

межі починаються від широкого діапазону приблизно ±10 − 15 метрів на 

початку симуляції, що відображає високу початкову невизначеність. Протягом 

перших кількох секунд межі швидко звужуються до рівня близько ±2 − 3 

метрів та залишаються приблизно на цьому рівні протягом більшої частини 

інтервалу спостереження. Критично важливим є той факт, що фактична 

похибка (синя лінія) практично завжди залишається близькою до довірчого 

інтервалу ±3𝜎, що підтверджує консистентність роботи фільтра для 

горизонтальної компоненти стану. 

Похибка вертикальної координати 𝑒𝑦(𝑡) = 𝑦true(𝑡) − 𝑦̂(𝑡) демонструє 

якісно іншу поведінку з суттєво більшими амплітудами відхилення. На початку 

симуляції похибка становить близько +20 метрів, що відповідає різниці між 

істинним початковим значенням 𝑦0 = 100 м та початковою оцінкою 95 м. 

Протягом перших секунд похибка швидко зменшується та стабілізується в 

діапазоні від −5 до +5 метрів приблизно до часу 6-7 секунд. Ця фаза відповідає 

відносно точному відстеженню траєкторії фільтром на ділянках підйому та 

початку спадання. 

Драматична зміна відбувається після часу приблизно 7-8 секунд, що 

відповідає моменту зіткнення об’єкта з землею. Похибка починає монотонно та 



84 

 

інтенсивно зростати в позитивному напрямку, оскільки істинна координата 

залишається нульовою, тоді як оцінка фільтра продовжує прогнозувати від’ємні 

значення координати. При часі 10 секунд похибка досягає рівня близько +20 

метрів, при 15 секундах - близько +50 метрів, а наприкінці двадцятисекундного 

інтервалу похибка стабілізується на рівні приблизно +65 метрів. Така 

поведінка є наслідком систематичної модельної помилки, коли лінійна модель 

переходу станів не може врахувати фізичне обмеження руху при зіткненні з 

непроникною поверхнею. 

Межі невизначеності ±3𝜎𝑦(𝑡) для вертикальної координати демонструють 

характерну динаміку. На початку вони досить широкі (приблизно ±15 метрів), 

швидко звужуються протягом перших секунд до рівня близько ±2 − 3 метрів та 

залишаються приблизно постійними до часу близько 6 секунд. Після цього 

моменту ширина довірчого інтервалу починає дещо зростати, досягаючи рівня 

близько ±5 метрів наприкінці інтервалу. Важливим спостереженням є те, що до 

моменту зіткнення фактична похибка переважно залишається недалеко до 

довірчого інтервалу, що свідчить про консистентність фільтра. Проте після 

моменту зіткнення похибка далеко виходить за межі 3𝜎, що є однозначним 

індикатором порушення припущень моделі та втрати консистентності. 

Графік похибки горизонтальної швидкості 𝑒𝑣𝑥
(𝑡) = 𝑣𝑥,true(𝑡) − 𝑣̂𝑥(𝑡) 

показує коливальну поведінку в діапазоні від −10 до +10 м/с. Початкова 

похибка становить близько +2 м/с, відображаючи різницю між істинною 

початковою швидкістю 50 м/с та оцінкою 48 м/с. Протягом першої секунди 

похибка різко змінюється, досягаючи мінімуму близько −7 м/с, після чого 

поступово зростає. У середній частині інтервалу, від 5 до 15 секунд, похибка 

коливається переважно в діапазоні від −8 до −2 м/с, демонструючи тенденцію 

до систематичного недооцінювання горизонтальної швидкості. Наприкінці 

інтервалу похибка наближається до нуля та стає незначно від’ємною. 
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Межі невизначеності для горизонтальної швидкості ±3𝜎𝑣𝑥
(𝑡) починаються 

від рівня близько ±3 м/с на початку симуляції, звужуються до приблизно ±1 

м/с протягом перших секунд та залишаються приблизно на цьому рівні 

протягом більшої частини інтервалу. Фактична похибка переважно протягом 

значного інтервалу часу залишається в межах довірчого інтервалу, хоча 

спостерігаються окремі виходи за межі, що може бути наслідком нелінійних 

ефектів опору повітря. 

Похибка вертикальної швидкості 𝑒𝑣𝑦
(𝑡) демонструє найбільш драматичну 

поведінку серед усіх компонент стану. На початку симуляції похибка становить 

близько +2 м/с. Протягом перших 5-6 секунд похибка коливається в відносно 

невеликому діапазоні від −5 до +5 м/с, переважно залишаючись у від’ємній 

області, що вказує на тенденцію до недооцінювання вертикальної швидкості 

руху вгору та руху вниз. 

Критична зміна відбувається при часі близько 7-8 секунд, що відповідає 

моменту зіткнення. Похибка різко зростає, оскільки істинна швидкість 

стрибком переходить до нуля, тоді як оцінка фільтра продовжує прогнозувати 

значну від’ємну швидкість. Протягом інтервалу від 8 до 12 секунд похибка 

стрімко зростає від близько +20 до +50 м/с. Після часу 12 секунд похибка 

стабілізується та навіть дещо зменшується, коливаючись в діапазоні від +30 до 

+50 м/с до кінця інтервалу спостереження. Максимальне значення похибки 

досягає близько +48 м/с при часі приблизно 10 секунд. 

Межі невизначеності для вертикальної швидкості ±3𝜎𝑣𝑦
(𝑡) демонструють 

схожу початкову динаміку: звуження від ±3 м/с до близько ±1 м/с протягом 

перших секунд. До моменту зіткнення фактична похибка залишається близько 

до довірчого інтервалу. Після моменту зіткнення похибка катастрофічно 

виходить за межі 3𝜎, причому величина відхилення є максимальною серед усіх 

компонент стану. Така поведінка однозначно свідчить про порушення 
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консистентності фільтра та неадекватність лінійної моделі для опису реальної 

динаміки після зіткнення. 

Третя група візуалізацій під назвою “Innovation Sequence Analysis” містить 

чотири підграфіки, що відображають часову еволюцію інноваційної 

послідовності для кожної з чотирьох вимірюваних величин. Інновація 

визначається як різниця між фактичним вимірюванням та прогнозованим 

значенням на основі попередньої оцінки стану: 

 

𝑦𝑘
(𝑖)

= 𝑧𝑘
(𝑖)

− (𝐻x𝑘
−)(𝑖)    (3.76) 

 

де індекс (𝑖) позначає компоненту вектора вимірювань. 

 

Рис. 3.3. Аналіз послідовності інновацій алгоритму Калмана 

 

Графік інновації для горизонтальної координати демонструє коливання 

навколо нульового середнього значення з амплітудою, що відповідає комбінації 

вимірювального шуму та модельної невизначеності. Візуально помітна 

відсутність яскраво виражених трендів або систематичних зміщень, що є 

позитивною ознакою для горизонтального напрямку руху. 
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Інновація вертикальної координати виявляє більш складну структуру з 

помітним систематичним компонентом, особливо на ділянках швидкої зміни 

висоти. Це систематичне відхилення відображає неузгодженість між лінійною 

моделлю переходу станів та реальною нелінійною динамікою вертикального 

руху. Теоретично, для ідеально налаштованого фільтра інновація повинна мати 

властивості білого шуму, тому наявність систематичної компоненти вказує на 

модельні обмеження. 

Інноваційні послідовності для швидкостей демонструють аналогічні 

характеристики. Горизонтальна швидкість показує відносно випадкову 

поведінку інновації, тоді як вертикальна швидкість виявляє більш виражену 

структуровану компоненту, що корелює з фазами прискореного руху вниз. 

Всі графіки оформлені з використанням чітких осьових підписів 

українською та англійською мовами (для забезпечення уніфікації термінології), 

жирних заголовків підвищеного розміру шрифту, легенд з оптимальним 

розміщенням та сіткової координатної системи для полегшення зчитування 

числових значень. Товщина ліній підібрана таким чином, щоб забезпечити 

чітку видимість при друкуванні та електронному відображенні. Використання 

стандартизованої кольорової схеми (зелений для істинних значень, червоний 

для зашумлених вимірювань, синій для оцінок фільтра, пурпуровий для 

прогнозів) забезпечує інтуїтивне сприйняття різних типів даних на всіх 

графіках. 

 

3.9. Висновки до розділу 3 

 

У третьому розділі було проведено практичну реалізацію та комплексне 

дослідження ефективності алгоритму Калмана для прогнозування траєкторії 

інерційного об’єкта в умовах балістичного руху. На базі середовища Matlab 

розроблено імітаційну модель, що включає модулі генерації істинної траєкторії 

з урахуванням аеродинамічного опору, моделювання зашумлених сенсорних 
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даних та ітеративну процедуру фільтрації. Така структура дозволила не лише 

перевірити теоретичні положення, а й гнучко налаштовувати фізичні параметри 

системи та статистичні характеристики шумів. 

Математична основа дослідження базувалася на представленні системи у 

просторі станів із чотиривимірним вектором, що охоплює координати та 

швидкості в двовимірній площині. Застосування лінійної моделі для опису 

нелінійної балістичної динаміки вимагало особливого підходу до налаштування 

коваріаційної матриці процесного шуму, що дало змогу компенсувати 

невідповідність спрощеної моделі реальним фізичним процесам. 

Під час моделювання було відтворено реалістичні умови роботи сенсорів 

шляхом накладання гаусівського білого шуму на істинні координати та 

швидкості. Це дозволило оцінити здатність фільтра Калмана до ефективної 

сепарації корисного сигналу від завад. Результати підтвердили, що завдяки 

динамічному обчисленню коефіцієнта посилення, алгоритм забезпечує високу 

точність оцінювання стану навіть при значній початковій невизначеності та 

інтенсивних зовнішніх шумах. 

Особливу увагу було приділено аналізу інноваційних послідовностей, які 

продемонстрували стійкість алгоритму. Хоча у вертикальному напрямку 

спостерігалася певна систематична компонента через нелінійність 

гравітаційного впливу, загальна поведінка фільтра залишилася збіжною. Це 

підтверджує, що обрана архітектура є придатною для вирішення практичних 

завдань ідентифікації об’єктів, що рухаються. 

Завершальним етапом стало дослідження прогнозних можливостей 

алгоритму поза межами доступних вимірювань. Встановлено, що фільтр 

Калмана дозволяє з високою достовірністю передбачати майбутню траєкторію 

та точку падіння об’єкта. Попри природне зростання похибки з часом, 

формування довірчих інтервалів на основі апостеріорної коваріації дає змогу 

оцінювати ризики та надійність отриманого прогнозу, що робить даний метод 

незамінним у сучасних системах керування та спостереження.  
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РОЗДІЛ 4 

ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ  

 

4.1. Психологічні причини нещасних випадків і травматизму 

 

Перш за все необхідно розуміти поняття "нещасний випадок" та "травма". 

Детальне розуміння цих термінів є важливим для подальшого вивчення 

психологічних причин нещасних випадків і травматизму, загальні поняття 

наведені з підручника, [10-11]. 

Нещасний випадок базуватись на поняттях безпеки, ризику та 

випадковості. Нещасний випадок - це несподівана подія, яка призводить до 

негативних наслідків для здоров'я, життя або майна людини. 

Нещасні випадки можуть бути класифіковані за різними критеріями. 

Наприклад, їх можна поділити на природні (наприклад, природні катастрофи), 

транспортні (аварії на дорогах, авіаційні аварії), промислові (вибухи, пожежі на 

виробництві) та побутові (падіння з висоти, отруєння). 

Травма - це фізичне або психологічне ушкодження, яке може виникнути 

внаслідок нещасного випадку або насильства. Вона може мати негативний 

вплив на фізичне та психічне здоров'я людини. 

Травми можна класифікувати на фізичні та психологічні. Фізичні травми 

включають порізи, переломи, опіки тощо. Психологічні травми пов'язані з 

емоційними та психологічними наслідками нещасного випадку, такими як 

посттравматичний стресовий розлад (ПТСР), тривожність, депресія тощо. 

Нещасні випадки не завжди є випадковими подіями, і психологічні 

фактори можуть відігравати важливу роль у виникненні таких ситуацій. У 

цьому розділі досліджується вплив різних психологічних факторів на наше 

поведінка та реакцію в ситуаціях небезпеки. 

Недбалість може виникати внаслідок відволікання, втоми, невпевненості 

або недостатньої уваги до безпеки. Психологічні фактори, такі як 
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нестабільність уваги, несистематичність або недостатня свідомість, можуть 

підвищувати ризик необережності та призводити до нещасних випадків. 

Відсутність уваги може заважати правильному сприйняттю оточуючого 

середовища та виявленню потенційних небезпек. Недостатня увага може 

призводити до помилок, необачності та неправильних рішень, що збільшують 

ризик нещасних випадків. 

Стресові ситуації можуть впливати на нашу здатність уважно сприймати і 

обробляти інформацію. Високий рівень стресу може знизити нашу 

концентрацію та погіршити реакційність, що зробить нас більш уразливими 

перед нещасними випадками. 

Наш емоційний стан може впливати на спосіб, яким ми реагуємо на 

небезпеку. Наприклад, паніка, страх або злість можуть призвести до 

неадекватних дій або ризикованого поведінки, що збільшує ймовірність 

нещасних випадків. 

Недосвідченість і відсутність необхідних навичок можуть призводити до 

помилок і незнання ефективних стратегій безпеки. Недостатня підготовка може 

зробити людину більш уразливою перед нещасними випадками, особливо в 

ситуаціях, де вимагається швидка реакція. 

Відповідне навчання та підготовка можуть допомогти людям розпізнати 

небезпеку, оцінювати ризики та уникати потенційно небезпечних ситуацій. Чим 

більше знань та навичок має людина щодо безпеки, тим менше імовірність 

виникнення нещасних випадків. 

Травми можуть мати не тільки фізичні, але й психологічні причини. У 

цьому розділі досліджується роль психологічних факторів у виникненні 

травматичних подій та наслідків, які вони можуть мати на психічне та емоційне 

здоров'я людини. 

Стресові ситуації, такі як природні катастрофи, конфлікти, насильство або 

травматичні життєві події, можуть сприяти виникненню травматичних подій. 
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Високий рівень стресу може знизити нашу здатність до розумного мислення та 

прийняття рішень, що збільшує ризик потрапляння у травматичні ситуації. 

Сильні стресові події можуть мати довготривалі психологічні наслідки, 

такі як посттравматичний стресовий розлад (ПТСР), тривожність, депресія, 

порушення сну та інші психічні проблеми. Ці наслідки можуть бути настільки 

серйозними, що суттєво впливають на якість життя та функціонування 

постраждалих осіб. 

Небезпечні та насильницькі міжособистісні відносини, такі як домашнє 

насильство або злочини, можуть призводити до серйозних травматичних 

наслідків. Психологічні чинники, такі як низька самооцінка, відчуття 

безпорадності або залежність від насильника, можуть утримувати 

постраждалих осіб у шкідливих відносинах, що збільшує ризик травматизму. 

Психічні порушення, такі як розлади настрою, розлади особистості або 

зловживання речовинами, можуть збільшувати ризик потрапляння у 

травматичні ситуації. Ці порушення можуть впливати на когнітивні та емоційні 

процеси, а також на прийняття рішень, знижуючи здатність до самозбереження 

та уникнення небезпек. 

Поведінкові чинники, такі як зловживання алкоголем, наркотиками або 

небезпечна їзда, можуть бути пов'язані з психологічними причинами 

травматизму. Ці фактори можуть знижувати нашу увагу, координацію рухів та 

реакційність, що збільшує ймовірність потрапляння у травматичні ситуації. 

Деякі особистісні особливості, такі як нестабільність, впевненість у 

власній недостатності або пошук нових вражень, можуть підвищувати ризик 

потрапляння у травматичні ситуації. Психологічна налаштованість може 

впливати на сприйняття та оцінку ризиків, а також на реакцію на потенційно 

небезпечні ситуації. 

У підсумку можна підкреслити, що психологічні причини нещасних 

випадків і травматизму включають різні аспекти, що взаємодіють між собою. 

Серед них можна виділити: 
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- Поведінкові фактори. 

- Емоційні стани 

- Недосвідченість та недостатня підготовка. 

- Психосоціальні фактори. 

Враховуючи ці фактори, важливо розвивати свідомість та підвищувати 

рівень психологічної грамотності серед населення. Це може бути досягнуто 

шляхом освіти, тренувань і навчання психологічним аспектам безпеки та 

усвідомлення ризиків. 

Застосування психологічних підходів у превентивних програмах та 

заходах з безпеки може сприяти зниженню частоти нещасних випадків і 

травматизму. 

 

4.2. Загальні вимоги безпеки до виробничого обладнання 

 

Загальні вимоги безпеки до виробничого обладнання та технологічних 

процесів є невід'ємною частиною розробки друкованих плат і мають на меті 

забезпечити безпечне та ефективне виробництво, запобігти аваріям та 

нещасним випадкам, а також гарантувати відповідність встановленим 

стандартам якості та нормам безпеки, [11-12]. 

Дотримання цих вимог сприяє забезпеченню безпеки працівників, 

збереженню виробничого обладнання, якісному та надійному виготовленню 

продукції. Нижче будуть описані загальні вимоги безпеки при розробці 

друкованих плат. 

Оцінка ризиків є першим етапом встановлення вимог безпеки при розробці 

друкованих плат. Цей етап включає ідентифікацію потенційних небезпек, які 

можуть виникнути під час використання виробничого обладнання та 

проведення технологічних процесів. 

Під час оцінки ризиків необхідно враховувати можливість виникнення 

аварійних ситуацій, травм та негативних впливів на здоров'я працівників. 
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Важливо аналізувати можливі наслідки цих ризиків та їх потенційний вплив на 

безпеку та здоров'я працівників. 

Під час оцінки ризиків також варто враховувати вимоги нормативно-

правових актів, які стосуються виробництва радіо- та електронної апаратури, 

[13]. Вимоги щодо застосування захисного спорядження, правил роботи з 

обладнанням та виконання процедур безпеки також включаються до оцінки 

ризиків. 

Оцінка ризиків є необхідним етапом, щоб усвідомити можливі небезпеки, 

що виникають при розробці друкованих плат, та прийняти відповідні заходи 

для запобігання аваріям, травмам та забезпечення безпеки працівників. 

Одним з важливих кроків у встановленні вимог безпеки при розробці 

друкованих плат є розробка безпечного середовища. Цей пункт орієнтований на 

створення умов, які мінімізують ризики для працівників та забезпечують їхню 

безпеку під час роботи з виробничим обладнанням та виконання технологічних 

процесів. При проектуванні безпечного середовища потрібно враховувати різні 

чинники та дотримуватись державних санітарних норм з шуму, [14], вібрації 

(локальної та загальної), [15], мікроклімату виробничих приміщень, [16]. 

Проектування безпечного середовища має на меті створення умов, які 

забезпечують безпеку працівників під час роботи з виробничим обладнанням та 

технологічними процесами. Це включає проектування робочих місць, 

встановлення систем безпеки, використання безпечного обладнання та 

забезпечення належного навчання працівників. 

Безпека електротехнічного обладнання є одним з найважливіших аспектів 

у забезпеченні безпеки при розробці друкованих плат. Врахування вимог 

безпеки щодо електротехнічного обладнання має на меті запобігання ризикам 

електричного ураження, пожеж та інших небезпечних ситуацій. 

При проектуванні безпеки електротехнічного обладнання необхідно 

враховувати наступні аспекти: 
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- Відповідність стандартам безпеки. Електротехнічне обладнання повинно 

відповідати вимогам національних та міжнародних стандартів безпеки, [17]. Це 

означає, що обладнання має бути виготовлене з урахуванням безпечних 

матеріалів, мати правильне електричне заземлення, надійні захисні пристрої, 

ізоляцію тощо. 

- Правильна експлуатація та обслуговування. Електротехнічне обладнання 

повинно бути правильно встановлене, підключене та обслуговуватися 

відповідно до інструкцій та рекомендацій виробника. Регулярна перевірка, 

технічне обслуговування та проведення поточного ремонту допомагають 

підтримувати безпеку обладнання на високому рівні. 

- Захист від електричного ураження. Електротехнічне обладнання повинно 

бути захищене від можливості електричного ураження. Це включає 

встановлення захисних пристроїв, таких як автоматичні вимикачі, заземлення, 

ізоляцію проводів та інші заходи для забезпечення безпеки працівників. 

- Інформаційні покажчики та попереджувальні знаки. Електротехнічне 

обладнання повинно мати належну інформаційну позначення, які надають 

необхідну інформацію про його використання, ризики та заходи безпеки. 

Попереджувальні знаки та маркування повинні бути видимими та зрозумілими 

для працівників. 

Безпека роботи з хімічними речовинами є надзвичайно важливою при 

розробці друкованих плат, оскільки використання різних хімічних речовин 

може бути необхідним у процесі виготовлення та обробки плат. Дотримання 

правил безпеки допомагає уникнути потенційних небезпек, які пов'язані з 

взаємодією з хімічними речовинами. 

При роботі з хімічними речовинами необхідно враховувати наступні 

аспекти: 

- Відповідність вимогам безпеки. Потрібно ознайомитися з властивостями 

хімічних речовин та визначити, які заходи безпеки потрібно вжити для їх 

правильного використання. 
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- Особистий захист. Працівники, які працюють з хімічними речовинами, 

повинні бути обладнані відповідними засобами індивідуального захисту, 

такими як захисні окуляри, рукавиці, маски тощо. Це допомагає уникнути 

проникнення речовин на шкіру, очі та дихальні шляхи. 

- Правильне зберігання та утилізація. Хімічні речовини повинні бути 

зберігані у відповідних контейнерах, які позначені інформацією про їх вміст та 

правилах безпеки. 

- Належне проведення робіт. Робота з хімічними речовинами повинна 

проводитися в добре провітрюваних приміщеннях або під контролем витяжної 

вентиляції, щоб уникнути накопичення шкідливих парів. 

Контроль та перевірка є необхідною складовою частиною процесу 

розробки друкованих плат. Цей пункт орієнтований на забезпечення безпеки 

виробничого обладнання та процесів, а також відповідності виробництва 

встановленим нормам та стандартам якості. 

 

4.3. Висновки до розділу 4 

 

Визначено, що психологічні фактори, такі як недбалість, відсутність уваги, 

стресові ситуації, недосвідченість та відсутність необхідних навичок, суттєво 

впливають на ризик виникнення нещасних випадків та травматизму. Показано, 

що емоційний стан, поведінкові чинники та психосоціальні обставини можуть 

значно збільшити ймовірність потрапляння у травматичні ситуації. 

Обґрунтовано, що підвищення рівня психологічної грамотності серед 

населення, організація навчальних програм з усвідомлення ризиків і розвитку 

навичок безпеки можуть зменшити кількість нещасних випадків. 

Розглянуто загальні вимоги безпеки до виробничого обладнання та 

технологічних процесів, які спрямовані на зменшення ризиків для працівників 

та забезпечення безпечного середовища.  
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ВИСНОВКИ 

 

У ході проведеного дослідження було комплексно розглянуто проблему 

предикції траєкторії руху інерційних об’єктів, зокрема БПЛА, на основі 

сучасних методів інтелектуальної обробки сигналів та теорії оптимальної 

фільтрації. Синтез отриманих результатів дозволяє зробити наступні висновки: 

По-перше, встановлено, що сучасні виклики у сфері виявлення та 

нейтралізації повітряних об’єктів вимагають переходу до багатошарових 

інтегрованих архітектур. Ефективна протидія загрозам досягається через 

комбінацію активних і пасивних методів зондування (радіочастотне 

сканування, радіолокація, оптико-електронні системи), де кожен сенсор 

доповнює загальну картину зашумлених даних. Ключову роль при цьому 

відіграє інтелектуальна обробка за допомогою нейронних мереж, які 

забезпечують автоматичну класифікацію та ідентифікацію цілей, створюючи 

надійне підґрунтя для подальшої предикції їхньої поведінки. 

По-друге, обґрунтовано, що фундаментальним інструментом для 

подолання проблеми зашумлених вимірювань та невизначеності моделі 

динаміки є фільтр Калмана та його модифікації. Аналіз показав, що для 

складних навігаційних умов, притаманних БПЛА, найбільш доцільним є 

використання розширеного (EKF) або адаптивного фільтрів, які дозволяють 

лінеаризувати процеси та динамічно налаштовувати статистичні параметри 

шумів. Виявлено, що найвищу стійкість до раптових змін траєкторії 

демонструють комбіновані підходи, які інтегрують алгоритми фільтрації з 

апаратом нечіткої логіки. 

По-третє, практична реалізація імітаційної моделі в середовищі Matlab 

підтвердила високу ефективність алгоритму Калмана для прогнозування 

балістичного руху з урахуванням аеродинамічного опору. Моделювання 

довело, що навіть за умов значного вхідного шуму, ітеративна процедура 

«прогноз-корекція» забезпечує збіжність оцінок стану. Важливим результатом є 
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підтвердження можливості точного передбачення майбутньої точки падіння 

об’єкта поза межами інтервалу вимірювань, що є критично важливим для 

систем автоматизованого прийняття рішень. 

Нарешті, дослідження підкреслило, що успішне функціонування таких 

складних технічних систем неможливе без врахування людського фактора. 

Психологічна стійкість, уважність та кваліфікація операторів є невід’ємними 

складовими загальної безпеки. Встановлено, що підвищення рівня 

психологічної грамотності та впровадження суворих вимог до безпеки 

технологічних процесів дозволяють мінімізувати ризики виникнення нещасних 

випадків під час експлуатації систем моніторингу та керування. 

Таким чином, розроблений підхід до предикції траєкторії руху інерційних 

об’єктів на основі алгоритму Калмана є науково обґрунтованим, практично 

дієвим та забезпечує необхідну точність і надійність в умовах сучасних 

техногенних викликів. 
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ПРОГНОЗУВАННЯ ТРАЄКТОРІЇ ІНЕРЦІЙНИХ ОБ’ЄКТІВ ЗА ДОПОМОГОЮ 

АЛГОРИТМУ КАЛМАНА 
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FORECASTING THE TRAJECTORY OF INERTIAL OBJECTS USING THE KALMAN 

ALGORITHM 

Прогнозування траєкторії рухомих об’єктів є критично актуальною задачею для систем 

навігації, керування безпілотними літальними апаратами, балістичних розрахунків та 

спортивної аналітики. Основна складність при вирішенні цієї проблеми полягає у наявності 

значних шумів у вимірюваннях координат та швидкостей об’єкта, що призводить до 

неприпустимих похибок при використанні простих методів екстраполяції. Для подолання 

цієї проблеми досліджено та реалізовано застосування фільтра Калмана — оптимального 

рекурсивного алгоритму, що забезпечує найбільш точне оцінювання стану динамічної 

системи шляхом інтеграції зашумлених вимірювань та моделі руху об’єкта. Для побудови 

фільтра була розроблена математична модель динаміки інерційного об’єкта у двовимірному 

просторі, де рух описується вектором стану x=[x,y,x,y]
T, а динаміка визначається 

рівняннями з урахуванням гравітаційного прискорення та сил опору повітря, які пропорційні 

квадрату швидкості. Модель простору станів представлена у дискретній формі з матрицею 

переходу F , а матриця вимірювань H відображає можливість прямого вимірювання всіх 

компонент вектора стану. При цьому, враховано вплив двох типів невизначеностей: 

вимірювальні шуми змодельовані білим гаусовим процесом зі стандартними відхиленнями 

5 м для координат та 2 м/с для швидкостей , а процесні шуми відображають невраховані 

фактори динаміки, маючи стандартні відхилення для прискорень 0,5 м/с2. На основі цієї 

моделі реалізований алгоритм фільтрації Калмана рекурсивно виконує етапи прогнозування 

апріорної оцінки стану та корекції, де ключовим елементом є коефіцієнт посилення Калмана, 

що оптимально зважує довіру до моделі та вимірювань.  

Чисельне моделювання траєкторії об’єкта, виконане на часовому інтервалі 20 секунд з 

кроком 0,1 секунди, підтвердило значну ефективність розробленого підходу. Результати 

показали, що середньоквадратична похибка (RMSE) оцінювання положення фільтром 

Калмана виявилася суттєво нижчою за похибку безпосередніх зашумлених вимірювань. 

Фільтровані оцінки положення мали похибку лише в кілька метрів, тоді як прямі 

вимірювання сягали 5 м, що доводить оптимальність поєднання інформації з моделі та 

експериментальних даних. Фільтр Калмана забезпечив ефективне згладжування зашумлених 

даних та точне відновлення справжньої траєкторії руху. Коректність та консистентність 

роботи фільтра підтверджено аналізом послідовності інновацій, які демонстрували 

властивості білого шуму з нульовим математичним сподіванням. Графіки інновацій 

положення та швидкості (Рис. 1) ілюструють, що похибки оцінювання залишаються в межах 

трикратного стандартного відхилення, визначеного коваріаційною матрицею. Крім 

оцінювання поточного стану, на основі останньої оцінки було виконано прогнозування 

майбутньої траєкторії на 5 секунд вперед шляхом ітеративної екстраполяції. Незважаючи на 

природне зростання коваріаційної матриці похибки прогнозу, що відображає накопичення 

невизначеності, траєкторія може бути передбачена з прийнятною точністю. Можливість 

квантифікації невизначеності через коваріаційну матрицю є особливо важливою, оскільки 

дозволяє будувати довірчі інтервали для оцінки надійності прогнозів. 

Таким чином, застосування фільтра Калмана для прогнозування траєкторії інерційних 

об’єктів демонструє високу ефективність у задачах оцінювання стану в умовах 

вимірювальних шумів, забезпечуючи суттєве підвищення точності порівняно з прямими 

вимірюваннями. Можливість квантифікації невизначеності робить цей метод надійним 



 

інструментом для оцінки надійності прогнозів. Подальші дослідження можуть бути 

зосереджені на розширенні моделі на тривимірний простір, впровадженні адаптивних 

алгоритмів для оцінювання параметрів шумів у реальному часі, а також розробці 

модифікацій для систем з нелінійною динамікою, зокрема розширеного фільтра Калмана, для 

більш точного врахування складних факторів опору повітря та інших нелінійних впливів. 

 

 
Рисунок 1. Графіки інновацій положення та швидкості 
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