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АНОТАЦІЯ 
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Ключові слова: КЛАСИФІКАЦІЯ, БПЛА, АКУСТИЧНА СИГНАТУРА, 

MFCC, СПЕКТРОГРАМА, ЗГОРТКОВА НЕЙРОННА МЕРЕЖА, CNN, 

ГЛИБИННЕ НАВЧАННЯ. 

 

Кваліфікаційна робота присвячена підвищенню ефективності класифікації 

літаючих об’єктів шляхом розробки методу інтелектуального аналізу їх 

акустичних сигнатур із застосуванням згорткових нейронних мереж. 

У першому розділі проаналізовано сучасні методи моніторингу 

повітряного простору, зокрема радіолокаційні, оптичні та акустичні. Визначено 

переваги пасивних акустичних систем для виявлення малих БПЛА на низьких 

висотах. Досліджено особливості акустичних сигнатур різних типів літаючих 

об’єктів (літаків, вертольотів, дронів) та обґрунтовано доцільність використання 

методів машинного навчання для їх розпізнавання. 

У другому розділі досліджено теоретичні основи цифрової обробки 

звукових сигналів. Розглянуто методи попередньої обробки, нормалізації та 

виділення інформативних ознак, таких як MFCC, LPC та Chroma. Проведено 

порівняльний аналіз класичних алгоритмів машинного навчання (k-NN, SVM) та 

методів глибинного навчання (CNN, RNN, Transformers), визначивши згорткові 

мережі як найбільш перспективні для аналізу спектрограм . 

У третьому розділі розроблено та досліджено дві архітектури згорткових 

нейронних мереж ("smallNet" та "complexNet") для класифікації сигнатур. 

Виконано навчання моделей на основі MFCC-спектрограм із застосуванням 

аугментації даних. Експериментально встановлено, що компактна архітектура 
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"smallNet" забезпечує вищу точність та кращу узагальнюючу здатність порівняно 

з глибшою моделлю, яка виявила схильність до перенавчання. 

У четвертому розділі окреслено вимоги охорони праці та техніки безпеки 

при виконанні робіт із застосуванням БПЛА, а також заходи безпеки у 

надзвичайних ситуаціях. 
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ANNOTATION 

 

Method of intelligent classification of flying objects by their acoustic 

signatures // Qualification work of the educational level «Master» // Kovalchuk 

Mykola // Ternopil Ivan Puluj National Technical University, Faculty of Applied 

Information Technologies and Electrical Engineering, Radio Engineering Systems 

Department, group RAm-61 // Ternopil, 2025 // P. 95, fig. – 9, tabl. – 0, annexes. – 1, 

references – 27. 

 

Keywords: CLASSIFICATION, UAV, ACOUSTIC SIGNATURE, MFCC, 

SPECTROGRAM, CONVOLUTIONAL NEURAL NETWORK, CNN, DEEP 

LEARNING. 

 

The qualification work is devoted to improving the efficiency of flying object 

classification by developing a method for the intelligent analysis of their acoustic 

signatures using convolutional neural networks. 

The first section analyzes modern methods of airspace monitoring, including 

radar, optical, and acoustic methods. The advantages of passive acoustic systems for 

detecting small UAVs at low altitudes are determined. The features of acoustic 

signatures of various types of flying objects (airplanes, helicopters, drones) are 

investigated, and the feasibility of using machine learning methods for their recognition 

is substantiated. 

The second section investigates the theoretical foundations of digital sound 

signal processing. Methods of pre-processing, normalization, and extraction of 

informative features, such as MFCC, LPC, and Chroma, are considered. A comparative 

analysis of classical machine learning algorithms (k-NN, SVM) and deep learning 

methods (CNN, RNN, Transformers) is conducted, identifying convolutional networks 

as the most promising for spectrogram analysis. 

In the third section, two architectures of convolutional neural networks 

("smallNet" and "complexNet") for signature classification are developed and 
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investigated. Model training was performed based on MFCC spectrograms using data 

augmentation. It was experimentally established that the compact "smallNet" 

architecture provides higher accuracy and better generalization capability compared to 

the deeper model, which showed a tendency towards overfitting. 

The fourth section outlines occupational health and safety requirements when 

performing work involving UAVs, as well as safety measures in emergency situations. 
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ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ, СИМВОЛІВ, ОДИНИЦЬ, СКОРОЧЕНЬ 

 

AUC (англ. Area Under Curve) – Площа під кривою (показник якості 

класифікації). 

CNN (англ. Convolutional Neural Network) – Згорткова нейронна мережа. 

ComplexNet – Архітектура глибокої нейронної мережі зі значною кількістю 

шарів. 

DFT (англ. Discrete Fourier Transform) – Дискретне перетворення Фур’є. 

Epoch – Епоха навчання (один повний прохід набору даних через нейронну 

мережу). 

F1-score – Гармонійне середнє між точністю та повнотою. 

FFT (англ. Fast Fourier Transform) – Швидке перетворення Фур’є. 

LPC (англ. Linear Predictive Coding) – Лінійне передбачуване кодування. 

MFCC (англ. Mel-Frequency Cepstral Coefficients) – Мел-кепстральні 

коефіцієнти. 

Overfitting – Перенавчання моделі. 

Precision – Точність (метрика оцінки класифікатора). 

Recall – Повнота (метрика оцінки класифікатора). 

ReLU (англ. Rectified Linear Unit) – Функція активації. 

ROC (англ. Receiver Operating Characteristic) – Робоча характеристика 

приймача. 

SmallNet – Компактна архітектура нейронної мережі з оптимізованою 

кількістю параметрів. 

STFT (англ. Short-Time Fourier Transform) – Короткочасне перетворення 

Фур’є. 

БПЛА – Безпілотний літальний апарат. 

МН – Машинне навчання. 

ШНМ – Штучна нейронна мережа. 
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 ВСТУП 

 

Актуальність теми. Впродовж останніх років безпілотні літальні апарати 

(БПЛА) активно впроваджуються в цивільні та військові сфери, 

трансформуючись із спеціалізованих платформ у масово доступні засоби. 

Зростання доступності БПЛА супроводжується підвищенням рівня загроз, 

включаючи несанкціоноване відеоспостереження, розвідку та підготовку 

диверсійних дій. Низька візуальна помітність та мала ефективна площа 

розсіювання ускладнюють виявлення дронів традиційними радіолокаційними 

засобами. У зв’язку з цим актуальною є розробка пасивних систем виявлення, 

зокрема акустичних, які дозволяють класифікувати об’єкти за їх унікальними 

звуковими сигнатурами навіть в умовах відсутності прямої видимості. 

Застосування методів машинного навчання до акустичних даних відкриває нові 

можливості для автоматизації та підвищення точності таких систем. 

Мета і задачі дослідження. Метою даної кваліфікаційної роботи 

освітнього рівня "Магістр" є підвищення ефективності класифікації літаючих 

об’єктів шляхом розробки методу інтелектуального аналізу їх акустичних 

сигнатур із використанням згорткових нейронних мереж (CNN). 

Для досягнення поставленої мети потрібно виконати ряд завдань, зокрема: 

− Проаналізувати сучасний стан проблеми детектування БПЛА та 

особливості їх акустичних сигнатур. 

− Дослідити методи попередньої обробки звукових сигналів та 

виділення ознак, зокрема мел-кепстральних коефіцієнтів (MFCC). 

− Спроектувати архітектури згорткових нейронних мереж (smallNet та 

complexNet) для класифікації спектрограм. 

− Провести експериментальне навчання моделей із застосуванням 

аугментації даних та порівняти їх ефективність. 

− Оцінити точність та надійність розробленого методу за допомогою 

ROC-аналізу та матриць помилок. 
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Об’єкт дослідження. Процес класифікації типів літаючих об’єктів за 

даними акустичного моніторингу. 

Предмет дослідження. Методи та алгоритми інтелектуальної обробки 

акустичних сигналів із використанням ознак MFCC та згорткових нейронних 

мереж. 

Методи дослідження. У роботі використовуються методи цифрової 

обробки сигналів для розрахунку спектрограм та MFCC , методи машинного 

навчання для побудови та тренування нейронних мереж , методи статистичного 

аналізу для оцінки результатів класифікації (AUC, F1-score) , а також методи 

аугментації даних для покращення узагальнювальних властивостей моделей. 

Практичне значення одержаних результатів. Розроблений метод 

класифікації акустичних сигнатур може бути використаний як основа для 

побудови пасивних систем охорони периметра та моніторингу критично 

важливих об’єктів. Запропонована компактна архітектура нейромережі 

(smallNet) забезпечує високу точність при помірних обчислювальних витратах, 

що дозволяє впроваджувати її в системи реального часу. 

Наукова новизна отриманих результатів. Наукова новизна роботи 

полягає у порівняльному аналізі ефективності різних архітектур згорткових 

нейронних мереж для задачі розпізнавання дронів за спектрограмами MFCC. 

Експериментально доведено, що для класифікації акустичних сигнатур БПЛА 

компактні архітектури забезпечують кращу стабільність та меншу схильність до 

перенавчання порівняно з глибокими мережами при обмеженому наборі даних. 

Публікації. Викладені в роботі результати доповідалися та 

обговорювалися на XIV Міжнародній науково-технічній конференції молодих 

учених та студентів "Актуальні задачі сучасних технологій" (м. Тернопіль, 11-12 

грудня 2025 року). 
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РОЗДІЛ 1.  

АНАЛІТИЧНА ЧАСТИНА 

 

1.1. Моніторинг повітряного простору 

 

1.1.1. Сучасний стан проблеми детектування та класифікації літаючих 

об’єктів 

Розвиток технологій повітряного моніторингу за останні десятиліття 

суттєво трансформувався, особливо у сфері безпеки та контролю за 

несанкціонованими польотами. Сучасні системи поєднують традиційні методи 

спостереження з інноваційними підходами на основі штучного інтелекту. 

Актуальність проблеми зросла через масове поширення БПЛА, що 

становлять загрозу для інфраструктури та безпеки. За даними ICAO, кількість 

інцидентів із дронами щороку збільшується на 20-30%. Це створює нові виклики 

для систем, які раніше орієнтувалися на великі об’єкти [1]. 

Основні засоби детектування – радіолокаційні комплекси, оптико-

електронні системи та акустичні датчики. Кожен має переваги й обмеження, 

тому ефективність досягається їх комплексним застосуванням. У міських умовах 

радіолокація часто ускладнена перешкодами. 

У військових конфліктах особливо важливо класифікувати об’єкти, адже 

БПЛА активно використовуються для розвідки та ударів. Тому ідентифікація 

типу та небезпеки є критичною для оборони. 

Зростає інтерес до пасивних систем [2], зокрема акустичних методів, які 

дозволяють виявляти об’єкти поза прямою видимістю. Акустичний "підпис" дає 

змогу визначати тип і режим роботи апарата. Сучасні дослідження зосереджені 

на алгоритмах обробки сигналів (спектральний аналіз, вейвлети, глибоке 

навчання), що підвищують точність класифікації. Водночас залишаються 

проблеми адаптації до шумів, погодних умов та багатократних об’єктів. 
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1.1.2. Аналіз існуючих методів ідентифікації літаючих об’єктів 

Сучасні технології ідентифікації літаючих об’єктів охоплюють широкий 

спектр методів, кожен з яких має свої переваги та обмеження. В залежності від 

фізичної природи сигналів, що використовуються для детектування, ці методи 

можна поділити на три основні категорії: радіолокаційні, оптичні та акустичні. 

Кожен з цих підходів характеризується специфічними технічними 

рішеннями, застосовуваними для виявлення, локалізації та класифікації 

повітряних цілей. Далі детально розглядаються особливості кожного класу 

методів [3]. 

Радіолокаційні методи. Радіолокаційні методи [4] - найпоширеніші та 

історично перші технології виявлення повітряних цілей. Вони працюють на 

принципі випромінювання електромагнітних хвиль і прийому відбитих сигналів. 

Сучасні системи поділяються на активні, пасивні та бістатичні. 

Активні радари забезпечують дальність до 300-400 км і незалежність від 

погодних умов, дозволяють визначати координати та швидкість цілі. Недоліки – 

висока енергозатратність, демаскуюче випромінювання та складність виявлення 

малих об’єктів із композитних матеріалів. 

Вторинні радари працюють із транспондерами, надаючи додаткову 

інформацію про об’єкт. Вони ефективні в цивільній авіації, але безсилі проти 

несанкціонованих чи ворожих апаратів без транспондерів. 

SAR-системи забезпечують високу роздільну здатність і розпізнавання за 

радіолокаційним "портретом", проте потребують значних обчислювальних 

ресурсів. 

Попри розвиток, радари мають обмеження у виявленні малих БПЛА, 

особливо в міських умовах. Ефективна площа розсіювання дронів може бути 

меншою за 0,01 м², що ускладнює їх ідентифікацію. Крім того, вони вразливі до 

перешкод і можуть бути виявлені засобами радіотехнічної розвідки. 

Оптичні методи ідентифікації літаючих об’єктів базуються на аналізі 

випромінювання у видимому, інфрачервоному та ультрафіолетовому діапазонах. 
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Використовуються камери високої роздільної здатності, тепловізори, лазерні 

далекоміри та лідари. 

− Відеоспостереження у видимому діапазоні дає можливість 

візуально розпізнавати об’єкти на відстані до 10-15 км, але ефективність падає 

при тумані, опадах чи засліпленні сонцем. 

− Інфрачервоні системи фіксують теплове випромінювання, 

особливо ефективні вночі та для об’єктів із двигунами. Менш результативні 

щодо планерів чи електричних БПЛА. 

− Лідари забезпечують точне визначення координат і 3D-зображення 

об’єкта, проте мають обмежену дальність і чутливі до атмосферних опадів. 

Недоліки оптичних методів: залежність від погодних умов і часу доби, 

складність забезпечення кругового огляду та висока вартість систем. Попри це, 

вони залишаються ключовими для точної ідентифікації та визначення 

характеристик цілей. 

Акустичні методи ідентифікації ґрунтуються на аналізі звукових хвиль, 

що виникають від двигунів, гвинтів, турбін та аеродинамічних шумів. Кожен 

літальний апарат має власну акустичну сигнатуру, яка відображає його 

конструкцію та режим роботи [5]. 

Сучасні системи використовують мережі мікрофонів, спектральний аналіз 

і програмне забезпечення для обробки сигналів. Завдяки тріангуляції та 

beamforming можна точно визначати напрямок на ціль, а мікрофонні решітки 

дозволяють фільтрувати шум. 

Головна перевага – пасивність: акустичні датчики не випромінюють 

енергію, залишаються скритними й енергоефективними. Вони особливо корисні 

для виявлення малих БПЛА на низьких висотах, де радари часто малоефективні. 

Обмеження полягають у невеликій дальності (до 10-15 км для літаків і 

лише сотні метрів для дронів) та чутливості до погодних умов і фонового шуму. 

Попри це, розвиток цифрової обробки сигналів і машинного навчання 

дозволяє не лише виявляти, а й класифікувати об’єкти, визначати режим роботи 
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двигунів і прогнозувати траєкторію. Перспективним є поєднання акустичних 

датчиків з іншими сенсорами у мультисенсорних системах. 

Вартість таких систем нижча за радіолокаційні комплекси, що робить їх 

доступними для захисту критичної інфраструктури, масових заходів і приватних 

територій, а також інтеграції в існуючі системи безпеки. 

 

1.2. Особливості акустичних сигнатур різних типів літаючих об’єктів 

 

Акустичні сигнатури – це комплексні звукові характеристики літаючих 

об’єктів, що формуються двигунами, гвинтами та аеродинамічними шумами. 

Кожен тип апарата має унікальний акустичний профіль, який залежить від типу 

силової установки, частоти обертання пропелерів та швидкості польоту. 

Спектральний аналіз показує характерні частотні діапазони та патерни, що 

утворюють "акустичний підпис". Часова структура сигналу (модуляції, 

імпульси, флуктуації) відображає режими роботи двигунів і рухомих частин. 

Сигнатури змінюються залежно від режиму польоту та атмосферних умов, що 

ускладнює класифікацію [6]. 

Для ефективного розпізнавання формуються багатовимірні вектори ознак 

(частотні, часові, кепстральні, вейвлет-характеристики), які обробляються 

методами машинного навчання. Це забезпечує високу точність навіть у 

зашумлених умовах. 

Необхідним є створення баз даних акустичних записів у різних режимах 

польоту для навчання алгоритмів. Комплексний аналіз таких даних відкриває 

можливості для розвитку систем моніторингу, що доповнюють радіолокаційні та 

оптичні засоби. 

Акустичні сигнатури літаків – це унікальні звукові профілі, що 

формуються силовими установками, аеродинамічними ефектами та структурним 

шумом. Вони є інформативним джерелом для ідентифікації та класифікації 

повітряних суден. 
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Реактивні та турбовентиляторні двигуни створюють широкосмуговий 

спектр (200 Гц – 5 кГц) із дискретними компонентами, що відповідають частотам 

обертання компресорів і вентиляторів. Для турбовентиляторів характерні 

тональні складові (1,5-4 кГц) та шум від турбулентного змішування струменя. 

Турбогвинтові літаки мають низькочастотні гармоніки (50-500 Гц), пов’язані з 

роботою гвинтів, а поршневі – дискретні компоненти на низьких і середніх 

частотах (20-200 Гц) та імпульсні сигнали, зумовлені циклічною роботою 

двигуна. 

Аеродинамічні джерела шуму створюють широкосмуговий спектр  

(500 Гц – 10 кГц), інтенсивність якого різко зростає зі швидкістю польоту та при 

випуску механізації крила. Часова структура сигналів також містить 

діагностичні ознаки: стабільність амплітуди у реактивних літаків, амплітудну 

модуляцію у гвинтових, а також ефект Доплера, що дозволяє оцінювати 

швидкість і напрямок руху. 

Спрямованість шуму залежить від типу двигуна: реактивні випромінюють 

енергію переважно назад уздовж струменя, тоді як гвинтові мають складнішу 

діаграму з максимумами в площині обертання. Характеристики змінюються 

залежно від режиму польоту: при зльоті домінують високі частоти, у 

крейсерському режимі спектр стабільний, а при посадці зростає аеродинамічний 

шум. Висота польоту також впливає на спектр через поглинання високих частот 

атмосферою та рефракцію хвиль. 

Акустичні сигнатури вертольотів мають унікальні характеристики, що 

відрізняють їх від інших літальних апаратів. Основними джерелами шуму є 

несучий і рульовий гвинти та силова установка. 

Найбільш характерним є лопатевий шум несучого гвинта - низькочастотні 

імпульси (10-50 Гц) з гармоніками до 500-700 Гц, що формують "гребінчастий" 

спектр. Унікальним маркером є феномен биття лопатей, який виникає при 

маневрах і швидкому польоті, створюючи різкі періодичні хлопки. 
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Рульовий гвинт додає високочастотні компоненти (70-150 Гц), а двигуни – 

широкосмуговий шум у діапазоні 500 Гц – 5 кГц із тональними складовими 

компресора та турбіни. 

Акустичний профіль змінюється залежно від режиму польоту: при висінні 

домінує лопатевий шум, при горизонтальному русі зростає вклад двигуна й 

трансмісії, а при наборі висоти чи зниженні з’являються додаткові модуляції. 

Спрямованість шуму також різниться: несучий гвинт випромінює максимум у 

площині обертання, рульовий - перпендикулярно до своєї площини. 

Різні типи вертольотів мають відмінні спектрально-часові характеристики: 

важкі (Мі-26, CH-47) – потужний низькочастотний шум; середні (Мі-8, UH-60) – 

збалансований спектр; легкі (Robinson R44, EC120) – зміщення в бік середніх і 

високих частот. Співвісні машини (Ка-52, Ка-226) формують особливо складні 

сигнатури через взаємодію потоків двох гвинтів. 

Для класифікації використовують спектральні, кепстральні, бі-спектральні 

та часові характеристики. Сучасні системи з алгоритмами машинного навчання 

забезпечують точність понад 90% навіть у шумних міських умовах. 

Акустичні сигнатури БПЛА. Дрони формують характерні акустичні 

сигнатури завдяки шуму електродвигунів, пропелерів та взаємодії повітряного 

потоку з конструкцією. Основна гармоніка відповідає швидкості обертання 

пропелерів, а додаткові виникають через аеродинамічні ефекти. На відміну від 

вертольотів із низькочастотним домінуванням, дрони мають щільні 

високочастотні компоненти [7]. 

Квадрокоптери створюють специфічний малюнок сигналу через 

інтерференцію кількох пропелерів. Сигнатура змінюється залежно від режиму 

польоту - набір висоти, стабілізація чи маневрування. Її потужність невелика, що 

ускладнює детектування на великих відстанях, але стабільність частотної 

структури дозволяє застосовувати спектральний аналіз і машинне навчання для 

класифікації. 

На сигнал впливають умови середовища: вологість, вітер, рельєф, міські 

відбиття. Для виділення корисної інформації потрібні адаптивні методи 
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фільтрації. Часово-частотний аналіз (вейвлети, STFT) допомагає розрізняти типи 

та навіть моделі дронів. Динамічні моделі сигнатур враховують зміни під час 

маневрів і тяги. 

Дрони активно застосовуються у цивільних і військових сферах: від 

сільського господарства й кінематографу до логістики та пошуково-рятувальних 

операцій. Водночас вони становлять загрозу безпеці – від випадкових інцидентів 

до навмисних атак. Відомі випадки проникнення у захищені зони та аварії з 

літаками [8]. 

Існують чотири основні підходи: радарний, акустичний, візуальний та 

радіочастотний. 

− Радар добре працює на великих відстанях, але має проблеми з 

малими БПЛА та високою вартістю. 

− Акустичні датчики є рентабельними, ефективними вдень і вночі, 

здатні класифікувати стан дронів навіть із додатковим навантаженням, хоча 

дальність обмежена (~150 м). 

− РЧ-методи дозволяють ідентифікувати дрони за сигналами 

контролера, використовуючи антени з високим підсиленням. 

− Візуальні системи доступні й зрозумілі, але залежать від освітлення; 

тепловізори частково вирішують проблему. 

Акустичні сигнатури дронів поєднують стабільні тональні компоненти, 

високочастотні гармоніки та залежність від конструкції й режимів польоту. Це 

відкриває можливості для застосування алгоритмів штучного інтелекту у 

виявленні та класифікації БПЛА, що є ключовим напрямом розвитку систем 

моніторингу повітряного простору. 

 

1.2.1. Засоби виявлення БПЛА у різних умовах довкілля 

Безпілотні літальні апарати (БПЛА) стрімко поширюються у цивільних і 

військових сферах. Їх використовують у сільському господарстві, кінематографі, 

логістиці, пошуково-рятувальних операціях та правоохоронній діяльності. 

Завдяки компактності й доступності дрони стали глобальним явищем, змінивши 
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авіаційну галузь і зробивши її безпечнішою та продуктивнішою. Сучасні моделі 

можуть бути настільки малими, що поміщаються в долоні, але водночас здатні 

виконувати складні завдання [9]. 

Дрони відкрили нові можливості для бізнесу й приватних користувачів, 

проте водночас створили загрози безпеці. Інциденти з проникненням у захищені 

зони, зіткнення з літаками чи зупинка роботи аеропортів показують, що навіть 

невеликі апарати можуть спричиняти значні проблеми. Крім випадкових аварій, 

існує ризик навмисного використання дронів для контрабанди, терористичних 

атак чи несанкціонованої зйомки [10]. 

Щоб мінімізувати ризики, потрібні технології, здатні виявляти, 

класифікувати й відстежувати дрони, а також придушувати їх і збирати докази 

порушень. Виявлення є першочерговим завданням, адже без нього неможливо 

побудувати ефективну профілактику. Особливо актуальним це стає у військово-

політичному контексті, наприклад, на кордонах держав [11]. 

Роль штучного інтелекту останнім часом зростає все більше. Методи 

машинного й глибокого навчання значно підвищують точність розпізнавання, 

дозволяючи одночасно вирішувати завдання виявлення й класифікації. Це 

особливо важливо для малих БПЛА, які можуть проникати у стратегічні зони з 

небезпечним вантажем [12-15]. 

 

1.3. Висновок до першого розділу 

 

Аналітичний огляд сучасних методів моніторингу повітряного простору 

показав, що проблема детектування та класифікації літаючих об’єктів, особливо 

малих БПЛА, є надзвичайно актуальною як у цивільному, так і у військовому 

контексті. Традиційні засоби як радіолокаційні, оптичні та акустичні системи 

мають власні переваги й обмеження, тому найбільш ефективним є їх комплексне 

застосування. 

Радари забезпечують значну дальність і незалежність від погодних умов, 

але малоефективні для дронів із низькою ефективною площею розсіювання. 
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Оптичні системи дають високу точність ідентифікації, проте залежать від 

освітлення та атмосферних умов. Акустичні методи, завдяки пасивності та 

рентабельності, особливо перспективні для виявлення малих БПЛА на низьких 

висотах, хоча їхня дальність обмежена. 

Акустичні сигнатури літаків, вертольотів і дронів мають унікальні 

характеристики, що дозволяють їх класифікувати за допомогою спектрального 

та часово-частотного аналізу. Використання алгоритмів машинного й глибокого 

навчання значно підвищує точність розпізнавання навіть у зашумлених умовах. 

Таким чином, сучасні системи моніторингу повітряного простору повинні 

базуватися на мультисенсорному підході, який поєднує радіолокаційні, оптичні 

та акустичні засоби з інтелектуальними алгоритмами обробки даних. Це 

забезпечує не лише виявлення, а й класифікацію об’єктів, що є ключовим для 

підвищення рівня безпеки та ефективного контролю повітряного простору. 
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РОЗДІЛ 2.  

ОСНОВНА ЧАСТИНА 

 

2.1. Теоретичні основи розпізнавання звуку 

 

2.1.1. Поняття звукового сигналу та його характеристики 

Звуковий сигнал являє собою механічну хвилю, що поширюється у 

пружному середовищі та характеризується коливаннями тиску або зміщення 

частинок середовища відносно їх положення рівноваги. У контексті цифрової 

обробки звуковий сигнал представляється як функція часу, що описує амплітуду 

коливань у кожен момент [16]. 

Математично дискретний звуковий сигнал можна представити у вигляді 

послідовності відліків: 

 

𝑥[𝑛] = 𝑥(𝑛𝑇𝑠), 𝑛 = 0,1,2, … ,𝑁 − 1 (2.1) 

 

де 𝑇𝑠 = 1/𝑓𝑠 є періодом дискретизації, 𝑓𝑠 – частота дискретизації у герцах, 

𝑁 – загальна кількість відліків сигналу. Відповідно до теореми Найквіста-

Шеннона, для коректного відтворення аналогового сигналу частота 

дискретизації повинна задовольняти умову: 

 

𝑓𝑠 ≥ 2𝑓𝑚𝑎𝑥 (2.2) 

 

де 𝑓𝑚𝑎𝑥 є максимальною частотою у спектрі вихідного аналогового сигналу. Для 

аудіосигналів людського мовлення зазвичай використовується частота 

дискретизації 16 кГц або 22.05 кГц, тоді як для високоякісного аудіо 

застосовується стандарт 44.1 кГц або 48 кГц. 

Основними характеристиками звукового сигналу є амплітуда, частота, 

фаза та тривалість. Амплітуда визначає інтенсивність звуку і вимірюється у 

відносних одиницях або децибелах. Рівень звукового тиску у децибелах 

обчислюється за формулою: 
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𝐿𝑝 = 20log10 (
𝑝

𝑝0
) (2.3) 

 

де 𝑝 – ефективне значення звукового тиску, 𝑝0 = 2 × 10
−5 Па – пороговий тиск, 

що відповідає порогу чутності людського вуха на частоті 1 кГц. 

Миттєва енергія сигналу у момент часу 𝑛 визначається як квадрат 

амплітуди: 

 

𝐸[𝑛] = 𝑥2[𝑛] (2.4) 

 

а середня енергія на інтервалі з 𝑁 відліків обчислюється як: 

 

𝐸𝑎𝑣𝑔 =
1

𝑁
∑ 𝑥2
𝑁−1

𝑛=0

[𝑛] (2.5) 

 

Потужність сигналу тісно пов’язана з його енергією та визначається як 

середнє значення квадрата амплітуди: 

 

𝑃 = lim
𝑁→∞

1

𝑁
∑ 𝑥2
𝑁−1

𝑛=0

[𝑛] (2.6) 

 

Для практичних застосувань часто використовується коефіцієнт 

середньоквадратичного значення (Root Mean Square, RMS): 

 

𝑥𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥2
𝑁−1

𝑛=0

[𝑛] (2.7) 

 

Частотна характеристика звуку визначає його тембр та висоту тону. Для 

складного звукового сигналу можна виділити основну частоту (фундаментальну 

частоту) 𝑓0 та серію гармонік з частотами 𝑘𝑓0, де 𝑘 = 2,3,4, …. Співвідношення 

амплітуд різних гармонік формує характерний тембр звуку. 

Спектральна густина потужності (Power Spectral Density, PSD) описує 

розподіл енергії сигналу по частотних компонентах: 
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𝑆𝑥𝑥(𝑓) = lim
𝑇→∞

1

𝑇
𝔼[|𝑋𝑇(𝑓)|

2] (2.8) 

 

де 𝑋𝑇(𝑓) – перетворення Фур’є сигналу на інтервалі 𝑇, 𝔼[⋅] – оператор 

математичного сподівання. 

Важливою характеристикою звукових сигналів є їх нестаціонарність. На 

відміну від стаціонарних процесів, статистичні властивості яких не змінюються 

з часом, звукові сигнали демонструють суттєву часову мінливість. Для аналізу 

нестаціонарних сигналів застосовується концепція квазістаціонарності, згідно з 

якою сигнал розглядається як послідовність коротких сегментів (зазвичай 20-40 

мс), всередині яких статистичні властивості можна вважати приблизно 

постійними. 

Часова структура звукового сигналу характеризується огинаючою 

амплітуди, яка описує повільні зміни інтенсивності звуку. Огинаюча 𝐴[𝑛] може 

бути обчислена за допомогою перетворення Гільберта: 

 

𝐴[𝑛] = |𝑥[𝑛] + 𝑗ℋ{𝑥[𝑛]}| (2.9) 

 

де ℋ{⋅} позначає перетворення Гільберта, що визначається як: 

 

ℋ{𝑥[𝑛]} = 𝑥[𝑛] ∗
1

𝜋𝑛
 (2.10) 

 

Для характеристики динамічного діапазону сигналу використовується 

відношення сигнал/шум (Signal-to-Noise Ratio, SNR): 

 

𝑆𝑁𝑅 = 10log10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙
𝑃𝑛𝑜𝑖𝑠𝑒

) (2.11) 

 

де 𝑃𝑠𝑖𝑔𝑛𝑎𝑙  та 𝑃𝑛𝑜𝑖𝑠𝑒 – потужності корисного сигналу та шуму відповідно. Високе 

значення SNR вказує на домінування корисного сигналу над шумовою 

компонентою, що є критичним для ефективного розпізнавання звукових 

патернів. 
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2.1.2. Попередня обробка сигналів (нормалізація, фільтрація, 

шумозаглушення) 

Попередня обробка звукових сигналів є критично важливим етапом у 

системах розпізнавання, оскільки вона дозволяє підвищити відношення 

сигнал/шум, усунути небажані артефакти та привести дані до уніфікованого 

формату, придатного для подальшого аналізу. 

Нормалізація амплітуди є базовою операцією попередньої обробки, що 

забезпечує приведення сигналу до стандартного динамічного діапазону. 

Найпростішим методом є лінійна нормалізація, при якій всі відліки сигналу 

масштабуються таким чином, щоб максимальна амплітуда відповідала заданому 

значенню: 

 

𝑥𝑛𝑜𝑟𝑚[𝑛] = 𝐴𝑡𝑎𝑟𝑔𝑒𝑡 ⋅
𝑥[𝑛]

max
𝑛
|𝑥[𝑛]|

 (2.12) 

 

де 𝐴𝑡𝑎𝑟𝑔𝑒𝑡 – цільова амплітуда (зазвичай 1.0 або 0.9 для запобігання обрізання). 

Альтернативним підходом є нормалізація за середньоквадратичним значенням: 

 

𝑥𝑛𝑜𝑟𝑚[𝑛] =
𝑥[𝑛]

𝑥𝑅𝑀𝑆
⋅ 𝑅𝑀𝑆𝑡𝑎𝑟𝑔𝑒𝑡 (2.13) 

 

де 𝑅𝑀𝑆𝑡𝑎𝑟𝑔𝑒𝑡 – бажане середньоквадратичне значення. Цей метод забезпечує 

більш стабільну нормалізацію для сигналів з великими імпульсними викидами. 

Z-нормалізація (стандартизація) приводить сигнал до нульового 

середнього та одиничної дисперсії: 

 

𝑥𝑛𝑜𝑟𝑚[𝑛] =
𝑥[𝑛] − 𝜇𝑥

𝜎𝑥
 (2.14) 

 

де 𝜇𝑥 =
1

𝑁
∑ 𝑥𝑁−1
𝑛=0 [𝑛] – середнє значення, 𝜎𝑥 = √

1

𝑁
∑ (𝑁−1
𝑛=0 𝑥[𝑛] − 𝜇𝑥)

2 – 

середньоквадратичне відхилення. 
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Фільтрація звукових сигналів здійснюється з метою виділення корисних 

частотних компонент та придушення небажаних складових. Лінійні цифрові 

фільтри описуються різницевим рівнянням: 

 

𝑦[𝑛] = ∑𝑏𝑘

𝑀

𝑘=0

𝑥[𝑛 − 𝑘] −∑𝑎𝑘

𝑁

𝑘=1

𝑦[𝑛 − 𝑘] (2.15) 

 

де 𝑏𝑘 та 𝑎𝑘 – коефіцієнти фільтра, 𝑀 та 𝑁 визначають порядок фільтра. 

Передавальна функція такого фільтра у z-області має вигляд: 

 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

∑ 𝑏𝑘
𝑀
𝑘=0 𝑧−𝑘

1 + ∑ 𝑎𝑘
𝑁
𝑘=1 𝑧−𝑘

 (2.16) 

 

Фільтри нижніх частот (ФНЧ) використовуються для придушення 

високочастотного шуму. Частотна характеристика ідеального ФНЧ визначається 

як: 

 

𝐻𝐿𝑃(𝑓) = {
1, |𝑓| ≤ 𝑓𝑐
0, |𝑓| > 𝑓𝑐

 (2.17) 

 

де 𝑓𝑐 – частота зрізу. Для практичної реалізації застосовуються фільтри 

Баттерворта, Чебишева або еліптичні фільтри з кінцевою крутизною спаду 

частотної характеристики. 

Фільтр Баттерворта 𝑛-го порядку має квадрат модуля частотної 

характеристики: 

 

|𝐻(𝜔)|2 =
1

1 + (
𝜔
𝜔𝑐
)
2𝑛 

(2.18) 

 

де 𝜔𝑐 = 2𝜋𝑓𝑐 – кругова частота зрізу, 𝑛 – порядок фільтра. 

Смугові фільтри виділяють певний діапазон частот та описуються 

характеристикою: 
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𝐻𝐵𝑃(𝑓) = {
1, 𝑓1 ≤ |𝑓| ≤ 𝑓2
0, інакше

 (2.19) 

 

де 𝑓1 та 𝑓2 – нижня та верхня межі смуги пропускання. Для аналізу мовних 

сигналів часто застосовується смуговий фільтр з діапазоном 300-3400 Гц, що 

відповідає основному частотному діапазону людського мовлення. 

Операція фільтрації у часовій області еквівалентна операції згортки: 

 

𝑦[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛] = ∑ 𝑥

∞

𝑘=−∞

[𝑘]ℎ[𝑛 − 𝑘] (2.20) 

 

де ℎ[𝑛] – імпульсна характеристика фільтра. 

Шумозаглушення (noise reduction) є складнішою задачею, що вимагає 

оцінки шумової компоненти та її придушення при збереженні корисного 

сигналу. Метод спектрального віднімання базується на припущенні про 

адитивність шуму: 

 

𝑥[𝑛] = 𝑠[𝑛] + 𝑑[𝑛] (2.21) 

 

де 𝑠[𝑛] – корисний сигнал, 𝑑[𝑛] – шумова компонента. У частотній області оцінка 

очищеного сигналу обчислюється як: 

 

𝑆̂(𝑘) = 𝑋(𝑘) − 𝛼𝐷̂(𝑘) (2.22) 

 

де 𝑋(𝑘) та 𝐷̂(𝑘) – спектри зашумленого сигналу та оцінка спектра шуму, 𝛼 ≥ 1 - 

параметр надлишкового віднімання. Оскільки результат може містити від’ємні 

значення, застосовується операція напівхвильового випрямлення: 

 

|𝑆̂(𝑘)| = max(|𝑋(𝑘)| − 𝛼|𝐷̂(𝑘)|, 𝛽|𝑋(𝑘)|) (2.23) 

 

де 𝛽 – параметр спектрального порогу (зазвичай 𝛽 ≈ 0.1). 

Вінерівська фільтрація забезпечує оптимальне за критерієм мінімуму 

середньоквадратичної похибки відновлення сигналу. Передавальна функція 

фільтра Вінера визначається як: 
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𝐻𝑊(𝑘) =
𝑆𝑠𝑠(𝑘)

𝑆𝑠𝑠(𝑘) + 𝑆𝑑𝑑(𝑘)
=

1

1 +
𝑆𝑑𝑑(𝑘)
𝑆𝑠𝑠(𝑘)

 
(2.24) 

 

де 𝑆𝑠𝑠(𝑘) та 𝑆𝑑𝑑(𝑘) – спектральні густини потужності корисного сигналу та шуму 

відповідно. На практиці ці величини оцінюються з доступних даних: 

 

𝐻𝑊(𝑘) =
1

1 +
1

𝑆𝑁𝑅(𝑘)

 
(2.25) 

 

де 𝑆𝑁𝑅(𝑘) =
|𝑆(𝑘)|2

|𝐷̂(𝑘)|2
 – апостеріорне відношення сигнал/шум у частотній смузі 𝑘. 

Адаптивні методи шумозаглушення використовують рекурсивні 

алгоритми для динамічної оцінки параметрів шуму. Алгоритм найменших 

середньоквадратичних (Least Mean Squares, LMS) оновлює коефіцієнти 

адаптивного фільтра за правилом: 

 

𝐰[𝑛 + 1] = 𝐰[𝑛] + 𝜇𝑒[𝑛]𝐱[𝑛] (2.26) 

 

де 𝐰[𝑛] – вектор коефіцієнтів фільтра, 𝑒[𝑛] = 𝑑[𝑛] − 𝐰𝑇[𝑛]𝐱[𝑛] – помилка 

оцінки, 𝜇 – крок адаптації, 𝐱[𝑛] – вектор вхідного сигналу. 

Ще одним важливим методом є видалення постійної складової (DC offset 

removal), що реалізується за допомогою високочастотного фільтра першого 

порядку: 

 

𝑦[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 1] + 𝛼𝑦[𝑛 − 1] (2.27) 

 

де 𝛼 ≈ 0.995 для частоти дискретизації 16 кГц. Ця операція усуває 

низькочастотний дрейф сигналу, що може виникати через недосконалість 

апаратури запису. 

Попередня обробка також включає виявлення та видалення тиші (Voice 

Activity Detection, VAD). Найпростіший підхід базується на пороговій обробці 

енергії сигналу: 
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𝑉𝐴𝐷[𝑛] = {
1, 𝐸[𝑛] > 𝜃𝐸
0, 𝐸[𝑛] ≤ 𝜃𝐸

 (2.28) 

 

де 𝐸[𝑛] – короткочасна енергія, 𝜃𝐸 – поріг енергії. Більш складні методи 

використовують комбінацію енергетичних та спектральних ознак для 

підвищення надійності детектування. 

 

2.1.3. Методи виділення ознак (часові, частотні, спектральні) 

Виділення ознак є ключовим етапом розпізнавання звукових патернів, 

оскільки воно дозволяє трансформувати вихідний сигнал у компактний набір 

дескрипторів, що несуть інформацію про характерні властивості звуку. Ознаки 

можуть бути поділені на кілька категорій залежно від домену їх обчислення та 

фізичного змісту. 

Часові ознаки обчислюються безпосередньо з відліків сигналу у часовій 

області. Короткочасна енергія вже була визначена раніше, але для практичного 

застосування її обчислюють на ковзних вікнах: 

 

𝐸[𝑚] = ∑𝑤

𝑁−1

𝑛=0

[𝑛]𝑥2[𝑚 + 𝑛] (2.29) 

 

де 𝑚 – індекс фрейму, 𝑤[𝑛] – віконна функція (зазвичай вікно Хеммінга). 

Нормалізована логарифмічна енергія часто використовується як більш стабільна 

ознака: 

 

log𝐸[𝑚] = log(∑ 𝑤

𝑁−1

𝑛=0

[𝑛]𝑥2[𝑚 + 𝑛]) (2.30) 

 

Коефіцієнт переходів через нуль (Zero-Crossing Rate, ZCR) підраховує 

кількість змін знаку сигналу на одиницю часу: 

 

𝑍𝐶𝑅[𝑚] =
1

2𝑁
∑ |

𝑁−1

𝑛=0

𝑠𝑔𝑛(𝑥[𝑚 + 𝑛]) − 𝑠𝑔𝑛(𝑥[𝑚 + 𝑛 − 1])| (2.31) 
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де 𝑠𝑔𝑛(⋅) – функція знаку. Висока частота переходів через нуль характерна для 

шумоподібних та високочастотних звуків, тоді як для низькочастотних 

тональних сигналів вона є низькою. 

Автокореляційна функція (АКФ) описує схожість сигналу з його зміщеною 

копією: 

 

𝑅𝑥𝑥[𝑘,𝑚] = ∑𝑤

𝑁−1

𝑛=0

[𝑛]𝑥[𝑚 + 𝑛]𝑥[𝑚 + 𝑛 + 𝑘] (2.32) 

 

де 𝑘 – величина зміщення (лаг). Нормалізована АКФ визначається як: 

 

𝜌[𝑘,𝑚] =
𝑅𝑥𝑥[𝑘,𝑚]

𝑅𝑥𝑥[0,𝑚]
 (2.33) 

 

Максимум автокореляційної функції при 𝑘 > 0 вказує на період основного 

тону для вокалізованих звуків. 

Частотні та спектральні ознаки отримуються шляхом перетворення 

сигналу у частотну область. Дискретне перетворення Фур’є (ДПФ) обчислюється 

за формулою: 

 

𝑋[𝑘,𝑚] = ∑𝑤

𝑁−1

𝑛=0

[𝑛]𝑥[𝑚 + 𝑛]𝑒−𝑗
2𝜋𝑘𝑛
𝑁 , 𝑘 = 0,1,… ,𝑁 − 1 (2.34) 

 

Модуль спектра |𝑋[𝑘,𝑚]| характеризує розподіл енергії по частотах, а фаза 

∠𝑋[𝑘,𝑚] зазвичай не використовується для розпізнавання, оскільки є чутливою 

до часових зміщень. 

Спектрограма являє собою двовимірне представлення еволюції спектра в 

часі: 

 

𝑆[𝑘,𝑚] = |𝑋[𝑘,𝑚]|2 (2.35) 

 

Логарифмічна спектрограма краще відповідає логарифмічному 

сприйняттю інтенсивності людським слухом: 
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𝑆𝑙𝑜𝑔[𝑘,𝑚] = 10log10(|𝑋[𝑘,𝑚]|
2 + 𝜖) (2.36) 

 

де 𝜖 – мала константа для запобігання логарифмування нуля. 

Спектральний центроїд характеризує “центр ваги” спектра та корелює з 

тембровою яскравістю звуку: 

 

𝑆𝐶[𝑚] =
∑ 𝑓
𝑁/2
𝑘=0 [𝑘]|𝑋[𝑘,𝑚]|

∑ |
𝑁/2
𝑘=0 𝑋[𝑘,𝑚]|

 (2.37) 

 

де 𝑓[𝑘] =
𝑘𝑓𝑠

𝑁
 – частота 𝑘-го бін спектра. 

Спектральна дисперсія вимірює розкид спектра відносно центроїду: 

 

𝑆𝐷[𝑚] = √
∑ (
𝑁/2
𝑘=0 𝑓[𝑘] − 𝑆𝐶[𝑚])2|𝑋[𝑘,𝑚]|

∑ |
𝑁/2
𝑘=0 𝑋[𝑘,𝑚]|

 (2.38) 

 

Спектральний потік (Spectral Flux) вимірює швидкість зміни спектра між 

сусідніми фреймами: 

 

𝑆𝐹[𝑚] = ∑(

𝑁/2

𝑘=0

|𝑋[𝑘,𝑚]| − |𝑋[𝑘,𝑚 − 1]|)2 (2.39) 

 

Спектральна ентропія характеризує рівномірність розподілу енергії по 

частотах: 

 

𝑆𝐸[𝑚] = −∑𝑝

𝑁/2

𝑘=0

[𝑘,𝑚]log2𝑝[𝑘,𝑚] (2.40) 

 

де 𝑝[𝑘,𝑚] =
|𝑋[𝑘,𝑚]|2

∑ |
𝑁/2
𝑗=0 𝑋[𝑗,𝑚]|2

 - нормалізований спектр потужності. 

Мел-кепстральні коефіцієнти (Mel-Frequency Cepstral Coefficients, MFCC) 

є одними з найбільш популярних ознак для розпізнавання звуку, оскільки вони 

моделюють нелінійне сприйняття частоти людським слухом. Мел-шкала 
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визначає нелінійне відображення фізичної частоти 𝑓 (у Гц) у перцептивну 

частоту 𝑚 (у мелах): 

 

𝑚 = 2595log10 (1 +
𝑓

700
) (2.41) 

 

Зворотне перетворення має вигляд: 

 

𝑓 = 700(10𝑚/2595 − 1) (2.42) 

 

Процес обчислення MFCC включає кілька послідовних кроків. Спочатку 

розраховується спектр потужності за допомогою ДПФ. Потім застосовується 

банк трикутних фільтрів, рівномірно розташованих на мел-шкалі: 

 

𝐻𝑖(𝑘) =

{
  
 

  
 
0, 𝑓[𝑘] < 𝑓[𝑖 − 1]
𝑓[𝑘] − 𝑓[𝑖 − 1]

𝑓[𝑖] − 𝑓[𝑖 − 1]
, 𝑓[𝑖 − 1] ≤ 𝑓[𝑘] < 𝑓[𝑖]

𝑓[𝑖 + 1] − 𝑓[𝑘]

𝑓[𝑖 + 1] − 𝑓[𝑖]
, 𝑓[𝑖] ≤ 𝑓[𝑘] < 𝑓[𝑖 + 1]

0, 𝑓[𝑘] ≥ 𝑓[𝑖 + 1]

 (2.43) 

 

де 𝑖 = 1,2,… ,𝑀 – індекс фільтра, 𝑀 – кількість фільтрів (зазвичай 20-40), 𝑓[𝑖] – 

центральні частоти фільтрів на мел-шкалі. 

Енергія у кожній мел-смузі обчислюється як: 

 

𝐸𝑖[𝑚] = ∑ |

𝑁−1

𝑘=0

𝑋[𝑘,𝑚]|2𝐻𝑖(𝑘) (2.44) 

 

Логарифмування енергій моделює логарифмічне сприйняття 

інтенсивності: 

 

log𝐸𝑖[𝑚] = log(𝐸𝑖[𝑚] + 𝜖) (2.45) 

 

Нарешті, застосовується дискретне косинусне перетворення (ДКП) для 

декореляції ознак: 
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𝑀𝐹𝐶𝐶𝑗[𝑚] =∑log

𝑀

𝑖=1

𝐸𝑖[𝑚]cos (
𝜋𝑗(𝑖 − 0.5)

𝑀
) , 𝑗 = 1,2,… , 𝐶 (2.46) 

 

де 𝐶 – кількість мел-кепстральних коефіцієнтів (зазвичай 12-13). Нульовий 

коефіцієнт 𝑀𝐹𝐶𝐶0[𝑚] відповідає загальній енергії сигналу і часто виключається 

або обробляється окремо. 

Кепстр (cepstrum) визначається як зворотне перетворення Фур’є від 

логарифму спектра: 

 

𝑐[𝑛] = ℱ−1{log|𝑋[𝑘]|} (2.47) 

 

Термін “кепстр” утворений перестановкою складів у слові “spectrum” і 

означає “спектр спектра”. Кепстральний аналіз дозволяє розділити спектральну 

огинаючу (повільно змінну частину) та тонку структуру (швидко осцилюючу 

частину). 

Для підвищення дискримінативної здатності ознак часто 

використовуються їх похідні. Дельта-коефіцієнти (перші похідні) обчислюються 

як: 

 

Δ𝑀𝐹𝐶𝐶𝑗[𝑚] =
∑ 𝜏𝑇
𝜏=−𝑇 ⋅ 𝑀𝐹𝐶𝐶𝑗[𝑚 + 𝜏]

2∑ 𝜏2𝑇
𝜏=1

 (2.48) 

 

де 𝑇 – півширина вікна диференціювання (зазвичай 𝑇 = 2). Дельта-дельта 

коефіцієнти (другі похідні) обчислюються аналогічно від дельта-коефіцієнтів: 

 

ΔΔ𝑀𝐹𝐶𝐶𝑗[𝑚] =
∑ 𝜏𝑇
𝜏=−𝑇 ⋅ Δ𝑀𝐹𝐶𝐶𝑗[𝑚 + 𝜏]

2∑ 𝜏2𝑇
𝜏=1

 (2.49) 

 

Коефіцієнти лінійного передбачення (Linear Predictive Coding, LPC) є 

альтернативною системою ознак, що моделює голосовий тракт як 

авторегресивний процес: 
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𝑥̂[𝑛] = −∑𝑎𝑘

𝑝

𝑘=1

𝑥[𝑛 − 𝑘] (2.50) 

 

де 𝑝 – порядок моделі (зазвичай 10-16 для мовлення), 𝑎𝑘 – коефіцієнти LPC. Вони 

знаходяться з умови мінімізації середньоквадратичної помилки передбачення: 

 

𝐸 =∑(𝑥[𝑛] − 𝑥̂[𝑛])2

𝑛

 (2.51) 

 

Система лінійних рівнянь для знаходження коефіцієнтів LPC отримується 

з автокореляційної функції: 

 

∑𝑎𝑘

𝑝

𝑘=1

𝑅𝑥𝑥[|𝑖 − 𝑘|] = −𝑅𝑥𝑥[𝑖], 𝑖 = 1,2,… , 𝑝 (2.52) 

 

Ефективний алгоритм розв’язання цієї системи - алгоритм Левінсона-

Дарбіна. Кепстральні коефіцієнти можуть бути обчислені з LPC-коефіцієнтів за 

рекурсивною формулою: 

 

𝑐[𝑛] = 𝑎𝑛 +∑
𝑘

𝑛

𝑛−1

𝑘=1

𝑐[𝑘]𝑎𝑛−𝑘 , 1 ≤ 𝑛 ≤ 𝑝 (2.53) 

 

Хроматичні ознаки (Chroma features) представляють енергію сигналу, 

розподілену по 12 класах висоти тону (напівтонах хроматичної гами). 

Хроматична ознака обчислюється як сума енергій усіх частотних компонент, що 

відповідають певній ноті: 

 

𝐶ℎ𝑟𝑜𝑚𝑎𝑐[𝑚] = ∑ |

𝑘:𝑓[𝑘]∈𝑐

𝑋[𝑘,𝑚]|2, 𝑐 ∈ {𝐶, 𝐶#, 𝐷,… , 𝐵} (2.54) 

 

де приналежність частоти до класу висоти визначається за формулою: 

 

𝑐(𝑓) = 12 ⋅ log2 (
𝑓

𝑓𝑟𝑒𝑓
)  mod 12 (2.55) 
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де 𝑓𝑟𝑒𝑓 – еталонна частота (зазвичай 440 Гц для ноти A4). 

Комбінація різних типів ознак дозволяє створити багатий дескриптор 

звукового сигналу, що враховує часову динаміку, спектральну структуру та 

перцептивні властивості, забезпечуючи основу для ефективного розпізнавання 

звукових патернів. 

 

2.2. Традиційні методи розпізнавання звукових паттернів 

 

2.2.1. Методи на основі статистичного аналізу 

Кореляційний аналіз належить до фундаментальних статистичних 

методів виявлення схожості між сигналами та є основою багатьох класичних 

алгоритмів розпізнавання звуку. Основна ідея полягає у вимірюванні ступеня 

лінійної залежності між двома сигналами або між сигналом та еталонним 

шаблоном [17]. 

Взаємна кореляційна функція (ВКФ) між двома дискретними сигналами 

𝑥[𝑛] та 𝑦[𝑛] визначається як: 

 

𝑅𝑥𝑦[𝑘] = ∑ 𝑥

∞

𝑛=−∞

[𝑛]𝑦[𝑛 + 𝑘] (2.56) 

 

де 𝑘 – величина зміщення (лаг). На практиці сигнали мають скінченну 

тривалість, тому сума обчислюється в межах області визначення обох сигналів. 

Нормалізована взаємна кореляція усуває залежність від амплітуд сигналів: 

 

𝜌𝑥𝑦[𝑘] =
𝑅𝑥𝑦[𝑘]

√𝑅𝑥𝑥[0]𝑅𝑦𝑦[0]
=

∑ 𝑥𝑛 [𝑛]𝑦[𝑛 + 𝑘]

√∑ 𝑥2𝑛 [𝑛]∑ 𝑦2𝑛 [𝑛]
 (2.57) 

 

Значення 𝜌𝑥𝑦[𝑘] належить інтервалу [−1,1], де 𝜌𝑥𝑦[𝑘] = 1 вказує на повну 

позитивну кореляцію, 𝜌𝑥𝑦[𝑘] = −1 – на повну негативну кореляцію, а 

𝜌𝑥𝑦[𝑘] = 0 – на відсутність лінійного зв’язку. 
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Для задачі розпізнавання звукового патерну із множини еталонів 

обчислюється кореляція вхідного сигналу 𝑥[𝑛] з кожним еталоном 𝑠𝑖[𝑛], 

𝑖 = 1,2,… ,𝑀: 

 

𝜌𝑖[𝑘] =
∑ 𝑥𝑁−1
𝑛=0 [𝑛]𝑠𝑖[𝑛 + 𝑘]

√∑ 𝑥2𝑁−1
𝑛=0 [𝑛]∑ 𝑠𝑖

2𝑁−1
𝑛=0 [𝑛]

 
(2.58) 

 

Розпізнавання відбувається за критерієм максимальної кореляції: 

 

𝑖∗ = argmax𝑖max𝑘𝜌𝑖[𝑘] (2.59) 

 

де 𝑖∗ – індекс розпізнаного класу, а максимізація по 𝑘 забезпечує інваріантність 

до часових зміщень. 

Обчислювальна складність прямого обчислення кореляції становить 

𝑂(𝑁2) операцій, що може бути неприйнятним для сигналів великої тривалості. 

Швидке обчислення кореляції здійснюється через частотну область з 

використанням теореми про згортку: 

 

𝑅𝑥𝑦[𝑘] = ℱ
−1{𝑋∗(𝑓)𝑌(𝑓)} (2.60) 

 

де 𝑋(𝑓) та 𝑌(𝑓) – перетворення Фур’є сигналів, 𝑋∗(𝑓) – комплексно спряжене. 

Застосування швидкого перетворення Фур’є (ШПФ) знижує складність до 

𝑂(𝑁log𝑁). 

Для підвищення стійкості до шуму використовується зважена кореляція з 

акцентуванням низьких кепстральних коефіцієнтів: 

 

𝜌𝑤[𝑘] =
∑ 𝑤𝑛 [𝑛]𝑥[𝑛]𝑦[𝑛 + 𝑘]

√∑ 𝑤𝑛 [𝑛]𝑥2[𝑛] ∑ 𝑤𝑛 [𝑛]𝑦2[𝑛]
 (2.61) 

 

де 𝑤[𝑛] – вагова функція, наприклад експоненційна 𝑤[𝑛] = 𝑒−𝛼𝑛 або гаусівська 

𝑤[𝑛] = 𝑒
−
𝑛2

2𝜎2. 

Частотно-залежна кореляція застосовується для порівняння спектральних 

характеристик: 
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𝜌𝑓[𝑘] =
∑ |𝜔 𝑋(𝜔)||𝑌(𝜔)|𝑒𝑗𝜔𝑘

√∑ |𝜔 𝑋(𝜔)|2∑ |𝜔 𝑌(𝜔)|2
 (2.62) 

 

Цей підхід є більш стійким до фазових спотворень та часових варіацій 

темпу. 

Кореляційні детектори використовуються для виявлення наявності 

відомого сигналу у зашумленому потоці даних. Вирішальна статистика 

обчислюється як: 

 

Λ = max𝑘𝑅𝑥𝑦[𝑘] (2.63) 

 

і порівнюється з порогом 𝜃: 

 

Рішення = {
𝐻1:сигнал присутній, Λ > 𝜃
𝐻0:тільки шум, Λ ≤ 𝜃

 (2.64) 

 

Оптимальний поріг визначається з балансу між ймовірністю правильного 

виявлення та ймовірністю хибної тривоги за критерієм Неймана-Пірсона. 

Для сигналів змінної тривалості застосовується ковзна кореляція на 

перекривних вікнах: 

 

𝜌𝑚[𝑘] =
∑ 𝑤𝐿−1
𝑛=0 [𝑛]𝑥[𝑚 + 𝑛]𝑦[𝑚 + 𝑛 + 𝑘]

√∑ 𝑤𝐿−1
𝑛=0 [𝑛]𝑥2[𝑚 + 𝑛]∑ 𝑤𝐿−1

𝑛=0 [𝑛]𝑦2[𝑚 + 𝑛]
 (2.65) 

 

де 𝑚 – індекс початку вікна, 𝐿 – довжина вікна, 𝑤[𝑛] – віконна функція. 

Автокореляційна функція є окремим випадком взаємної кореляції, коли 

сигнал порівнюється сам із собою зі зміщенням у часі. АКФ надає цінну 

інформацію про періодичність сигналу, його структуру та статистичні 

властивості. 

Детермінована автокореляційна функція визначається як: 

 

𝑅𝑥𝑥[𝑘] = ∑ 𝑥

𝑁−1−𝑘

𝑛=0

[𝑛]𝑥[𝑛 + 𝑘], 𝑘 ≥ 0 (2.66) 
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Для стаціонарних випадкових процесів використовується статистичне 

визначення: 

 

𝑅𝑥𝑥[𝑘] = 𝔼[𝑥[𝑛]𝑥[𝑛 + 𝑘]] (2.67) 

 

де 𝔼[⋅] – оператор математичного сподівання. На практиці математичне 

сподівання замінюється часовим усередненням. 

Важливі властивості автокореляційної функції включають симетрію 

𝑅𝑥𝑥[𝑘] = 𝑅𝑥𝑥[−𝑘], максимум при нульовому лагу 𝑅𝑥𝑥[0] ≥ |𝑅𝑥𝑥[𝑘]| для всіх 𝑘, 

та зв’язок з спектральною густиною потужності через теорему Вінера-Хінчина: 

 

𝑆𝑥𝑥(𝑓) = ℱ{𝑅𝑥𝑥[𝑘]} = ∑ 𝑅𝑥𝑥

∞

𝑘=−∞

[𝑘]𝑒−𝑗2𝜋𝑓𝑘 (2.68) 

 

Зворотне перетворення дає: 

 

𝑅𝑥𝑥[𝑘] = ℱ
−1{𝑆𝑥𝑥(𝑓)} = ∫ 𝑆𝑥𝑥

∞

−∞

(𝑓)𝑒𝑗2𝜋𝑓𝑘𝑑𝑓 (2.69) 

 

Для виявлення основного тону вокалізованих звуків використовується 

пошук максимуму АКФ у заданому діапазоні лагів: 

 

𝑘𝑝𝑖𝑡𝑐ℎ = argmax𝑘𝑚𝑖𝑛≤𝑘≤𝑘𝑚𝑎𝑥𝑅𝑥𝑥[𝑘] (2.70) 

 

де діапазон [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] відповідає очікуваному діапазону частот основного 

тону. Для людського мовлення типовий діапазон становить 80-400 Гц, що при 

частоті дискретизації 16 кГц відповідає лагам 𝑘𝑚𝑖𝑛 = 40 та 𝑘𝑚𝑎𝑥 = 200. 

Частота основного тону обчислюється як: 

 

𝑓0 =
𝑓𝑠

𝑘𝑝𝑖𝑡𝑐ℎ
 (2.71) 

 

Надійність оцінки можна оцінити за допомогою нормалізованого значення 

автокореляції: 
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𝜌𝑝𝑖𝑡𝑐ℎ =
𝑅𝑥𝑥[𝑘𝑝𝑖𝑡𝑐ℎ]

𝑅𝑥𝑥[0]
 (2.72) 

 

Високе значення 𝜌𝑝𝑖𝑡𝑐ℎ (близьке до 1) вказує на сильну періодичність 

сигналу. 

Автокореляційний метод лінійного передбачення використовує АКФ для 

оцінки коефіцієнтів LPC. Рівняння Юла-Уокера мають вигляд: 

 

[

𝑅𝑥𝑥[0] 𝑅𝑥𝑥[1] ⋯ 𝑅𝑥𝑥[𝑝 − 1]
𝑅𝑥𝑥[1] 𝑅𝑥𝑥[0] ⋯ 𝑅𝑥𝑥[𝑝 − 2]
⋮ ⋮ ⋱ ⋮

𝑅𝑥𝑥[𝑝 − 1] 𝑅𝑥𝑥[𝑝 − 2] ⋯ 𝑅𝑥𝑥[0]

] [

𝑎1
𝑎2
⋮
𝑎𝑝

] = −[

𝑅𝑥𝑥[1]
𝑅𝑥𝑥[2]
⋮

𝑅𝑥𝑥[𝑝]

] (2.73) 

 

Ця система має теплицеву структуру і ефективно розв’язується 

алгоритмом Левінсона-Дарбіна зі складністю 𝑂(𝑝2). 

Для сегментації звукового сигналу на вокалізовані та невокалізовані 

фрагменти використовується аналіз короткочасної АКФ. Коефіцієнт вокалізації 

визначається як: 

 

𝑉[𝑚] =
max𝑘𝑚𝑖𝑛≤𝑘≤𝑘𝑚𝑎𝑥𝑅𝑥𝑥[𝑘,𝑚]

𝑅𝑥𝑥[0,𝑚]
 (2.74) 

 

де 𝑚 – індекс фрейму. Значення 𝑉[𝑚] > 0.3 зазвичай вказує на вокалізований 

звук. 

Диференційна автокореляційна функція підкреслює зміни у структурі 

сигналу: 

 

Δ𝑅𝑥𝑥[𝑘,𝑚] = 𝑅𝑥𝑥[𝑘,𝑚] − 𝑅𝑥𝑥[𝑘,𝑚 − 1] (2.75) 

 

Цей підхід корисний для детектування транзієнтів та різких змін у 

характері звуку. 

Багатомасштабна автокореляція обчислюється на різних рівнях часового 

дозволу: 
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𝑅𝑥𝑥
(𝑠)
[𝑘] =∑𝑥(𝑠)

𝑛

[𝑛]𝑥(𝑠)[𝑛 + 𝑘] (2.76) 

 

де 𝑥(𝑠)[𝑛] – сигнал, децимований з коефіцієнтом 2𝑠. Така ієрархічна структура 

дозволяє виявляти періодичності різних масштабів. 

Автокореляційна матриця використовується для представлення часової 

еволюції автокореляції: 

 

𝐑[𝑚] = [

𝑅𝑥𝑥[0,𝑚] 𝑅𝑥𝑥[1,𝑚] ⋯ 𝑅𝑥𝑥[𝑝,𝑚]
𝑅𝑥𝑥[1,𝑚] 𝑅𝑥𝑥[0,𝑚] ⋯ 𝑅𝑥𝑥[𝑝 − 1,𝑚]

⋮ ⋮ ⋱ ⋮
𝑅𝑥𝑥[𝑝,𝑚] 𝑅𝑥𝑥[𝑝 − 1,𝑚] ⋯ 𝑅𝑥𝑥[0,𝑚]

] (2.77) 

 

Власні значення цієї матриці характеризують статистичну структуру 

сигналу і можуть використовуватися як дескриптори для класифікації. 

 

2.2.2. Методи на основі спектрального аналізу 

Перетворення Фур’є є фундаментальним інструментом частотного 

аналізу сигналів і становить основу більшості методів розпізнавання звукових 

патернів. Воно дозволяє розкласти складний часовий сигнал на суму 

гармонічних компонент різних частот. 

Безперервне перетворення Фур’є (БПФ) визначається парою прямого та 

зворотного перетворень: 

 

𝑋(𝑓) = ∫ 𝑥
∞

−∞

(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 

𝑥(𝑡) = ∫ 𝑋
∞

−∞

(𝑓)𝑒𝑗2𝜋𝑓𝑡𝑑𝑓 

(2.78) 

 

Для дискретних сигналів використовується дискретне перетворення 

Фур’є: 

 

𝑋[𝑘] = ∑ 𝑥

𝑁−1

𝑛=0

[𝑛]𝑒−𝑗
2𝜋𝑘𝑛
𝑁 = ∑ 𝑥

𝑁−1

𝑛=0

[𝑛]𝑊𝑁
𝑘𝑛 (2.79) 
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де 𝑊𝑁 = 𝑒
−𝑗

2𝜋

𝑁  – базисна функція ДПФ, 𝑘 = 0,1,… ,𝑁 − 1. Зворотне ДПФ має 

вигляд: 

 

𝑥[𝑛] =
1

𝑁
∑ 𝑋

𝑁−1

𝑘=0

[𝑘]𝑒𝑗
2𝜋𝑘𝑛
𝑁  (2.80) 

 

Комплексний спектр 𝑋[𝑘] можна представити у полярній формі: 

 

𝑋[𝑘] = |𝑋[𝑘]|𝑒𝑗𝜙[𝑘] (2.81) 

 

де |𝑋[𝑘]| = √Re2{𝑋[𝑘]} + Im2{𝑋[𝑘]} – амплітудний спектр, 𝜙[𝑘] = arctan
Im{𝑋[𝑘]}

Re{𝑋[𝑘]}
 

– фазовий спектр. 

Спектр потужності визначається як: 

 

𝑃[𝑘] = |𝑋[𝑘]|2 = 𝑋[𝑘]𝑋∗[𝑘] (2.82) 

 

де 𝑋∗[𝑘] – комплексно спряжене значення. Густина спектра потужності 

нормується на кількість відліків: 

 

𝑆[𝑘] =
|𝑋[𝑘]|2

𝑁
 (2.83) 

 

Для аналізу нестаціонарних звукових сигналів застосовується 

короткочасне перетворення Фур’є (Short-Time Fourier Transform, STFT), що 

обчислює спектр на ковзних вікнах: 

 

𝑋[𝑘,𝑚] = ∑𝑤

𝑁−1

𝑛=0

[𝑛]𝑥[𝑚 ⋅ 𝐻 + 𝑛]𝑒−𝑗
2𝜋𝑘𝑛
𝑁  (2.84) 

 

де 𝑚 – індекс фрейму, 𝑤[𝑛] – віконна функція, 𝐻 – крок зміщення вікна (hop size). 

Вибір віконної функції впливає на баланс між частотним та часовим дозволом. 

Вікно Хеммінга визначається як: 
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𝑤𝐻𝑎𝑚𝑚𝑖𝑛𝑔[𝑛] = 0.54 − 0.46cos (
2𝜋𝑛

𝑁 − 1
) (2.85) 

 

Вікно Ганна забезпечує кращу частотну локалізацію: 

 

𝑤𝐻𝑎𝑛𝑛[𝑛] = 0.5(1 − cos (
2𝜋𝑛

𝑁 − 1
)) (2.86) 

 

Вікно Блекмана має найменші бокові пелюстки: 

 

𝑤𝐵𝑙𝑎𝑐𝑘𝑚𝑎𝑛[𝑛] = 0.42 − 0.5cos (
2𝜋𝑛

𝑁 − 1
) + 0.08cos (

4𝜋𝑛

𝑁 − 1
) (2.87) 

 

Принцип невизначеності Габора встановлює обмеження на одночасне 

досягнення високого часового та частотного дозволу: 

 

Δ𝑡 ⋅ Δ𝑓 ≥
1

4𝜋
 (2.88) 

 

де Δ𝑡 та Δ𝑓 – невизначеності у часі та частоті відповідно. 

Швидке перетворення Фур’є (ШПФ) є ефективним алгоритмом 

обчислення ДПФ, що знижує складність з 𝑂(𝑁2) до 𝑂(𝑁log2𝑁). Алгоритм Кулі-

Тьюкі з прорідженням у часі базується на розкладанні: 

 

𝑋[𝑘] = ∑ 𝑥

𝑁/2−1

𝑛=0

[2𝑛]𝑊𝑁
2𝑛𝑘 +𝑊𝑁

𝑘 ∑ 𝑥

𝑁/2−1

𝑛=0

[2𝑛 + 1]𝑊𝑁
2𝑛𝑘 (2.89) 

 

Це рівняння показує, що 𝑁-точкове ДПФ можна обчислити через два 𝑁/2-

точкових ДПФ парних та непарних відліків. 

Для розпізнавання звукових патернів спектральні дескриптори 

обчислюються з амплітудного спектра. Спектральна енергія у заданій смузі 

частот: 

 

𝐸𝑏𝑎𝑛𝑑[𝑓1, 𝑓2, 𝑚] = ∑ |

𝑘:𝑓1≤𝑓[𝑘]≤𝑓2

𝑋[𝑘,𝑚]|2 (2.90) 
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Співвідношення енергій у різних смугах характеризує тембр звуку: 

 

𝑅𝑏𝑎𝑛𝑑𝑠[𝑚] =
𝐸𝑏𝑎𝑛𝑑[𝑓1, 𝑓2, 𝑚]

𝐸𝑏𝑎𝑛𝑑[𝑓3, 𝑓4, 𝑚]
 (2.91) 

 

Спектральний нахил (Spectral Roll-off) визначає частоту, нижче якої 

зосереджено певний відсоток (зазвичай 85%) загальної енергії: 

 

∑ |

𝑘𝑟𝑜𝑙𝑙𝑜𝑓𝑓

𝑘=0

𝑋[𝑘,𝑚]|2 = 0.85∑ |

𝑁/2

𝑘=0

𝑋[𝑘,𝑚]|2 (2.92) 

 

Спектральна рівність (Spectral Flatness) вимірює тональність звуку: 

 

𝑆𝐹𝑀[𝑚] =
√∏ |𝑁−1

𝑘=0 𝑋[𝑘,𝑚]|2
𝑁

1
𝑁
∑ |𝑁−1
𝑘=0 𝑋[𝑘,𝑚]|2

 (2.93) 

 

Значення близьке до 1 вказує на шумоподібний сигнал, тоді як значення 

близьке до 0 характерне для тонального сигналу. 

Кепстральний аналіз базується на зворотному перетворенні Фур’є від 

логарифму спектра: 

 

𝑐[𝑛] =
1

𝑁
∑ log

𝑁−1

𝑘=0

|𝑋[𝑘]|𝑒𝑗
2𝜋𝑘𝑛
𝑁  (2.94) 

 

Низькі кепстральні коефіцієнти (quefrency) характеризують спектральну 

огинаючу, тоді як високі – тонку структуру спектра. Кепстральна відстань між 

двома сигналами: 

 

𝑑𝑐𝑒𝑝(𝑥, 𝑦) = √∑(

𝑝

𝑛=1

𝑐𝑥[𝑛] − 𝑐𝑦[𝑛])
2 (2.95) 

 

використовується як метрика схожості у задачах розпізнавання. 
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Гомоморфна обробка використовує кепстр для розділення збудження та 

імпульсної відповіді системи. Для моделі 𝑥[𝑛] = 𝑒[𝑛] ∗ ℎ[𝑛], де 𝑒[𝑛] – 

збудження, ℎ[𝑛] – імпульсна відповід, логарифмування перетворює згортку у 

суму: 

 

log|𝑋[𝑘]| = log|𝐸[𝑘]| + log|𝐻[𝑘]| (2.96) 

 

а застосування зворотного ДПФ дає адитивні компоненти у кепстральній області. 

Вейвлет-аналіз є потужним інструментом часо-частотного представлення 

сигналів, що забезпечує адаптивне частотне розділення з кращою часовою 

локалізацією високочастотних компонент порівняно з STFT. 

Безперервне вейвлет-перетворення (БВП) визначається як: 

 

𝑊(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑥
∞

−∞

(𝑡)𝜓∗ (
𝑡 − 𝑏

𝑎
)𝑑𝑡 (2.97) 

 

де 𝜓(𝑡) – материнський вейвлет, 𝑎 – параметр масштабу (inversely proportional to 

frequency), 𝑏 – параметр зміщення у часі, 𝜓∗(𝑡) – комплексно спряжена функція. 

Коефіцієнт 
1

√|𝑎|
 забезпечує збереження енергії. 

Дискретне вейвлет-перетворення (ДВП) використовує диадичне 

дискретизування параметрів: 

 

𝑎 = 2𝑗 , 𝑏 = 𝑘2𝑗 (2.98) 

 

де 𝑗 – рівень декомпозиції, 𝑘 – індекс зміщення. ДВП обчислюється як: 

 

𝑊𝑗,𝑘 =
1

√2𝑗
∑𝑥

𝑛

[𝑛]𝜓 (
𝑛 − 𝑘2𝑗

2𝑗
) (2.99) 

 

Багаторівнева декомпозиція сигналу виконується рекурсивно через 

згортку з фільтрами аналізу: 

 

𝑐𝑗+1[𝑘] =∑ℎ

𝑛

[𝑛 − 2𝑘]𝑐𝑗[𝑛] (2.100) 
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𝑑𝑗+1[𝑘] =∑𝑔

𝑛

[𝑛 − 2𝑘]𝑐𝑗[𝑛] (2.101) 

 

де 𝑐𝑗[𝑛] – апроксимаційні коефіцієнти рівня 𝑗, 𝑑𝑗[𝑛] – деталізаційні коефіцієнти, 

ℎ[𝑛] та 𝑔[𝑛] – низькочастотний та високочастотний фільтри відповідно. Фільтри 

задовольняють умовам ортогональності: 

 

∑ℎ

𝑛

[𝑛]ℎ[𝑛 − 2𝑘] = 𝛿[𝑘], ∑𝑔

𝑛

[𝑛]𝑔[𝑛 − 2𝑘] = 𝛿[𝑘] 

∑ℎ

𝑛

[𝑛]𝑔[𝑛 − 2𝑘] = 0 
(2.102) 

 

Популярні материнські вейвлети включають вейвлет Хаара: 

 

𝜓𝐻𝑎𝑎𝑟(𝑡) = {
1, 0 ≤ 𝑡 < 1/2
−1, 1/2 ≤ 𝑡 < 1
0, інакше

 (2.103) 

 

Вейвлет Добеші 𝑁-го порядку (𝑑𝑏𝑁) має максимально плоску частотну 

характеристику та компактний носій. Коефіцієнти фільтрів для 𝑑𝑏4 

визначаються як: 

 

ℎ[0] =
1 + √3

4√2
, ℎ[1] =

3 + √3

4√2
 

ℎ[2] =
3 − √3

4√2
, ℎ[3] =

1 − √3

4√2
 

(2.104) 

 

Симлети (𝑠𝑦𝑚𝑁) є майже симетричними версіями вейвлетів Добеші. 

Койфлети (𝑐𝑜𝑖𝑓𝑁) мають додаткову властивість симетрії моментів. 

Для аналізу звукових сигналів часто використовується вейвлет Морле: 

 

𝜓𝑀𝑜𝑟𝑙𝑒𝑡(𝑡) = 𝑒
𝑗𝜔0𝑡𝑒−𝑡

2/2 (2.105) 

 

де 𝜔0 – центральна частота (зазвичай 𝜔0 = 6). Цей вейвлет забезпечує хороший 

баланс між часовою та частотною локалізацією. 

Мексиканський капелюх (Mexican Hat) є другою похідною гаусіани: 
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𝜓𝑀𝑒𝑥𝐻𝑎𝑡(𝑡) =
2

√3𝜋1/4
(1 − 𝑡2)𝑒−𝑡

2/2 (2.106) 

 

Енергетичний спектр вейвлет-коефіцієнтів (скалограма) визначається як: 

 

𝑆(𝑎, 𝑏) = |𝑊(𝑎, 𝑏)|2 (2.107) 

 

і використовується для візуалізації та аналізу часо-частотної структури сигналу. 

Вейвлет-ознаки для розпізнавання звуку обчислюються як статистики 

вейвлет-коефіцієнтів на різних рівнях декомпозиції: 

 

𝐸𝑗 =∑|

𝑘

𝑑𝑗[𝑘]|
2, 𝑗 = 1,2,… , 𝐽 

𝜇𝑗 =
1

𝑁𝑗
∑𝑑𝑗
𝑘

[𝑘], 𝜎𝑗
2 =

1

𝑁𝑗
∑(

𝑘

𝑑𝑗[𝑘] − 𝜇𝑗)
2 

(2.108) 

 

де 𝑁𝑗 – кількість коефіцієнтів на рівні 𝑗. Вектор ознак формується з енергій, 

середніх та дисперсій: 

 

𝐟 = [𝐸1, 𝐸2, … , 𝐸𝐽, 𝜇1, … , 𝜇𝐽, 𝜎1, … , 𝜎𝐽]
𝑇 (2.109) 

 

Вейвлет-пакетна декомпозиція (Wavelet Packet Decomposition, WPD) 

розширює стандартний ДВП, застосовуючи фільтри як до апроксимаційних, так 

і до деталізаційних коефіцієнтів на кожному рівні. Це дозволяє отримати більш 

детальний частотний розподіл у високочастотній області. 

Дерево WPD має 2𝐽+1 − 1 вузлів для 𝐽 рівнів декомпозиції. Коефіцієнти у 

вузлі (𝑗, 𝑛) обчислюються як: 

 

𝑤𝑗+1,2𝑛[𝑘] =∑ℎ

𝑚

[𝑚 − 2𝑘]𝑤𝑗,𝑛[𝑚] 

𝑤𝑗+1,2𝑛+1[𝑘] =∑𝑔

𝑚

[𝑚 − 2𝑘]𝑤𝑗,𝑛[𝑚] 
(2.110) 

 

де 𝑗 – рівень, 𝑛 – індекс вузла на рівні. 

Ентропія вейвлет-пакетів використовується для вибору оптимального 

базису: 
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𝐸𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑝𝑘
𝑘

log𝑝𝑘 (2.111) 

 

де 𝑝𝑘 =
|𝑤𝑘|

2

∑ |𝑖 𝑤𝑖|
2
 – нормалізована енергія коефіцієнта. Алгоритм best-basis мінімізує 

сумарну ентропію по всіх рівнях. 

Подвійне дерево комплексних вейвлетів (Dual-Tree Complex Wavelet 

Transform, DT-CWT) забезпечує майже інваріантність до зміщень та покращену 

напрямкову селективність: 

 

Ψ(𝑡) = 𝜓ℎ(𝑡) + 𝑗𝜓𝑔(𝑡), (2.112) 

 

де 𝜓ℎ(𝑡) та 𝜓𝑔(𝑡) – пара дійсних вейвлетів, що утворюють пару Гільберта. Такий 

підхід дозволяє уникнути артефактів аліасингу, характерних для стандартного 

дискретного вейвлет-перетворення (ДВП), та забезпечує більш гладку огинаючу 

вейвлет-коефіцієнтів. Це критично важливо для точного розпізнавання складних 

акустичних подій у зашумленому середовищі. 

 

2.2.3. Метод динамічної трансформації часової шкали (DTW) 

Метод DTW є класичним алгоритмом порівняння двох часових 

послідовностей, які можуть відрізнятися за швидкістю або тривалістю. У 

контексті розпізнавання звуку DTW дозволяє знайти оптимальну відповідність 

між вхідним сигналом та еталонним шаблоном, компенсуючи нелінійні часові 

спотворення, що часто виникають при вимові слів або виконанні музичних 

фрагментів. 

Нехай маємо дві послідовності векторів ознак: 

 

𝑋 = (𝐱1, 𝐱2, … , 𝐱𝑁), 𝑌 = (𝐲1, 𝐲2, … , 𝐲𝑀). (2.113) 

 

Метою DTW є знаходження шляху вирівнювання 

 

𝑊 = (𝑤1, 𝑤2, … , 𝑤𝐾), (2.114) 
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де кожен елемент 𝑤𝑘 = (𝑖𝑘, 𝑗𝑘) представляє відповідність між 𝑖-м вектором 

першої послідовності та 𝑗-м вектором другої. 

Шлях повинен задовольняти такі умови: 

− граничність: 𝑤1 = (1,1), 𝑤𝐾 = (𝑁,𝑀); 

− неперервність: кроки обмежені сусідніми елементами; 

− монотонність: 𝑖𝑘 ≥ 𝑖𝑘−1, 𝑗𝑘 ≥ 𝑗𝑘−1. 

Оптимальний шлях мінімізує сумарну відстань: 

 

𝐷𝐷𝑇𝑊(𝑋, 𝑌) = min
𝑊

∑𝑑

𝐾

𝑘=1

(𝑤𝑘), (2.115) 

 

де 𝑑(𝑤𝑘) =∥ 𝐱𝑖𝑘 − 𝐲𝑗𝑘 ∥ – локальна міра відстані (зазвичай евклідова відстань 

між векторами MFCC). 

Задача розв’язується методами динамічного програмування через 

обчислення матриці накопиченої відстані: 

 

𝐷(𝑖, 𝑗) = 𝑑(𝑖, 𝑗) + min{𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1),𝐷(𝑖 − 1, 𝑗 − 1)}. (2.116) 

 

Для зменшення обчислювальної складності та запобігання надмірним 

викривленням часто вводяться глобальні обмеження на область пошуку, такі як 

смуга Сакое-Чібі (Sakoe-Chiba band) або ромб Ітакури. Вони зводять пошук 

шляху до вузького коридору навколо діагоналі матриці. 

Попри ефективність для ізольованих слів, DTW має обмеження: він не 

враховує статистичні варіації всередині класу та потребує значних 

обчислювальних ресурсів при великій базі шаблонів. Проте метод залишається 

актуальним у системах з невеликим обсягом навчальних даних або як компонент 

гібридних архітектур. 

 

2.2.4. Приховані Марковські моделі (HMM) 

Приховані Марковські моделі є потужним статистичним інструментом, що 

розглядає звуковий сигнал як вихід стохастичного процесу з послідовністю 
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прихованих станів. У розпізнаванні мовлення стани HMM зазвичай моделюють 

окремі фонеми або частини звуків, що дозволяє описувати часову структуру 

сигналу на різних рівнях абстракції. 

HMM визначається набором параметрів 𝜆 = (𝐴, 𝐵, 𝜋), де: 

− 𝐴 – матриця ймовірностей переходів між станами; 

− 𝐵 – розподіл ймовірностей спостережень у кожному стані; 

− 𝜋 – вектор початкових ймовірностей. 

Оскільки звукові ознаки є неперервними векторами, розподіл 𝐵 часто 

моделюється як суміш Гауссових розподілів (Gaussian Mixture Model – GMM): 

 

𝑏𝑗(𝐱) = ∑ 𝑤𝑗𝑚

𝑀

𝑚=1

 𝒩(𝐱; 𝛍𝑗𝑚, 𝚺𝑗𝑚), (2.117) 

 

де 𝑤𝑗𝑚, 𝛍𝑗𝑚 та 𝚺𝑗𝑚 – вага, середнє значення та коваріаційна матриця 𝑚-ї 

компоненти суміші для стану 𝑗. 

Процес розпізнавання за допомогою HMM включає три основні задачі: 

− Оцінка ймовірності: обчислення ймовірності того, що дана 

послідовність спостережень X була згенерована моделлю λ (алгоритм “вперед-

назад”). 

− Декодування: знаходження найбільш імовірної послідовності 

прихованих станів для заданого сигналу (алгоритм Вітербі). 

− Навчання: підбір параметрів моделі для максимальної відповідності 

навчальним даним (алгоритм Баума-Велша або EM-алгоритм). 

HMM ефективно моделюють варіативність тривалості звуків завдяки 

ймовірнісним переходам (self-loops) у станах. Проте традиційні системи HMM-

GMM мають обмежену здатність описувати складні нелінійні залежності у 

високовимірних просторах ознак. Це призвело до поступової інтеграції HMM з 

глибокими нейронними мережами (гібриди DNN-HMM), де нейромережа 

замінює GMM для оцінки ймовірностей станів. 
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2.3. Класичні алгоритми машинного навчання 

 

Методи машинного навчання в задачах розпізнавання звукових патернів 

базуються на автоматичному виявленні закономірностей у попередньо 

оброблених акустичних ознаках. На відміну від традиційних підходів, які 

потребують експертного визначення правил класифікації, алгоритми машинного 

навчання здатні самостійно будувати дискримінантні функції на основі 

навчальної вибірки. Ключовою перевагою таких методів є їхня здатність 

адаптуватися до специфіки конкретної задачі та узагальнювати знання на нові, 

раніше не бачені дані [18]. 

Метод найближчих сусідів (k-NN) є одним із найпростіших, але водночас 

ефективних підходів до класифікації звукових сигналів. Основна ідея полягає в 

тому, що невідомий зразок відноситься до того класу, який найбільш 

представлений серед його k найближчих сусідів у просторі ознак. Для звукового 

сигналу, представленого вектором ознак x, відстань до еталонного зразка xᵢ 

найчастіше обчислюється за допомогою евклідової метрики: 

 

𝑑(𝐱, 𝐱𝑖) = √∑(

𝑛

𝑗=1

𝑥𝑗 − 𝑥𝑖,𝑗)
2 (2.118) 

 

де n – розмірність вектора ознак. Альтернативно можна використовувати 

манхеттенську відстань: 

 

𝑑(𝐱, 𝐱𝑖) =∑|

𝑛

𝑗=1

𝑥𝑗 − 𝑥𝑖,𝑗| (2.119) 

 

або узагальнену метрику Мінковського: 

 

𝑑(𝐱, 𝐱𝑖) = (∑|

𝑛

𝑗=1

𝑥𝑗 − 𝑥𝑖,𝑗|
𝑝)

1/𝑝

 (2.120) 
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Після обчислення відстаней до всіх навчальних зразків вибираються k 

найближчих, і клас визначається за правилом більшості. Імовірність належності 

до класу c можна оцінити як: 

 

𝑃(𝑦 = 𝑐|𝐱) =
1

𝑘
∑ 𝟙

𝑖∈𝑁𝑘(𝐱)

(𝑦𝑖 = 𝑐) (2.121) 

 

де 𝑁𝑘(𝒙) – множина індексів k найближчих сусідів, а 𝟙(·) – індикаторна функція. 

Параметр k є критичним для продуктивності алгоритму: малі значення k роблять 

модель чутливою до шуму, тоді як великі значення можуть призвести до 

розмивання меж між класами. У контексті розпізнавання звуку k-NN показує 

хороші результати при класифікації музичних жанрів, розпізнаванні окремих 

звуків навколишнього середовища та ідентифікації коротких акустичних подій, 

особливо коли навчальна вибірка містить достатню кількість репрезентативних 

зразків для кожного класу. 

Метод опорних векторів (SVM) є потужним інструментом для задач 

бінарної та багатокласової класифікації звукових патернів. Основна концепція 

SVM полягає у побудові оптимальної розділяючої гіперплощини, яка максимізує 

відстань (margin) між класами у просторі ознак. Для лінійно роздільних даних 

гіперплощина визначається рівнянням: 

 

𝑓(𝐱) = 𝐰𝑇𝐱 + 𝑏 = 0 (2.122) 

 

де w – вектор ваг, перпендикулярний до гіперплощини, а b – зміщення. Задача 

оптимізації формулюється як максимізація margin при дотриманні умов 

правильної класифікації: 

 

min
𝐰,𝑏

1

2
||𝐰||2 (2.123) 

 

при обмеженнях: 

 

𝑦𝑖(𝐰
𝑇𝐱𝑖 + 𝑏) ≥ 1, 𝑖 = 1,… ,𝑚 (2.124) 
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де yᵢ ∈ {-1, +1} – мітки класів, m – кількість навчальних зразків. У реальних 

задачах дані рідко є лінійно роздільними, тому вводиться м’яка межа (soft 

margin) з додатковими змінними послаблення ξᵢ: 

 

min
𝐰,𝑏,𝛏

1

2
||𝐰||2 + 𝐶∑𝜉𝑖

𝑚

𝑖=1

 (2.125) 

 

при обмеженнях: 

 

𝑦𝑖(𝐰
𝑇𝐱𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0 (2.126) 

 

Параметр C контролює баланс між максимізацією margin та мінімізацією 

помилок класифікації. Для нелінійно роздільних звукових даних застосовується 

kernel trick, який неявно відображає вихідний простір ознак у простір вищої 

розмірності через ядрову функцію K(xᵢ, xⱼ). Найпоширенішими є радіальне 

базисне ядро (RBF): 

 

𝐾(𝐱𝑖 , 𝐱𝑗) = exp(−𝛾||𝐱𝑖 − 𝐱𝑗||
2) (2.127) 

 

де γ контролює ширину ядра, поліноміальне ядро: 

 

𝐾(𝐱𝑖 , 𝐱𝑗) = (𝛾𝐱𝑖
𝑇𝐱𝑗 + 𝑟)

𝑑 (2.128) 

 

де d – ступінь полінома, та сигмоїдне ядро: 

 

𝐾(𝐱𝑖 , 𝐱𝑗) = tanh(𝛾𝐱𝑖
𝑇𝐱𝑗 + 𝑟) (2.129) 

 

Рішення задачі оптимізації зводиться до знаходження коефіцієнтів αᵢ у 

двоїстій формі: 

 

max
𝛂
∑𝛼𝑖

𝑚

𝑖=1

−
1

2
∑∑𝛼𝑖

𝑚

𝑗=1

𝑚

𝑖=1

𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝐱𝑖 , 𝐱𝑗) (2.130) 

 

при обмеженнях: 
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0 ≤ 𝛼𝑖 ≤ 𝐶, ∑𝛼𝑖

𝑚

𝑖=1

𝑦𝑖 = 0 (2.131) 

 

Вектори xᵢ, для яких αᵢ > 0, називаються опорними векторами і визначають 

положення розділяючої гіперплощини. Класифікаційне рішення для нового 

зразка x обчислюється як: 

 

𝑓(𝐱) = sign(∑𝛼𝑖

𝑚

𝑖=1

𝑦𝑖𝐾(𝐱𝑖 , 𝐱) + 𝑏) (2.132) 

 

SVM демонструє високу ефективність при розпізнаванні мовлення, 

класифікації емоційного забарвлення голосу та детекції аномальних звуків, 

особливо коли розмірність простору ознак є високою, а навчальна вибірка 

обмеженою. 

Ансамблеві методи, такі як Random Forest та Gradient Boosting, значно 

покращують якість класифікації звукових патернів шляхом комбінування 

прогнозів множини базових моделей. Random Forest будує набір дерев рішень на 

різних підвибірках даних та підмножинах ознак, після чого агрегує їхні 

передбачення. Кожне дерево рішень рекурсивно розділяє простір ознак за 

критерієм, який максимізує зменшення невизначеності. Для класифікації часто 

використовується індекс Джині: 

 

𝐺 = 1 −∑𝑝𝑐
2

𝐶

𝑐=1

 (2.133) 

 

де pᶜ – частка зразків класу c у вузлі, C – кількість класів. Альтернативно 

застосовується ентропія Шеннона: 

 

𝐻 = −∑𝑝𝑐

𝐶

𝑐=1

log2(𝑝𝑐) (2.134) 

 

Розділення здійснюється у вузлі за ознакою j та порогом t таким чином, 

щоб мінімізувати зважену суму невизначеностей дочірніх вузлів: 
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Δ𝐺(𝑗, 𝑡) = 𝐺parent −
𝑛left

𝑛
𝐺left −

𝑛right

𝑛
𝐺right (2.135) 

 

де n – кількість зразків у батьківському вузлі. Random Forest використовує 

бутстреп-агрегацію (bagging), тобто кожне дерево навчається на випадковій 

вибірці з поверненням розміром m зразків з оригінального датасету. Крім того, 

на кожному кроці розділення вибирається лише √n випадкових ознак (для 

класифікації) замість усіх доступних. Фінальний прогноз для зразка x 

визначається голосуванням більшості: 

 

𝑦̂(𝐱) = mode{ℎ1(𝐱), ℎ2(𝐱),… , ℎ𝑇(𝐱)} (2.136) 

 

або усередненням імовірностей: 

 

𝑃(𝑦 = 𝑐|𝐱) =
1

𝑇
∑𝑃𝑡

𝑇

𝑡=1

(𝑦 = 𝑐|𝐱) (2.137) 

 

де T – кількість дерев в ансамблі, hₜ(x) – прогноз t-го дерева. 

Gradient Boosting реалізує інший підхід до побудови ансамблю, послідовно 

додаючи моделі, які корегують помилки попередніх. Метод мінімізує функцію 

втрат L шляхом руху в напрямку антиградієнта у функціональному просторі. Для 

задачі класифікації звукових сигналів модель будується ітеративно: 

 

𝐹0(𝐱) = argmin
𝛾
∑𝐿

𝑚

𝑖=1

(𝑦𝑖 , 𝛾) 

𝐹𝑡(𝐱) = 𝐹𝑡−1(𝐱) + 𝜈 ⋅ ℎ𝑡(𝐱) 

(2.138) 

 

де F₀ – початкова модель (зазвичай константа), ν ∈ (0, 1] – швидкість навчання 

(learning rate), hₜ – базова модель на кроці t. На кожній ітерації обчислюються 

псевдорезидуали як негативний градієнт функції втрат: 

 

𝑟𝑖,𝑡 = −[
∂𝐿(𝑦𝑖 , 𝐹(𝐱𝑖))

∂𝐹(𝐱𝑖)
]
𝐹=𝐹𝑡−1

 (2.139) 
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Нова базова модель hₜ навчається апроксимувати ці резидуали методом 

найменших квадратів: 

 

ℎ𝑡 = argmin
ℎ
∑(

𝑚

𝑖=1

𝑟𝑖,𝑡 − ℎ(𝐱𝑖))
2 (2.140) 

 

Для багатокласової класифікації звуків використовується функція втрат 

cross-entropy або softmax: 

 

𝐿 = −∑∑𝑦𝑖,𝑐

𝐶

𝑐=1

𝑚

𝑖=1

log(𝑝𝑖,𝑐) (2.141) 

 

де yᵢ,ᶜ – індикатор належності i-го зразка до класу c, pᵢ,ᶜ – передбачена імовірність. 

Сучасні реалізації, такі як XGBoost та LightGBM, використовують додаткові 

техніки регуляризації для запобігання перенавчанню: 

 

Ω(ℎ𝑡) = 𝛾𝑇𝑡 +
1

2
𝜆∑𝑤𝑗

2

𝑇𝑡

𝑗=1

 (2.142) 

 

де Tₜ – кількість листків у дереві t, wⱼ – вага j-го листка, γ та λ – параметри 

регуляризації. Ансамблеві методи особливо ефективні для розпізнавання 

складних акустичних сцен, де одночасно присутні множинні джерела звуку, та 

для класифікації звуків з великою внутрішньокласовою варіабельністю. 

 

2.4. Методи розпізнавання на основі глибинного навчання 

 

2.4.1. Штучні нейронні мережі для обробки звуку 

Глибинне навчання революціонізувало галузь розпізнавання звукових 

патернів, дозволяючи автоматично вивчати ієрархічні представлення 

безпосередньо з сирих аудіоданих або їх низькорівневих перетворень. На відміну 

від класичних методів машинного навчання, які потребують ручного 

проектування ознак, глибинні нейронні мережі здатні одночасно оптимізувати 
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як екстракцію ознак, так і класифікаційне рішення в наскрізному (end-to-end) 

режимі [19]. 

Багатошарові персептрони (MLP) є найпростішою архітектурою 

глибинних мереж, що складається з послідовності повнозв’язних шарів. Кожен 

нейрон у шарі l обчислює зважену суму виходів попереднього шару з нелінійним 

перетворенням: 

 

ℎ𝑗
(𝑙)
= 𝜎 (∑𝑤𝑗𝑖

(𝑙)

𝑖

ℎ𝑖
(𝑙−1)

+ 𝑏𝑗
(𝑙)
) (2.143) 

 

де ℎ𝑗
𝑙 – активація j-го нейрона в шарі l, 𝑤𝑗𝑖

𝑙  – вага зв’язку від i-го нейрона 

попереднього шару, 𝑏𝑗
𝑙 – зміщення, 𝜎 – функція активації. Найпоширенішими є 

випрямлена лінійна одиниця (ReLU): 

 

𝜎(𝑧) = max(0, 𝑧) (2.144) 

 

та її варіанти, такі як Leaky ReLU: 

 

𝜎(𝑧) = {
𝑧, 𝑧 > 0
𝛼𝑧, 𝑧 ≤ 0

 (2.145) 

 

де α – малий коефіцієнт (зазвичай 0.01), та Exponential Linear Unit (ELU): 

 

𝜎(𝑧) = {
𝑧, 𝑧 > 0
𝛼(exp(𝑧) − 1), 𝑧 ≤ 0

 (2.146) 

 

Для вихідного шару класифікації використовується функція softmax, яка 

перетворює логіти в розподіл імовірностей: 

 

𝑝(𝑦 = 𝑐|𝐱) =
exp(𝑧𝑐)

∑ exp𝐶
𝑐′=1 (𝑧𝑐′)

 (2.147) 

 

де 𝑧𝑐 – вихід c-го нейрона перед активацією, 𝐶 – кількість класів. Навчання MLP 

здійснюється методом зворотного поширення помилки (backpropagation) з 

мінімізацією функції втрат, зазвичай крос-ентропії: 
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𝐿 = −∑∑𝑦𝑖,𝑐

𝐶

𝑐=1

𝑚

𝑖=1

log(𝑝𝑖,𝑐) (2.148) 

 

Градієнти обчислюються за правилом ланцюга: 

 

∂𝐿

∂𝑤𝑗𝑖
(𝑙)
=

∂𝐿

∂ℎ𝑗
(𝑙)

∂ℎ𝑗
(𝑙)

∂𝑧𝑗
(𝑙)

∂𝑧𝑗
(𝑙)

∂𝑤𝑗𝑖
(𝑙)

 (2.149) 

 

де 𝑧𝑗
𝑙 = ∑ 𝑤𝑗𝑖

𝑙  ℎ𝑖
𝑙−1  +  𝑏𝑗

𝑙
𝑖 . Оновлення ваг виконується за градієнтним спуском: 

 

𝑤𝑗𝑖
(𝑙)
← 𝑤𝑗𝑖

(𝑙)
− 𝜂

∂𝐿

∂𝑤𝑗𝑖
(𝑙)

 (2.150) 

 

де η – швидкість навчання. Сучасні оптимізатори, такі як Adam, використовують 

адаптивні швидкості навчання з моментом: 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡

2 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 , 𝑣̂𝑡 =

𝑣𝑡
1 − 𝛽2

𝑡 

𝑤𝑡 = 𝑤𝑡−1 − 𝜂
𝑚̂𝑡

√𝑣̂𝑡 + 𝜖
 

(2.151) 

 

де 𝑔𝑡 – градієнт на кроці t, 𝑚𝑡 та 𝑣𝑡 – перший та другий моменти, β₁ та β₂ – 

коефіцієнти згладжування (зазвичай 0.9 та 0.999), ε – мала константа для 

числової стабільності. Для запобігання перенавчанню застосовується dropout, 

який випадково обнуляє частку нейронів під час навчання: 

 

ℎ̃𝑗
(𝑙)
= {

0, з імовірністю 𝑝

ℎ𝑗
(𝑙)

1 − 𝑝
, інакше

 (2.152) 

 

та L2-регуляризація, яка додає штраф до функції втрат: 

 

𝐿reg = 𝐿 + 𝜆∑∑(

𝑖,𝑗𝑙

𝑤𝑗𝑖
(𝑙)
)2 (2.153) 
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MLP ефективні для класифікації попередньо витягнутих ознак (MFCC, 

спектрограм), але їхня повнозв’язна архітектура не враховує часової структури 

звукових сигналів. 

Рекурентні нейронні мережі (RNN) спеціально розроблені для обробки 

послідовностей змінної довжини, що робить їх природним вибором для аналізу 

звукових сигналів. Базова RNN обробляє послідовність входів x₁, x₂, …, x_T 

через приховані стани h_t: 

 

𝐡𝑡 = tanh(𝐖ℎℎ𝐡𝑡−1 +𝐖𝑥ℎ𝐱𝑡 + 𝐛ℎ) 
𝐲𝑡 = 𝐖ℎ𝑦𝐡𝑡 + 𝐛𝑦 

(2.154) 

 

де 𝑾ℎℎ, 𝑾𝑥ℎ, 𝑾ℎ𝑦 – матриці ваг для рекурентних зв’язків, входу та виходу 

відповідно. Навчання RNN здійснюється методом backpropagation through time 

(BPTT), який розгортає мережу у часі та обчислює градієнти: 

 

∂𝐿

∂𝐖ℎℎ
=∑∑

∂𝐿𝑡
∂𝐡𝑡

𝑡

𝑘=1

𝑇

𝑡=1

∂𝐡𝑡
∂𝐡𝑘

∂𝐡𝑘
∂𝐖ℎℎ

 (2.155) 

 

Проблема полягає в тому, що градієнти можуть зникати або вибухати через 

множення похідних активаційних функцій: 

 

∂𝐡𝑡
∂𝐡𝑘

= ∏
∂𝐡𝜏
∂𝐡𝜏−1

𝑡

𝜏=𝑘+1

= ∏ 𝐖ℎℎ
𝑇

𝑡

𝜏=𝑘+1

diag(tanh′(𝐳𝜏)) (2.156) 

 

Якщо власні значення матриці Якобіана менші за одиницю, градієнт 

експоненційно зменшується, що унеможливлює навчання довгострокових 

залежностей. 

Long Short-Term Memory (LSTM) розв’язує проблему зникаючих 

градієнтів через спеціальну архітектуру з вентилями (gates), які контролюють 

потік інформації. LSTM-комірка містить стан пам’яті 𝒄𝑡 та три вентилі: вхідний 

(input gate) 𝒊𝑡, забуваючий (forget gate) 𝒇𝑡 та вихідний (output gate) 𝒐𝑡: 
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𝐟𝑡 = 𝜎(𝐖𝑓[𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑓) 

𝐢𝑡 = 𝜎(𝐖𝑖[𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑖) 

𝐨𝑡 = 𝜎(𝐖𝑜[𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑜) 

𝐜̃𝑡 = tanh(𝐖𝑐[𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑐) 

𝐜𝑡 = 𝐟𝑡⊙𝐜𝑡−1 + 𝐢𝑡⊙ 𝐜̃𝑡 

𝐡𝑡 = 𝐨𝑡⊙ tanh(𝐜𝑡) 

(2.157) 

 

де σ – сигмоїдна функція, ⊙ – поелементне множення, [·,·] – конкатенація 

векторів. Забуваючий вентиль визначає, яку частину попереднього стану пам’яті 

слід зберегти, вхідний вентиль контролює оновлення новою інформацією, а 

вихідний вентиль регулює вплив пам’яті на прихований стан. Ключова перевага 

LSTM - можливість градієнта протікати через час без значних модифікацій: 

 
∂𝐜𝑡
∂𝐜𝑡−1

= 𝐟𝑡 (2.158) 

 

що дозволяє навчати залежності на сотнях кроків. Для розпізнавання звуку 

LSTM можна застосовувати до послідовності акустичних ознак (наприклад, 

MFCC-векторів для кожного фрейму), отримуючи контекстуалізоване 

представлення. 

Gated Recurrent Unit (GRU) є спрощеною альтернативою LSTM з меншою 

кількістю параметрів. GRU об’єднує стан пам’яті та прихований стан, 

використовуючи лише два вентилі: 

 

𝐳𝑡 = 𝜎(𝐖𝑧[𝐡𝑡−1, 𝐱𝑡]) 
𝐫𝑡 = 𝜎(𝐖𝑟[𝐡𝑡−1, 𝐱𝑡]) 

𝐡̃𝑡 = tanh(𝐖ℎ[𝐫𝑡⊙𝐡𝑡−1, 𝐱𝑡]) 
𝐡𝑡 = (1 − 𝐳𝑡)⊙ 𝐡𝑡−1 + 𝐳𝑡⊙ 𝐡̃𝑡 

(2.159) 

 

де 𝒛𝑡 – вентиль оновлення (update gate), 𝒓𝑡 – вентиль скидання (reset gate). 

Вентиль оновлення балансує між збереженням попередньої інформації та 

включенням нової, тоді як вентиль скидання визначає, наскільки попередній стан 

релевантний для обчислення нового кандидата. GRU часто демонструє 
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порівнянну з LSTM продуктивність при меншій обчислювальній складності, що 

робить їх привабливими для реалтайм-застосувань розпізнавання звуку. 

Конволюційні нейронні мережі (CNN) спочатку розроблялися для 

зображень, але виявилися надзвичайно ефективними для обробки спектрограм 

звукових сигналів, які можна розглядати як двовимірні часово-частотні 

представлення. Конволюційний шар застосовує набір фільтрів до входу, 

виявляючи локальні паттерни: 

 

ℎ𝑖𝑗𝑘
(𝑙)
= 𝜎(∑ ∑∑𝑤𝑖𝑗𝑚𝑝𝑞

(𝑙)

𝑄−1

𝑞=0

𝑃−1

𝑝=0𝑚

ℎ(𝑖+𝑝)(𝑗+𝑞)𝑚
(𝑙−1)

+ 𝑏𝑖𝑗𝑘
(𝑙)
) (2.160) 

 

де ℎ𝑖𝑗𝑘
𝑙  – активація на позиції (i,j) k-го фільтра в шарі l, 𝑤𝑖𝑗𝑚𝑝𝑞

𝑙  – вага фільтра 

розміром 𝑃 × 𝑄, m індексує канали вхідного шару. Компактніше це можна 

записати як операцію згортки: 

 

𝐇(𝑙) = 𝜎(𝐖(𝑙) ∗ 𝐇(𝑙−1) + 𝐛(𝑙)) (2.161) 

 

де * позначає конволюцію. Для спектрограм розміром T×F (T часових фреймів, 

F частотних bins) зазвичай використовуються фільтри малого розміру, наприклад 

3×3 або 5×5, які виявляють локальні часово-частотні паттерни. Після 

конволюційного шару застосовується pooling для зменшення просторової 

розмірності та досягнення інваріантності до малих зсувів. Max pooling обирає 

максимальне значення у вікні: 

 

ℎ𝑖𝑗
pool

= max
𝑃−1

𝑝=0
max
𝑄−1

𝑞=0
ℎ(𝑖𝑆+𝑝)(𝑗𝑆+𝑞) (2.162) 

 

де S – крок (stride). Average pooling натомість обчислює середнє: 

 

ℎ𝑖𝑗
pool

=
1

𝑃𝑄
∑∑ℎ(𝑖𝑆+𝑝)(𝑗𝑆+𝑞)

𝑄−1

𝑞=0

𝑃−1

𝑝=0

 (2.163) 
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Типова CNN-архітектура для розпізнавання звуку включає кілька 

конволюційно-pooling блоків, за якими слідують повнозв’язні шари: 

Input Spectrogram → Conv → ReLU → Pool → ⋯ → FC → Softmax 

Batch Normalization часто додається після конволюційних шарів для 

стабілізації навчання: 

 

ℎ̂ =
ℎ − 𝜇ℬ

√𝜎ℬ
2 + 𝜖

 

ℎ̃ = 𝛾ℎ̂ + 𝛽 

(2.164) 

 

де 𝜇𝐵 та 𝜎𝐵² – середнє та дисперсія по міні-батчу, γ та β – навчувані параметри 

масштабу та зміщення. CNN особливо ефективні для задач класифікації звукових 

подій та музичних жанрів, де спектрограми демонструють характерні візуальні 

паттерни. 

 

2.4.2. Сучасні архітектури 

Трансформери, вперше запропоновані для обробки природної мови, зараз 

активно застосовуються до аудіосигналів завдяки механізму уваги (attention), 

який дозволяє моделювати довгострокові залежності без рекурентних зв’язків. 

Основою трансформера є механізм багатоголової уваги (multi-head attention), що 

обчислює зважену суму значень на основі подібності запитів та ключів: 

 

Attention(𝐐, 𝐊, 𝐕) = softmax(
𝐐𝐊𝑇

√𝑑𝑘
)𝐕 (2.165) 

 

де Q, K, V – матриці запитів (queries), ключів (keys) та значень (values), 𝑑𝑘 – 

розмірність ключів. Кожний елемент послідовності формує запит для пошуку 

релевантної інформації в інших елементах. Коефіцієнти уваги обчислюються як: 

 

𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)

∑ exp𝑇
𝑘=1 (𝑒𝑖𝑘)

 (2.166) 
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де 𝑒_𝑖𝑗 =  𝒒𝑖
𝑇  𝒌𝑗 / √𝑑𝑘  – скалярний добуток нормалізованих векторів. 

Багатоголова увага розділяє представлення на h голів: 

MultiHead(𝐐, 𝐊, 𝐕) = Concat(head1, … , headℎ)𝐖
𝑂 

head𝑖 = Attention(𝐐𝐖𝑖
𝑄
, 𝐊𝐖𝑖

𝐾 , 𝐕𝐖𝑖
𝑉) 

де 𝑾𝑖
𝑄
,𝑾𝑖

𝐾 ,𝑾𝑖
𝑉 ,𝑾𝑂 – навчувані матриці проекцій. Повний блок трансформера 

включає увагу з residual connection та нормалізацією: 

𝐙 = LayerNorm(𝐗 +MultiHead(𝐗, 𝐗, 𝐗)) 

𝐇 = LayerNorm(𝐙 + FFN(𝐙)) 

де FFN – позиційна feedforward мережа: 

FFN(𝐳) = max(0, 𝐳𝐖1 + 𝐛1)𝐖2 + 𝐛2 

LayerNorm нормалізує по ознаках: 

LayerNorm(𝐱) =
𝐱 − 𝜇

√𝜎2 + 𝜖
⊙ 𝛾 + 𝛽 

де μ та σ² обчислюються по розмірності ознак. 

Wav2Vec 2.0 є революційною архітектурою для самоконтрольованого 

навчання на сирих аудіосигналах. Модель складається з конволюційного 

енкодера та трансформерного контекстуалізатора. Енкодер перетворює сирий 

аудіо-вхід x ∈ ℝ^T у послідовність латентних представлень: 

 

𝐳1, … , 𝐳𝑇 = 𝑓enc(𝐱) (2.167) 

 

через кілька конволюційних шарів з великими ядрами (розміром 10, 8, 4, 4, 4 з 

кроками 5, 4, 2, 2, 2), що зменшують часову розмірність у 160 разів. Трансформер 

обробляє ці латентні представлення: 

 

𝐜1, … , 𝐜𝑇 = 𝑓trans(𝐳1, … , 𝐳𝑇) (2.168) 

 

Під час передтренування частина часових кроків маскується, а модель 

навчається передбачати квантизовані представлення замаскованих регіонів. 

Квантизація виконується через Gumbel-Softmax: 
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𝐪𝑡 = ∑∑
exp((log𝜋𝑔,𝑣 + 𝜖𝑔,𝑣)/𝜏)

∑ exp𝑉
𝑣′=1 ((log𝜋𝑔,𝑣′ + 𝜖𝑔,𝑣′)/𝜏)

𝑉

𝑣=1

𝐺

𝑔=1

𝐞𝑔,𝑣 (2.169) 

 

де G – кількість груп кодових книг, V - розмір словника, ε – Gumbel-шум, τ – 

температура, 𝒆𝑔,𝑣 – вектори з кодової книги. Функція втрат об’єднує contrastive 

loss та diversity loss: 

 

𝐿 = 𝐿con + 𝛼𝐿div (2.170) 

 

Contrastive loss мінімізує відстань між передбаченням та правильним 

квантизованим вектором, максимізуючи відстань до негативних прикладів: 

 

𝐿con = −log
exp(sim(𝐜𝑡 , 𝐪𝑡)/𝜅)

∑ exp𝐪̃∈𝐪𝑡∪𝐐𝑡 (sim(𝐜𝑡 , 𝐪̃)/𝜅)
 (2.171) 

 

де sim – косинусна подібність, 𝑄𝑡 – множина негативних зразків, κ – 

температурний параметр. Diversity loss стимулює використання всіх записів 

кодової книги: 

 

𝐿div =
1

𝐺
∑(

𝑝‾𝑔,𝑣
𝑝‾𝑔,𝑣 + 𝜖

𝐻(𝐩‾𝑔))

𝐺

𝑔=1

 (2.172) 

 

де 𝐻 – ентропія, 𝒑̄𝑔 – середній розподіл по батчу. Після передтренування модель 

файнтюниться на мовленнєвих задачах з додатковим CTC (Connectionist 

Temporal Classification) шаром, що дозволяє навчання без точного вирівнювання 

аудіо-текст. 

HuBERT (Hidden Unit BERT) використовує схожий підхід, але замість 

квантизації застосовує кластеризацію офлайн-виділених ознак (MFCC) для 

створення псевдоміток. Модель навчається передбачати кластерні призначення 

для замаскованих регіонів: 

 

𝐿 = ∑ −

𝑡∈𝑀

log𝑝(𝑐𝑡|𝐗̃) (2.173) 
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де M – множина замаскованих індексів, 𝑐𝑡 – кластерна мітка, X̃ – маскований 

вхід. Після кожної ітерації навчання кластери перераховуються на оновлених 

представленнях моделі. Ітеративне рефайнмент псевдоміток дозволяє моделі 

поступово покращувати якість представлень. 

Попередньо натреновані моделі, такі як AudioMAE (Audio Masked 

Autoencoder), застосовують концепцію masked autoencoding до спектрограм. 

Модель маскує значну частину (наприклад, 80%) спектрограми та навчається 

реконструювати замасковані патчі: 

 

𝐿recon =
1

|𝑀|
∑ |

𝑖∈𝑀

|𝐱𝑖 − 𝐱̂𝑖||2
2 (2.174) 

 

де M – множина замаскованих патчів, 𝒙̂𝑖 – реконструйований патч. Енкодер 

обробляє лише видимі патчі, а декодер відновлює повну спектрограму, що 

значно прискорює навчання. Після передтренування енкодер використовується 

для екстракції ознак під час файнтюнінгу на цільових задачах розпізнавання 

звуку. 

 

2.4.3. Порівняння ефективності глибинних методів із класичними 

Емпіричні дослідження демонструють систематичну перевагу глибинних 

методів над класичними підходами у більшості задач розпізнавання звукових 

патернів, особливо при наявності достатніх обсягів навчальних даних. Для задачі 

розпізнавання мовлення класичні підходи на основі GMM-HMM (Gaussian 

Mixture Model – Hidden Markov Model) з MFCC-ознаками досягають Word Error 

Rate (WER) порядку 20-30% на стандартних бенчмарках. Введення DNN-HMM 

(Deep Neural Network - Hidden Markov Model) знизило WER до 15-20%, а повний 

перехід до end-to-end моделей на основі CTC або attention механізмів з 

LSTM/трансформерами дозволив досягти 5-10% WER. Сучасні попередньо 

натреновані моделі Wav2Vec 2.0 демонструють WER менше 5% навіть на 

складних датасетах з шумовими умовами. 
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У задачі класифікації звукових подій (Environmental Sound Classification) 

на датасеті ESC-50, який містить 2000 записів 50 класів побутових звуків, базові 

методи з MFCC та SVM показують точність близько 65-70%. Shallow CNN з 

двома-трьома конволюційними шарами підвищує точність до 75-80%. Глибокі 

архітектури, такі як ResNet або EfficientNet, застосовані до мел-спектрограм, 

досягають 85-90% точності. Найкращі результати понад 95% демонструють 

ансамблі попередньо натренованих моделей або моделі з аугментацією даних 

(mixup, SpecAugment). 

Для музичної класифікації жанрів на датасеті GTZAN традиційні методи з 

комбінацією MFCC, chroma та спектральних ознак досягають 75-80% точності 

при використанні Random Forest або SVM. CNN-архітектури підвищують 

результат до 85-90%. Рекурентні мережі LSTM та GRU, які враховують 

темпоральну структуру музики, показують 88-92%. Найвищі результати 93-95% 

демонструють гібридні CNN-RNN архітектури або трансформери з attention по 

часовій осі. 

Важливою перевагою глибинних методів є їхня здатність до transfer 

learning. Попередньо натренована модель на великому корпусі (наприклад, 

AudioSet з 2 мільйонами аудіозаписів) може бути файнтюнена на спеціалізованій 

задачі з обмеженими даними. Експерименти показують, що файнтюнінг 

попередньо натренованої моделі на 100-1000 зразках дає кращі результати, ніж 

навчання класичних методів на 10000+ зразках з нуля. Це критично важливо для 

застосувань у медичній діагностиці, промисловому моніторингу обладнання чи 

розпізнаванні рідкісних акустичних подій. 

З точки зору обчислювальної ефективності класичні методи зазвичай 

швидші при інференсі: класифікація одного зразка з SVM займає одиниці 

мілісекунд на CPU, тоді як глибинні моделі потребують десятків-сотень 

мілісекунд навіть на GPU. Однак глибинні методи краще піддаються апаратній 

оптимізації через регулярну структуру матричних операцій, і квантизовані або 

pruned версії великих моделей можуть працювати ефективно навіть на мобільних 

пристроях. 



65 

 

Критичним фактором є розмір навчальної вибірки. При менше ніж 1000 

зразках класичні методи з ручно спроектованими ознаками часто перевершують 

глибинні мережі, які hajляються до перенавчання. Однак із зростанням обсягу 

даних понад 10000-100000 зразків глибинні методи демонструють значно кращу 

масштабованість та узагальнюючу здатність. Regularization techniques, такі як 

dropout, batch normalization, data augmentation та early stopping, частково 

пом’якшують проблему перенавчання, але не повністю її розв’язують при 

критично малих датасетах. 

Інтерпретованість класичних методів є їхньою перевагою: коефіцієнти 

SVM або структура дерева рішень можуть бути проаналізовані експертами. 

Глибинні мережі є чорними скриньками, хоча техніки візуалізації, такі як Grad-

CAM для CNN або attention weights для трансформерів, дозволяють частково 

зрозуміти, на які частини спектрограми модель звертає увагу при прийнятті 

рішення. Формально, Grad-CAM обчислює важливість позиції (i,j) як: 

 

𝛼𝑘 =
1

𝑍
∑∑

∂𝑦𝑐

∂𝐴𝑖𝑗
𝑘

𝑗𝑖

 (2.175) 

𝐿Grad-CAM
𝑐 = ReLU(∑𝛼𝑘

𝑘

𝐴𝑘) (2.176) 

 

де 𝐴𝑘 – k-та feature map, 𝑦𝑐 – score класу c, що дає теплову карту важливості 

регіонів. 

Підсумовуючи, глибинні методи є золотим стандартом для сучасних 

систем розпізнавання звукових патернів, особливо коли доступні великі датасети 

та обчислювальні ресурси. Класичні підходи залишаються релевантними для 

задач з обмеженими даними, жорсткими вимогами до латентності або потребою 

в інтерпретованості. Гібридні системи, які комбінують експертні ознаки з 

глибинними архітектурами, часто демонструють найкращий баланс між 

продуктивністю та практичністю. 

 



66 

 

2.5. Висновок до другого розділу 

 

У другому розділі було розглянуто класичні алгоритми машинного 

навчання, які застосовуються для задач розпізнавання акустичних патернів. 

Аналіз показав, що ці методи забезпечують фундамент для побудови систем 

класифікації звукових сигналів, оскільки дозволяють автоматично виявляти 

закономірності у багатовимірних ознакових просторах без необхідності ручного 

визначення правил. 

Метод найближчих сусідів (k-NN) вирізняється простотою та 

ефективністю при достатньо репрезентативних вибірках, проте чутливий до 

шуму та вибору параметра k. Алгоритм опорних векторів (SVM) демонструє 

високу точність у задачах з обмеженими даними та високою розмірністю ознак, 

особливо завдяки використанню ядрових функцій. Ансамблеві методи, такі як 

Random Forest і Gradient Boosting, забезпечують стійкість та узагальнювальну 

здатність моделей, ефективно працюючи у складних акустичних середовищах із 

багатьма джерелами звуку. 

Таким чином, класичні алгоритми машинного навчання залишаються 

важливим інструментарієм для задач класифікації звукових сигналів. Вони 

створюють основу для подальшого розвитку більш складних моделей, зокрема 

глибоких нейронних мереж, і забезпечують баланс між інтерпретованістю, 

точністю та обчислювальною ефективністю. Це робить їх актуальними для 

практичного застосування у системах моніторингу та ідентифікації акустичних 

подій. 
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РОЗДІЛ 3.  

НАУКОВО-ДОСЛІДНА ЧАСТИНА 

 

3.1. Використання ознак MFCC, LPC, Chroma як вхідних даних 

 

Ефективність алгоритмів машинного навчання критично залежить від 

якості вхідного представлення звукового сигналу. Мел-кепстральні коефіцієнти 

(MFCC) є найпоширенішими ознаками для задач розпізнавання мовлення та 

звукових подій завдяки їхній здатності компактно представляти спектральну 

огинаючу сигналу відповідно до психоакустичних властивостей людського 

слуху [20]. Процес обчислення MFCC починається з розбиття сигналу на 

перекриваючі фрейми тривалістю зазвичай 20-40 мс з кроком 10-20 мс. До 

кожного фрейму застосовується віконна функція, наприклад вікно Хеммінга: 

 

𝑤(𝑛) = 0.54 − 0.46cos (
2𝜋𝑛

𝑁 − 1
) (3.1) 

 

де N – довжина фрейму. Далі обчислюється дискретне перетворення Фур’є 

(DFT): 

 

𝑋(𝑘) = ∑ 𝑥

𝑁−1

𝑛=0

(𝑛)𝑤(𝑛)exp (−𝑗
2𝜋𝑘𝑛

𝑁
) (3.2) 

 

Спектр потужності отримується як: 

 

𝑃(𝑘) =
1

𝑁
|𝑋(𝑘)|2 (3.3) 

 

Ключовим етапом є застосування банку мел-фільтрів, які апроксимують 

нелінійне сприйняття частоти людським вухом. Мел-шкала визначається 

перетворенням: 

 

𝑚 = 2595log10 (1 +
𝑓

700
) (3.4) 
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де f – частота в герцах, m – частота в мелах. Зазвичай використовується 20-40 

трикутних фільтрів, рівномірно розподілених у мел-просторі. Енергія в кожному 

фільтрі обчислюється як: 

 

𝑆(𝑚) = ∑𝑃

𝑁/2

𝑘=0

(𝑘)𝐻𝑚(𝑘) (3.5) 

 

де Hₘ(k) – передаточна характеристика m-го фільтра. До логарифмованих 

енергій застосовується дискретне косинусне перетворення (DCT): 

 

𝑐(𝑛) = ∑ log

𝑀

𝑚=1

(𝑆(𝑚))cos (𝜋𝑛
𝑚 − 0.5

𝑀
) (3.6) 

 

де M – кількість фільтрів, 𝑛 = 1,… ,𝐾 – індекс кепстрального коефіцієнта, 

зазвичай 𝐾 = 12 − 13. Нульовий коефіцієнт c(0), який відповідає загальній 

енергії сигналу, часто відкидається або нормалізується. Для врахування 

динаміки звукового сигналу обчислюються перші та другі похідні (delta та delta-

delta коефіцієнти): 

 

Δ𝑐(𝑛) =
∑ 𝜃Θ
𝜃=1 [𝑐𝑡+𝜃(𝑛) − 𝑐𝑡−𝜃(𝑛)]

2∑ 𝜃2Θ
𝜃=1

 

Δ2𝑐(𝑛) =
∑ 𝜃Θ
𝜃=1 [Δ𝑐𝑡+𝜃(𝑛) − Δ𝑐𝑡−𝜃(𝑛)]

2∑ 𝜃2Θ
𝜃=1

 

(3.7) 

 

де Θ – контекстне вікно (зазвичай 2-3 фрейми). Таким чином, кожен фрейм 

представляється вектором розмірності 39 (13 статичних + 13 delta + 13 delta-

delta), який подається на вхід класифікатора. 

Лінійне предиктивне кодування (LPC) моделює звуковий сигнал як вихід 

всеполюсного фільтра, збудженого джерелом шуму або імпульсною 

послідовністю. Модель передбачає, що поточний відлік сигналу може бути 

апроксимований лінійною комбінацією попередніх відліків: 
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𝑥̂(𝑛) = ∑𝑎𝑘

𝑝

𝑘=1

𝑥(𝑛 − 𝑘) (3.7) 

 

де p – порядок предиктора, aₖ – коефіцієнти LPC. Помилка предикції 

визначається як: 

 

𝑒(𝑛) = 𝑥(𝑛) − 𝑥̂(𝑛) = 𝑥(𝑛) −∑𝑎𝑘

𝑝

𝑘=1

𝑥(𝑛 − 𝑘) (3.8) 

 

Коефіцієнти LPC знаходяться шляхом мінімізації середньоквадратичної 

помилки предикції: 

 

𝐸 =∑𝑒2

𝑛

(𝑛) =∑ [𝑥(𝑛) −∑𝑎𝑘

𝑝

𝑘=1

𝑥(𝑛 − 𝑘)]

2

𝑛

 (3.9) 

 

Диференціюючи за aₖ та прирівнюючи до нуля, отримуємо систему рівнянь 

Юла-Уокера: 

 

∑𝑎𝑘

𝑝

𝑘=1

𝑅(|𝑖 − 𝑘|) = 𝑅(𝑖), 𝑖 = 1,… , 𝑝 (3.10) 

 

де R(i) – автокореляційна функція: 

 

𝑅(𝑖) =∑𝑥

𝑛

(𝑛)𝑥(𝑛 − 𝑖) (3.11) 

 

Ця система розв’язується ефективно алгоритмом Левінсона-Дарбіна за 

O(p²) операцій. LPC-коефіцієнти безпосередньо характеризують резонансні 

властивості голосового тракту і широко застосовуються для розпізнавання 

мовлення. Часто замість самих коефіцієнтів використовують похідні 

представлення, такі як LPC-кепстральні коефіцієнти (LPCC): 
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𝑐(𝑛) = 𝑎𝑛 +∑
𝑘

𝑛

𝑛−1

𝑘=1

𝑐(𝑘)𝑎𝑛−𝑘 , 𝑛 = 1,… , 𝑝 (3.12) 

 

або лінійно-спектральні частоти (LSF), які мають кращі інтерполяційні 

властивості та стійкість до квантування. 

Chroma-ознаки представляють розподіл енергії сигналу по дванадцяти 

напівтонах хроматичної гамми, агрегуючи інформацію з усіх октав. Це робить їх 

інваріантними до транспозиції та октавних зсувів, що критично важливо для 

музичних застосувань. Chroma-вектор обчислюється шляхом проекції спектру 

потужності на тонові класи: 

 

𝐶(𝑝) = ∑ 𝑃

𝑘: note(𝑘)=𝑝

(𝑘) (3.13) 

 

де p ∈ {C, C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, B}, note(k) – функція відображення 

частотного bin k на відповідний тоновий клас. Частота, що відповідає bin k, 

визначається як: 

 

𝑓(𝑘) =
𝑘 ⋅ 𝑓𝑠
𝑁

 (3.14) 

 

де fₛ – частота дискретизації. Тоновий клас обчислюється через відношення до 

базової частоти A4 = 440 Гц: 

 

𝑝(𝑘) = 12log2 (
𝑓(𝑘)

𝑓ref

)  mod 12 (3.15) 

 

Chroma-ознаки часто нормалізуються для забезпечення інваріантності до 

гучності: 

 

𝐶̃(𝑝) =
𝐶(𝑝)

∑ 𝐶11
𝑝′=0 (𝑝′)

 (3.16) 

 

або: 
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𝐶̃(𝑝) =
𝐶(𝑝)

max
𝑝′
𝐶(𝑝′)

 (3.17) 

 

Розширеннями базових chroma є Harmonic Pitch Class Profiles (HPCP), які 

враховують гармонічну структуру звуку, та Constant-Q Transform (CQT)-based 

chroma, що забезпечує логарифмічне розподілення частот. Комбінування різних 

типів ознак у єдиний вектор дозволяє класифікаторам машинного навчання 

використовувати комплементарну інформацію: MFCC характеризують 

тембральні властивості, LPC - резонансну структуру, а Chroma - гармонічний 

зміст. Стандартна практика включає нормалізацію ознак для забезпечення 

однорідності масштабів: 

 

𝑥̃𝑗 =
𝑥𝑗 − 𝜇𝑗
𝜎𝑗

 (3.18) 

 

де μⱼ та σⱼ – середнє та стандартне відхилення j-ї ознаки по навчальній вибірці. 

Іноді застосовується також PCA (Principal Component Analysis) для зменшення 

розмірності та видалення кореляцій: 

 

𝐳 = 𝐖𝑇(𝐱 − 𝛍) (3.19) 

 

де W – матриця головних компонент, z – вектор у зредукованому просторі. 

Правильний вибір та комбінування ознак є ключовим чинником успішності 

класифікаторів машинного навчання в задачах розпізнавання звукових патернів. 
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а) 

  

б) 

  

в) 

 

 

г) 

 

 

Рис. 3.1. – Коефіцієнти мел-частотного кепстру (MFCC) 5-секундних записів 

дронів DJI Matrice 200 v2 (а), DJI Matrice 600p (б), DJI Mavic 2 Pro (в), DJI 

Phantom 4 (г) 

 

3.2. Проектування архітектур нейронних мереж 

 

Проектування архітектури згорткових нейронних мереж для класифікації 

акустичних сигнатур БПЛА передбачає визначення топології мережі, кількості 

шарів, розмірів фільтрів та методів регуляризації. У дослідженні розроблено дві 
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архітектури різної складності для порівняльного аналізу впливу глибини мережі 

на якість розпізнавання [22-28]. 

Архітектура smallNet спроектована як компактна згорткова мережа з 

трьома згортковими блоками. Вхідний шар приймає зображення спектрограм 

розміром 224 × 224 × 3 пікселі, що є стандартним форматом для обробки 

візуалізованих акустичних даних.  

 

 

Рис. 3.2. – Архітектура smallNet спроектованої нейромережі 

 

Перший згортковий блок використовує 16 фільтрів розміром 3 × 3, що 

дозволяє виділити базові локальні ознаки з вхідних спектрограм. Операція 

згортки описується виразом: 

 

𝑦𝑖𝑗
(𝑙)
= 𝑓 (∑∑𝑤𝑚𝑛

(𝑙)

𝑛𝑚

⋅ 𝑥(𝑖+𝑚)(𝑗+𝑛)
(𝑙−1)

+ 𝑏(𝑙)) (3.20) 

 

де 𝑦𝑖𝑗
(𝑙)

 – вихідне значення нейрона у позиції (𝑖, 𝑗) на шарі 𝑙, 𝑤𝑚𝑛
(𝑙)

 – ваги фільтра, 

𝑥(𝑙−1) – вхідна карта ознак з попереднього шару, 𝑏(𝑙) – зміщення, 𝑓(⋅) – функція 

активації. 

Після кожного згорткового шару застосовується пакетна нормалізація 

(batch normalization), яка стабілізує процес навчання шляхом нормалізації 

активацій: 

 

𝑥̂𝑖 =
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

 (3.21) 

 



74 

 

де 𝜇𝐵 та 𝜎𝐵
2 – середнє значення та дисперсія міні-пакету, 𝜖 – мала константа для 

числової стабільності. Функція активації ReLU (Rectified Linear Unit) 

застосовується для введення нелінійності: 

 

ReLU(𝑥) = max(0, 𝑥) (3.22) 

 

Операція максимального пулінгу (max pooling) з вікном 3 × 3 та кроком 2 

зменшує просторові розміри карт ознак, що знижує обчислювальну складність 

та забезпечує інваріантність до невеликих зсувів: 

 

𝑦𝑖𝑗 = max
(𝑚,𝑛)∈𝑅𝑖𝑗

𝑥𝑚𝑛 (3.23) 

 

де 𝑅𝑖𝑗 – регіон пулінгу навколо позиції (𝑖, 𝑗). 

Другий згортковий блок подвоює кількість фільтрів до 32, що дозволяє 

виділяти більш складні ознаки середнього рівня абстракції. Третій блок 

використовує 64 фільтри для формування високорівневих представлень 

акустичних патернів. Після згорткових блоків застосовується шар dropout з 

коефіцієнтом 0.8, що випадково вимикає 80 нейронів під час навчання для 

запобігання перенавчанню: 

 

𝑦̃ = {
𝑦

1 − 𝑝
з ймовірністю (1 − 𝑝) 0 з ймовірністю 𝑝 (3.24) 

 

де 𝑝 = 0.8 – коефіцієнт dropout. Завершується архітектура повнозв’язним шаром 

з двома виходами для бінарної класифікації та шаром softmax для обчислення 

ймовірностей: 

 

𝑃(𝑦 = 𝑘|𝐱) =
𝑒𝑧𝑘

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 (3.25) 

 

де 𝑧𝑘 – логіт для класу 𝑘, 𝐾 = 2 – кількість класів (Drone, NotDrone). 
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Архітектура complexNet спроектована як глибша мережа з чотирма 

основними згортковими блоками. Вхідний шар додатково включає z-score 

нормалізацію, що центрує та масштабує вхідні дані. 

 

 

Рис. 3.3. – Архітектура complexNet спроектованої нейромережі 

 

Перший блок містить два послідовні згорткові шари з 32 фільтрами кожен, 

що дозволяє екстрагувати більш деталізовані низькорівневі ознаки. Ініціалізація 

ваг виконується методом He initialization: 

 

𝑤 ∼ 𝒩(0,√
2

𝑛𝑖𝑛
) (3.26) 

 

де 𝑛𝑖𝑛 – кількість вхідних з’єднань нейрона. Цей метод оптимізований для 

функції активації ReLU та забезпечує стабільне поширення градієнтів. 

Другий блок також містить два згорткові шари з 64 фільтрами. Третій блок 

є найглибшим та включає три послідовні згорткові шари з 128 фільтрами, що 

формує багаторівневу ієрархію ознак. Четвертий блок використовує 256 

фільтрів у трьох згорткових шарах для виділення найбільш абстрактних 

семантичних ознак акустичних сигнатур. 

Замість традиційного повнозв’язного шару з великою кількістю 

параметрів, архітектура complexNet використовує глобальне середнє 

пулінгування (global average pooling), яке обчислює середнє значення кожної 

карти ознак: 
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𝑦𝑘 =
1

𝐻 ×𝑊
∑∑𝑥𝑖𝑗𝑘

𝑊

𝑗=1

𝐻

𝑖=1

 (3.27) 

 

де 𝐻 та 𝑊 – висота та ширина карти ознак, 𝑘 – індекс каналу. Цей підхід суттєво 

зменшує кількість параметрів та знижує ризик перенавчання. Коефіцієнт dropout 

встановлений на рівні 0.5, що є стандартним значенням для глибоких мереж. 

Загальна кількість параметрів у мережі smallNet становить близько 100 

тисяч, тоді як complexNet містить понад 2 мільйони параметрів завдяки більшій 

глибині та ширині шарів. Глибина мережі визначає її репрезентаційну 

потужність згідно з теоремою універсальної апроксимації, проте надмірна 

складність може призвести до перенавчання за недостатнього обсягу даних. 

 

3.3. Налаштування параметрів навчання та аугментації вхідних 

спектрограм  

 

Процес навчання згорткових нейронних мереж вимагає ретельного 

налаштування гіперпараметрів оптимізації та застосування методів збільшення 

даних для покращення генералізаційних властивостей моделей. 

Для навчання обох архітектур використано метод стохастичного 

градієнтного спуску з імпульсом (SGDM – Stochastic Gradient Descent with 

Momentum). Оновлення ваг виконується за правилом: 

 

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂∇𝜃𝐿(𝜃𝑡−1) 
𝜃𝑡 = 𝜃𝑡−1 − 𝑣𝑡 

(3.28) 

 

де 𝜃 – параметри мережі, 𝜂 – швидкість навчання, 𝐿 – функція втрат, 𝑣𝑡 – 

імпульсний член, 𝛾 – коефіцієнт імпульсу (типово 0.9). Імпульс допомагає 

прискорити збіжність у напрямках з постійним градієнтом та згладжує 

коливання в інших напрямках. 

Початкова швидкість навчання встановлена на рівні 𝜂0 = 0.002 для обох 

мереж. Це значення було обрано емпірично як компроміс між швидкістю 
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збіжності та стабільністю навчання. Надто велика швидкість навчання може 

призвести до розбіжності градієнтного спуску, тоді як надто мала уповільнює 

процес оптимізації. 

Навчання проводиться протягом 100 епох, де епоха визначається як один 

повний прохід через усі навчальні дані. Функція втрат для задачі класифікації  

крос-ентропія (cross-entropy loss) визначається як: 

 

𝐿 = −
1

𝑁
∑∑𝑦𝑖𝑘

𝐾

𝑘=1

𝑁

𝑖=1

log(𝑦̂𝑖𝑘) (3.29) 

 

де 𝑁 – розмір міні-пакету, 𝐾 – кількість класів, 𝑦𝑖𝑘  – істинна мітка (one-hot 

encoded), 𝑦̂𝑖𝑘  – передбачена ймовірність. 

Валідаційні дані оцінюються з частотою кожні 150 ітерацій, що дозволяє 

моніторити процес навчання та виявляти перенавчання на ранніх стадіях. 

Критерієм зупинки є досягнення максимальної кількості епох, оскільки 

реалізовано механізм збереження моделі з найкращими результатами на 

валідаційній вибірці. 

Аугментація вхідних спектрограм реалізована через об’єкт 

imageDataAugmenter, який застосовує випадкові трансформації до навчальних 

зображень у режимі реального часу. Перша трансформація є випадкове 

горизонтальне відзеркалення (RandXReflection=true), яке з ймовірністю 0.5 

відображає спектрограму відносно вертикальної осі. Це відповідає інверсії 

часової послідовності акустичного сигналу та збільшує різноманітність 

навчальних даних вдвічі. 

Друга трансформація є випадкове масштабування (RandScale=[0.5 1.5]), 

яке змінює розміри зображення в діапазоні від 50 до 150 від оригінального 

розміру. Масштабування застосовується рівномірно по обох осях згідно з 

рівнянням: 

 

𝐱′ = 𝑠 ⋅ 𝐱 (3.30) 

 



78 

 

де 𝑠 ∼ 𝒰(0.5,1.5) – коефіцієнт масштабування з рівномірного розподілу. Це 

імітує варіації відстані до джерела звуку або зміни інтенсивності/частоти 

акустичного сигналу за рахунок ефекту Доплера. 

Після аугментації всі зображення приводяться до єдиного розміру 

224 × 224 × 3 пікселів через біліінійну інтерполяцію. Для валідаційної та 

тестової вибірок аугментація не застосовується, є виконується лише 

масштабування до цільового розміру, що забезпечує об’єктивну оцінку 

продуктивності моделей. 

Аугментація даних математично може розглядатися як неявна 

регуляризація, що збільшує ефективний розмір навчальної вибірки та зменшує 

розрив між емпіричним та очікуваним ризиком: 

 

𝑅emp =
1

𝑁
∑𝐿

𝑁

𝑖=1

(𝑓(𝐱𝑖), 𝑦𝑖) → 𝑅exp = 𝔼(𝐱,𝑦)∼𝒟[𝐿(𝑓(𝐱), 𝑦)] (3.31) 

 

де 𝒟 – справжній розподіл даних. Аугментація апроксимує 𝒟 шляхом генерації 

синтетичних варіантів існуючих зразків. 

Час навчання мережі smallNet склав приблизно 2146 секунд (близько 36 

хвилин), тоді як для complexNet знадобилося 14246 секунд (близько 4 годин). 

Різниця у 6.6 разів відображає квадратичне зростання обчислювальної 

складності зі збільшенням глибини та ширини мережі. Навчання виконувалося 

на одному CPU, що пояснює відносно тривалий час для складнішої архітектури. 

 

3.4. Порівняльний аналіз ефективності моделей  

 

Оцінка ефективності розроблених архітектур згорткових нейронних мереж 

проводилася на незалежній тестовій вибірці, яка становить 20% від загального 

набору даних та містить по 128 зразків кожного класу. 

Точність класифікації (accuracy) визначається як частка правильно 

класифікованих зразків від їх загальної кількості: 
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Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.32) 

 

де 𝑇𝑃 – true positives (правильно класифіковані дрони), 𝑇𝑁 – true negatives 

(правильно класифіковані не-дрони), 𝐹𝑃 – false positives (помилково 

класифіковані як дрони), 𝐹𝑁 – false negatives (пропущені дрони). 

Результати тестування показали суттєву різницю в продуктивності двох 

архітектур. Мережа smallNet досягла точності 96.27, що свідчить про високу 

здатність моделі до коректної класифікації акустичних сигнатур БПЛА. З 268 

тестових зразків модель правильно класифікувала 258 об’єктів. Натомість, 

парадоксально, але мережа complexNet продемонструвала  нижчу точність на 

рівні 0.9515, що лише незначно відстає від простішої архітектури. 

Такий результат вказує на перенавчання (overfitting) складнішої 

архітектури. Перенавчання виникає коли модель надмірно адаптується до 

навчальних даних та втрачає здатність до генералізації: 

 

Overfitting ⇔ 𝐿train ≪ 𝐿test (3.33) 

 

Графіки процесу навчання підтверджують цю гіпотезу. 

 

 

Рис. 3.4. – Графіки процесу навчання smallNet 
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б) 

Рис. 3.5. – Графіки процесу навчання complexNet 

 

Для мережі smallNet спостерігається стабільна збіжність функції втрат на 

валідаційній вибірці, що корелює з поведінкою на навчальних даних. Точність 

на навчальній вибірці досягає 95 на початкових ітераціях та стабілізується біля 

95 − 96, тоді як валідаційна точність залишається на рівні 93 − 94, 

демонструючи невеликий розрив близько 2 − 3. 

Для complexNet картина принципово відрізняється. Навчальна точність 

швидко досягає 95 − 97 вже після 100 ітерацій, проте валідаційна точність 

залишається на рівні 93 − 94 з початку навчання та не покращується протягом 

усіх 100 епох. Функція втрат на навчальній вибірці різко знижується з 1.1 до 0.2, 

тоді як валідаційна втрата залишається стабільною на рівні 0.2 − 0.3. Це 

класична ознака перенавчання, коли модель запам’ятовує навчальні зразки 

замість виділення узагальнюючих ознак. 

Математично це можна пояснити через надмірну ємність моделі (VC-

dimension) відносно розміру навчальної вибірки. Для complexNet кількість 

параметрів |𝜃| ≈ 2 × 106 при обмеженій кількості навчальних зразків 

призводить до недовизначеності системи рівнянь оптимізації. 
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Площа під ROC-кривою (AUC - Area Under the Curve) є метрикою, яка 

оцінює здатність класифікатора розрізняти класи незалежно від порогу 

класифікації: 

 

AUC = ∫ 𝑇
1

0

𝑃𝑅(𝐹𝑃𝑅−1(𝑥)), 𝑑𝑥 (3.34) 

 

де 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 – True Positive Rate (чутливість), 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
 – False Positive 

Rate (частка хибних тривог). 

Для класу “Drone” мережа smallNet досягла AUC = 0.981, що вказує на 

відмінну розділяльну здатність моделі. Значення AUC близьке до 1.0 означає, що 

модель майже завжди присвоює вищу ймовірність справжнім дронам порівняно 

з об’єктами іншого типу. Для класу “NotDrone” AUC також становить 0.981, що 

демонструє симетричну якість розпізнавання обох класів. 

Мережа complexNet показала дещо вищі значення AUC = 0.987 для обох 

класів, що здається парадоксальним при низькій точності 51.12. Це пояснюється 

тим, що AUC оцінює якість ранжування передбачень, а не бінарну точність при 

фіксованому порозі. Модель complexNet генерує добре калібровані ймовірності, 

проте через дисбаланс у навчанні не може встановити оптимальний поріг 

класифікації. 

 

 

Рис. 3.6. – ROC-аналіз для класу “Drone” 
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ROC-криві візуалізують залежність TPR від FPR при різних порогах 

класифікації. Обидві моделі демонструють криві, що проходять близько до 

лівого верхнього кута графіка, що є ознакою високої якості. Точки робочого 

режиму (model operating points) показують координати (𝐹𝑃𝑅, 𝑇𝑃𝑅) при 

стандартному порозі 0.5. Для smallNet ця точка розташована при 𝐹𝑃𝑅 ≈ 0.06 та 

𝑇𝑃𝑅 ≈ 0.98, що відповідає 6 хибних тривог та 126 виявлених дронів. 

Порівняння AUC для обох класів показує практично ідентичні значення 

близько 0.98 − 0.99 для обох архітектур та обох класів. Це свідчить про 

збалансовану якість класифікації без упередженості до конкретного класу. 

Детальний аналіз класу “Drone” виявляє мінімальну різницю між 

моделями: smallNet досягає AUC = 0.9812, а complexNet - AUC = 0.9868. Різниця 

в 0.0056 є статистично незначною та не компенсує катастрофічне зниження 

точності на тестовій вибірці. 

Макро-усереднені ROC-криві об’єднують результати для всіх класів та 

демонструють загальну продуктивність мереж у багатокласовій постановці 

задачі.  

 

 

Рис. 3.7. – Усереднений ROC-аналіз для обох класів 
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Макро-усереднення обчислюється як середнє арифметичне метрик для 

кожного класу: 

 

AUCmacro =
1

𝐾
∑𝑘 = 1𝐾AUC𝑘 (3.35) 

 

Обидві моделі показують практично ідеальні макро-усереднені криві, що 

підтверджує високу якість виділення ознак на рівні внутрішніх представлень 

мережі, навіть якщо фінальна класифікація complexNet є неефективною. 

 

3.5. Оцінка достовірності детектування класу “Drone” за допомогою 

матриць помилок та ROC-аналізу  

 

Матриця помилок (confusion matrix) є фундаментальним інструментом для 

детального аналізу якості бінарної класифікації, що надає повну інформацію про 

розподіл правильних та помилкових передбачень. 

Для мережі smallNet матриця помилок має наступну структуру. 

 

 

Рис. 3.8. – Матриця невідповідності для smallNet 

 

Тут рядки відповідають справжнім класам (Drone, NotDrone), а стовпці - 

передбаченим класам. З 128 справжніх дронів модель правильно ідентифікувала 
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126 об’єктів (true positives), тоді як 2 зразки були помилково класифіковані як 

NotDrone (false negatives). З 140 справжніх не-дронів модель правильно 

розпізнала 132 об’єкти (true negatives), а 8 зразків помилково визначила як дрони 

(false positives). 

Відносна матриця помилок з нормалізацією по рядках показує: 

(
98.4% 1.6%
5.7% 94.3%

) 

Це означає, що модель детектує дрони з чутливістю (sensitivity, recall) 98.4, 

тобто пропускає лише 1.6 справжніх дронів. Специфічність (specificity) для класу 

NotDrone становить 94.3, що вказує на 5.7 хибних тривог. 

Нормалізація по стовпцях надає інформацію про точність передбачень 

(precision): 

 

PrecisionDrone =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

126

126 + 8
= 94.0 (3.36) 

 

Це означає, що з усіх об’єктів, класифікованих як дрони, 94.0 дійсно є 

дронами. Для класу NotDrone точність становить 98.5. 

Мережа complexNet демонструє незадовільні результати. 

 

 

Рис. 3.9. – Матриця невідповідності для smallNet 
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При поверховому аналізі ці цифри здаються прийнятними: 122 правильно 

розпізнані дрони, 6 пропущених, 7 хибних тривог, 133 правильно визначені не-

дрони. Проте нормалізовані значення виявляють критичну проблему: 

(
95.3% 4.7%
5.0% 95.0%

) 

Чутливість 95.3 та специфічність 95.0 здаються високими, проте при 

детальному аналізі виявляється, що модель досягає цих показників через вкрай 

нестабільну роботу на тестовій вибірці. Низька загальна точність 51.12 при 

високих значеннях в матриці помилок вказує на проблеми з калібруванням 

ймовірностей або з неоднорідністю тестової вибірки. 

Можливе пояснення полягає в тому, що complexNet сильно перенавчилася 

на конкретних підмножинах даних, і тестова вибірка виявилася надто відмінною 

від навчальної. Інша гіпотеза, що модель застрягла в локальному мінімумі 

функції втрат, що призвело до нестабільних передбачень. 

F1-міра (F1-score) є гармонійним середнім точності та повноти: 

 

𝐹1 = 2 ⋅
Precision ⋅ Recall

Precision+ Recall
 (3.37) 

 

Для класу Drone у мережі smallNet: 

 

𝐹1 = 2 ⋅
0.940 ⋅ 0.984

0.940 + 0.984
= 0.961 (3.38) 

 

Це високе значення підтверджує збалансовану якість детектування дронів 

без значних втрат у точності чи повноті. 

Оптимальна архітектура для задачі класифікації акустичних сигнатур 

БПЛА повинна враховувати компроміс між репрезентаційною потужністю та 

схильністю до перенавчання. Результати експериментів показують, що для 

наявного обсягу даних компактна архітектура smallNet є більш ефективною, 

досягаючи точності 96.27 та AUC 0.981 при прийнятному часі навчання та 

обчислювальних витратах. 
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3.6. Висновок до третього розділу 

 

У ході дослідження було реалізовано та проаналізовано дві архітектури 

згорткових нейронних мереж - компактну smallNet та більш глибоку complexNet. 

Використання ознак MFCC підтвердило свою ефективність як інформативного 

представлення акустичних сигналів, що дозволяє моделі виділяти тембральні, 

резонансні та гармонічні характеристики звукових сигнатур БПЛАу. 

Архітектура smallNet показала високу точність класифікації та 

стабільність роботи на тестових даних, що свідчить про оптимальний баланс між 

складністю моделі та її здатністю до узагальнення. ComplexNet, попри більшу 

кількість параметрів і глибину, виявила схильність до перенавчання, що знизило 

її практичну ефективність. Це підтверджує важливість врахування 

співвідношення між обсягом навчальних даних та ємністю моделі. 

Аналіз ROC‑кривих та значень AUC показав, що обидві архітектури мають 

високу роздільну здатність, проте саме smallNet забезпечує більш надійні 

результати у практичних умовах. Методи аугментації даних, такі як 

масштабування та відзеркалення спектрограм, позитивно вплинули на 

узагальнювальні властивості моделей, зменшивши ризик перенавчання. 

Отримані результати доводять, що для задачі класифікації акустичних 

сигнатур безпілотних літальних апаратів найбільш ефективним є застосування 

компактних згорткових архітектур із ретельно підібраними ознаками та 

регуляризацією. Це дозволяє досягати високої точності розпізнавання при 

помірних обчислювальних витратах, що є критично важливим для реальних 

систем моніторингу та безпеки. 
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РОЗДІЛ 4.  

ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 

 

4.1. Законодавча база з охорони праці при розробці та експлуатації 

систем класифікації літаючих об’єктів 

 

Організація безпечних умов праці під час розробки та експлуатації систем 

інтелектуальної класифікації літаючих об’єктів ґрунтується на конституційному 

праві громадян України на безпечне робоче середовище. Основним 

законодавчим документом у цій сфері є Закон України "Про охорону праці" від 

14.10.1992 № 2694-XII (зі змінами, редакція від 12.09.2025), який визначає 

основні положення щодо реалізації конституційного права працівників на 

охорону їх життя і здоров’я у процесі трудової діяльності, на належні, безпечні і 

здорові умови праці. Згідно зі статтею 153 Кодексу законів про працю України, 

забезпечення безпечних і нешкідливих умов праці покладається на роботодавця, 

який зобов’язаний створювати належні умови для працівників на всіх етапах 

виконання робіт. 

Діяльність інженерів-програмістів та науковців, які працюють над 

розробкою систем класифікації БПЛА за акустичними сигнатурами, передбачає 

тривалу роботу з комп’ютерною технікою та екранними пристроями. Відповідно 

до Наказу Міністерства соціальної політики України від 14.02.2018 № 207, 

затверджено НПАОП 0.00-7.15-18 "Вимоги щодо безпеки та захисту здоров’я 

працівників під час роботи з екранними пристроями", які встановлюють 

мінімальні вимоги безпеки незалежно від типу та моделі комп’ютерної техніки. 

Цей нормативний документ регламентує організацію робочих місць, параметри 

освітлення, ергономічні характеристики меблів та режими праці й відпочинку. 

Роботодавець зобов’язаний забезпечити навчання і перевірку знань працівників 

з питань охорони праці та безпечного використання екранних пристроїв до 

початку роботи з ними, а також у випадках модифікації та реорганізації роботи 

обладнання. 
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Організація робочих місць у лабораторіях, де проводяться експерименти з 

акустичним обладнанням та випробування систем розпізнавання звукових 

патернів, регулюється додатковими нормативними актами. Зокрема, НПАОП 

73.1-1.11-12 "Правила охорони праці під час роботи в хімічних лабораторіях", 

затверджені наказом Державного комітету з промислової безпеки України, хоча 

безпосередньо стосуються хімічних лабораторій, встановлюють загальні 

принципи організації експериментальної роботи, які застосовуються аналогічно 

до акустичних та радіотехнічних лабораторій. Рівень шуму в лабораторних 

приміщеннях не повинен перевищувати норм шістдесят децибел, встановлених 

Державними санітарними нормами виробничого шуму ДСН 3.3.6.037-99, 

затвердженими постановою Головного державного санітарного лікаря України 

від 01.12.1999 № 37. Такі обмеження особливо важливі при роботі з акустичними 

системами, де експериментатори тривалий час піддаються впливу звукових 

сигналів різної інтенсивності та частоти. 

Електробезпека є критичним аспектом охорони праці при роботі з 

комп’ютерною технікою та електронним обладнанням для запису та обробки 

акустичних сигналів. Відповідно до НПАОП 40.1-1.21-98 "Правила безпечної 

експлуатації електроустановок споживачів", користувачі електротехнічних 

пристроїв загального призначення в офісних приміщеннях не потребують 

присвоєння спеціальної групи з електробезпеки за умови, що вони не виконують 

технічне обслуговування обладнання. Проте всі працівники повинні пройти 

інструктаж з питань електробезпеки згідно з Типовим положенням про порядок 

проведення навчання і перевірки знань з питань охорони праці, затвердженим 

наказом Держнаглядохоронпраці України від 26.01.2005 № 15. Приміщення 

лабораторій мають бути обладнані автоматичною системою пожежної 

сигналізації та сигналізацією про аварійні ситуації на обладнанні, а всі заземлені 

конструкції повинні бути надійно захищені діелектричними щитками від 

випадкового дотику. 
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4.2. Гігієнічні норми та санітарні вимоги до організації робочих місць 

 

Створення належних санітарно-гігієнічних умов праці є невід’ємною 

складовою забезпечення працездатності та збереження здоров’я працівників, які 

займаються розробкою та тестуванням систем класифікації БПЛА. Параметри 

виробничого мікроклімату в офісних приміщеннях та лабораторіях регулюються 

Державними санітарними нормами мікроклімату виробничих приміщень  

ДСН 3.3.6.042-99, затвердженими постановою Головного державного 

санітарного лікаря України від 01.12.1999 № 42. Згідно з цим документом, 

мікроклімат виробничих приміщень визначається поєднанням температури, 

відносної вологості та швидкості руху повітря, температури оточуючих людину 

поверхонь та інтенсивністю теплового інфрачервоного опромінення. Оптимальні 

мікрокліматичні умови забезпечують збереження нормального теплового стану 

організму без активізації механізмів терморегуляції при тривалому та 

систематичному впливі на людину. 

Для робочих місць, обладнаних персональними комп’ютерами та іншою 

електронною технікою, необхідно забезпечувати оптимальні значення 

параметрів мікроклімату. Відповідно до ДСанПіН 3.3.2.007-98 "Державні 

санітарні правила і норми роботи з візуальними дисплейними терміналами 

електронно-обчислювальних машин", затверджених постановою Головного 

державного санітарного лікаря України від 10.12.1998 № 7, температура повітря 

у приміщеннях на робочих місцях повинна становити двадцять два - двадцять 

п’ять градусів Цельсія, відносна вологість повітря - сорок - шістдесят відсотків, 

швидкість руху повітря - не більше нуль цілих одна десята метра за секунду. 

Площа приміщень, в яких розташовують персональні комп’ютери, визначається 

з розрахунку не менше шести квадратних метрів на одне робоче місце з 

комп’ютером при використанні електронно-променевих моніторів та не менше 

чотирьох з половиною квадратних метрів при використанні рідкокристалічних 

та інших плоских дисплеїв. Висота приміщень має бути не менше трьох метрів. 
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Для підтримки допустимих значень мікроклімату та концентрації 

позитивних і негативних іонів у повітрі необхідно передбачати установки або 

прилади зволоження, штучної іонізації та кондиціонування повітря згідно з ДБН 

В.2.5-67:2013 "Опалення, вентиляція та кондиціонування", затвердженими 

наказом Міністерства регіонального розвитку, будівництва та житлово-

комунального господарства України від 25.01.2013 № 24. Під час перевищення 

припустимих значень параметрів мікроклімату робочий день працівників має 

бути скорочений мінімум на десять відсотків. Особливо це актуально для 

літнього періоду, коли природна вентиляція не забезпечує достатнього 

охолодження приміщень з великою кількістю електронної техніки, що виділяє 

значну кількість тепла. 

 

4.3. Висновок до четвертого розділу 

 

Забезпечення охорони праці та безпеки в надзвичайних ситуаціях при 

розробці й експлуатації систем класифікації літаючих об’єктів є ключовою 

умовою ефективної та безпечної діяльності інженерів і науковців. Законодавча 

база України визначає чіткі вимоги до організації робочих місць, дотримання 

санітарно-гігієнічних норм, електробезпеки та протипожежного захисту, що 

гарантує збереження життя і здоров’я працівників. Важливим аспектом є 

створення оптимального мікроклімату та ергономічних умов, які сприяють 

підтриманню працездатності та зниженню ризику професійних захворювань. 

Комплексне дотримання нормативних актів, що регулюють рівень шуму, 

параметри освітлення, вентиляції та організацію режимів праці й відпочинку, 

забезпечує не лише безпеку, а й високу якість виконання науково-дослідних та 

інженерних завдань. Таким чином, охорона праці в цій сфері виступає не лише 

юридичним обов’язком роботодавця, а й стратегічним чинником, який визначає 

стабільність, ефективність та інноваційний розвиток систем класифікації 

безпілотних літальних апаратів. 
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 ЗАГАЛЬНІ ВИСНОВКИ 

 

У кваліфікаційній роботі магістра розроблено та досліджено метод 

інтелектуальної класифікації літаючих об’єктів за їх акустичними сигнатурами. 

Проведений аналіз підтвердив, що використання ознак MFCC забезпечує 

інформативне відображення характеристик акустичних сигнатур БПЛА, що є 

ключовим для ефективного розпізнавання класів об’єктів задля відслідковування 

присутності дрона та розмежування від фонових звуків та шумів. 

Експериментальні дослідження двох розроблених архітектур згорткових 

нейронних мереж компактної smallNet та більш глибокої complexNet показали, 

що оптимальне співвідношення між складністю моделі та обсягом навчальних 

даних має вирішальне значення для досягнення високої точності класифікації. 

Архітектура smallNet продемонструвала стабільність та здатність до 

узагальнення, тоді як complexNet виявила схильність до перенавчання, що 

обмежує її практичну застосовність. 

Аналіз ROC‑кривих та значень AUC підтвердив високу роздільну здатність 

обох моделей, проте саме компактні архітектури забезпечують більш надійні 

результати у реальних умовах. Використання методів аугментації даних, зокрема 

масштабування та спектрограм, сприяло зменшенню ризику перенавчання та 

покращенню узагальнювальних властивостей системи. 

Розроблений метод інтелектуальної класифікації літаючих об’єктів за їх 

акустичними сигнатурами може стати основою для створення ефективних 

автоматизованих систем контролю повітряного простору, спрямованих на 

підвищення рівня безпеки та оперативності реагування у сучасних безпекових 

умовах. 
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