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АНОТАЦІЯ 

Кваліфікаційна робота магістра яка складається з записки та графічної 

частини та ілюстративний матеріал – слайди.  Об’єм ілюстративного 

матеріалу дипломної роботи становить 17 слайдів. 

Об’єм пояснювальної записки складає 70 друкованих сторінок формату 

А4.  

У кваліфікаційній роботі розроблено та досліджено підхід до 

моніторингу стану повітряно-струменевої прядильної машини і пов’язаної з 

ним міцності пряжі на розрив на основі системи візуалізації та штучного 

інтелекту. Показано, що в наявних підходах контроль часто зосереджений на 

зміні діаметра чи забрудження волокна, тоді як волоконні структурні дефекти 

можуть залишатися поза наглядом; тому запропоновано оцінювати структуру 

пряжі за зображеннями з подальшою інтерпретацією результатів як 

індикатора стану обладнання. 

Розглянуто технологічні особливості процесу прядіння та вплив тиску 

на якість пряжі; для формування еталонних класів використано два граничні 

режими: 5 бар (умовно «добра» пряжа) та 2 бар (умовно «погана» пряжа). 

Для побудови навчальної вибірки виконано оцифрування структур пряжі: 

кожен 25-сантиметровий відрізок подано як 105 зображень, а загальний 

датасет склав 8400 зображень (по 4200 на клас), з поділом на 

навчання/валідацію/тест. Для отримання прикладної оцінки якості пряжі 

проведено випробування на розрив відрізків довжиною 25 см із фіксацією 

сили розтягування. 

Для інтелектуальної обробки зображень застосовано архітектуру 

YOLOv5 із використанням інструментів Roboflow для організації даних та 

Ultralytics для навчання моделі. У роботі акцент зроблено на класифікаційній 

складовій YOLO, що дає змогу пов’язувати структуру пряжі з певним 

режимом машини. Експериментально підтверджено високу ефективність 

розрізнення двох крайніх режимів: середня точність прогнозування склала 
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98,28% для класу 5 бар і 96,16% для класу 2 бар; також досліджено поведінку 

моделі на проміжних тисках 3–4 бар. Запропонований підхід створює основу 

для виявлення критичних станів обладнання та стабілізації показників якості 

пряжі, а також передбачає розвиток у напрямі інтеграції з IoT. 

Ключові слова: ПОВІТРЯНО-СТРУМЕНЕВЕ ПРЯДІННЯ, ПРЯЖА, 

МІЦНІСТЬ НА РОЗРИВ, КОМП’ЮТЕРНИЙ ЗІР, ШТУЧНИЙ ІНТЕЛЕКТ, 

YOLOv5, ROBОFLOW, ДАТАСЕТ, МОНІТОРИНГ СТАНУ МАШИНИ, IoT, 

SMART IIoT. 
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ВСТУП 

Сучасна промисловість характеризується зростанням вимог до якості 

продукції, стабільності технологічних режимів і ресурсоефективності 

виробництва. У цих умовах ключового значення набуває впровадження 

інтелектуальних систем контролю, здатних забезпечувати оперативне 

виявлення відхилень, зменшення частки браку та підвищення 

відтворюваності результатів. Текстильна галузь, зокрема процеси 

високошвидкісного прядіння, є показовою щодо потреби в таких рішеннях, 

оскільки якість пряжі визначається сукупністю взаємопов’язаних параметрів 

технологічного процесу та технічного стану обладнання. 

Повітряно-струменеве прядіння належить до технологій, для яких 

характерна чутливість до змін тиску повітря, умов формування структури 

пряжі та зношування вузлів машини. Навіть незначні відхилення режимів 

можуть призводити до структурних дефектів, що безпосередньо 

відображається на експлуатаційних показниках пряжі, зокрема на її міцності 

на розрив. Традиційні методи контролю якості часто мають вибірковий 

характер, здійснюються поза технологічним потоком і нерідко пов’язані з 

руйнівними випробуваннями, що обмежує можливості оперативного 

коригування процесу та своєчасного технічного обслуговування. 

У зв’язку з цим актуальним є застосування засобів комп’ютерного зору 

та методів штучного інтелекту для неруйнівного контролю структури пряжі й 

опосередкованого оцінювання стану прядильної машини. Інтелектуальна 

обробка зображень дає змогу формалізувати ознаки якості, автоматизувати 

прийняття рішень щодо відповідності продукції встановленим вимогам і 

створити передумови для переходу до моніторингу в режимі, наближеному 

до реального часу.  
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1. АНАЛІТИЧНА ЧАСТИНА 

1.1. Опис виробництва, та постановка задачі. 

Прядіння — це процес перетворення волокна на пряжу. Етап прядіння є 

ключовим, оскільки він безпосередньо впливає на якість і властивості пряжі, 

що використовується для створення тканин. Перед тим, як волокна 

використовуються для прядіння, сировина повинна бути розчесана. Основна 

мета розчісування — розплутати, очистити та змішати волокна для 

отримання суцільної стрічки або щітки, придатної для подальшої обробки. 

Це досягається шляхом розділення та вирівнювання волокон. Полотно з 

волокон, що виходить з чесальної машини, потім ущільнюється в єдину 

суцільну нескручену нитку, відому як стрічка. Ця стрічка потім подається в 

прядильну машину для виробництва пряжі. 

Кільцеве прядіння, роторне прядіння та повітряно-струменеве прядіння 

— це три різні методи, що застосовуються в текстильній промисловості, 

кожен з яких має свої принципи та технологічні нюанси, що відповідають 

різним вимогам до пряжі. 

Кільцеве прядіння є домінуючою технологією в галузі виробництва 

пряжі, займаючи близько 70% світового ринку технологій виробництва 

пряжі. Ця технологія використовується вже майже 200 років і є переважною 

завдяки кращій придатності структури та властивостей кільцевої пряжі для 

різних текстильних застосувань. 

Хоча кільцеве прядіння дозволяє виробляти міцну та тоненьку пряжу, 

воно має кілька недоліків порівняно з сучасними методами прядіння, такими 

як роторне або повітряно-струменеве прядіння. Одним з головних недоліків 

кільцевого прядіння є його нижча продуктивність порівняно з новітніми 

технологіями. Кільцеве прядіння є повільнішим і вимагає більше ручної 

роботи та технічного обслуговування, що робить його більш трудомістким. 

Крім того, кільцеве прядіння споживає більше енергії в порівнянні з іншими 

методами прядіння. Знос деталей обладнання, таких як курсор і кільце, також 
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вищий при кільцевому прядінні, що призводить до частої заміни та 

технічного обслуговування. Крім того, обладнання, що використовується в 

кільцевому прядінні, займає значний простір і є більш гучним, ніж новіші 

технології, що може впливати на робоче середовище. 

Технологія роторного прядіння все частіше вважається передовим 

нетрадиційним процесом виробництва текстилю. Вона має порівняльну 

перевагу в плані економічної ефективності над традиційними технологіями 

кільцевого прядіння. Ця економічна ефективність в першу чергу пояснюється 

кількома факторами, серед яких підвищена автоматизація, зменшення потреб 

у робочій силі та консолідація етапів виробництва. Крім того, цей процес 

характеризується високою швидкістю виробництва, яка може досягати 350 

метрів на хвилину (кільцеве прядіння — близько 25 метрів на хвилину), що 

значно підвищує продуктивність у межах заданого часового проміжку. 

Процес повітряно-струменевого прядіння є новітньою розробкою, 

відомою своєю високою швидкістю виробництва, що досягає 550 метрів на 

хвилину, що пояснюється відсутністю обертових механічних компонентів. 

Однак слід зазначити, що повітряно-струменева пряжа, як правило, має 

меншу міцність порівняно з пряжею, виробленою на кільцевих прядильних 

машинах. Це важливий фактор, оскільки міцність пряжі є вирішальним 

фактором у визначенні якості та довговічності кінцевого текстильного 

виробу. Менша міцність повітряно-струменевої пряжі може бути пов'язана з 

процесом прядіння та характеристиками волокон, вироблених за цим 

методом. 

Ця робота має на меті представити рішення для моніторингу міцності 

структур пряжі за допомогою системи датчиків на основі зображень, що 

підтримується штучним інтелектом. В даний час не існує способу 

моніторингу цих структур за допомогою системи датчиків, тому такий підхід 

може бути корисним для виявлення критичних станів машини і, таким 

чином, гарантування стабільної міцності пряжі на розрив. 
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1.2 Процес повітряно-струменевого прядіння 

Пневматична прядильна машина зазвичай складається з 24 - 168 

прядильних позицій. Кожна прядильна позиція виробляє окрему пачку пряжі 

 

Рисунок 1.1. Автоматична прядильна машина з повітряним струменем 

Матеріал подається у прядильну установку знизу вгору (Рис. 1.2). До 

складу установки входять система витягування, прядильна форсунка, датчик 

якості пряжі, двигуни відведення та намотування, система укладання пряжі, а 

також котушка для збирання готового пряденого матеріалу. У подальшому 

буде детально розглянуто основні елементи, які є необхідними для 

здійснення процесу прядіння. 

Стрічка вставляється в систему розтягування (Рис. 1.3). Система 

розтягування складається з 4 роликів, які приводяться в рух чотирма 

двигунами. Двигуни системи розтягування прискорюють різні ролики з 

різною швидкістю, щоб волокна стрічки розділилися і вирівнялися 

паралельно. Цей процес вирівнює і розтягує волокна, готуючи їх до 

скручування. Після цього матеріал подається в прядильну форсунку 

повітряно-струменевої прядильної машини. 
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Рисунок 1.2. Обертальний пристрій 

Витягнута волокниста нитка проходить через два повітряні струмені. 

Перший повітряний потік забезпечує направлення нитки над прядильною 

голкою. Другий повітряний потік обертає нитку в протилежному напрямку, 

щоб вирівняти деякі волокна вздовж краю прядильної насадки (Рис. 1.4.). Ця 

частина обертається разом з першим повітряним потоком навколо частини 

волокон, які все ще вирівняні паралельно, так що волокна обертаються 

навколо. Так утворюється пряжа (Рис. 1.5.). Міцність пряжі залежить від 

того, як волокна обертаються навколо паралельного серцевини. Чим 

рівномірніше обертаються волокна, тим міцнішою буде пряжа. 
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Рисунок 1.3. Система розтягування 

 

Рисунок 1.4. Сопло для повітряно-струменевого прядіння 

Пряжа, виткана за допомогою повітряного струменя, транспортується з 

прядильної форсунки (Рис. 1.6) за допомогою відвідного двигуна і проходить 

через датчик якості пряжі (Рис. 1.7). 
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Рисунок 1.5. Повітряно-струменева пряжа в прядильній форсунці 

 

 

Рисунок 1.6. Повітряно-струменевий знімач пряжі 

 

Датчик якості пряжі, або очищувач пряжі, використовується для 

аналізу пряжі на основі змін діаметра виробленої пряжі. 
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Рисунок 1.7. Повітряно-струменевий двигун для зняття нитки та датчик 

якості пряжі. 

1.3 Структура та властивості повітряно-струменевих ниток 

Пряжа, виготовлена методом повітряного прядіння, має особливу 

структуру, яка називається фасціальною структурою. У ній серцевина з 

паралельних волокон утримується разом невеликою кількістю 

обмотувальних волокон (в основному поверхневих волокон). Компактність і 

міцність пряжі залежать від обмотувальних волокон. Вони чинять радіальний 

тиск на паралельні волокна серцевини і запобігають ковзанню при 

застосуванні розтягуючих сил. Міцність пряжі залежить від довжини волокон 

пряденого матеріалу, кута нахилу обмотувальних волокон та міцності 

обмотки. Чим вища частота обмотки при постійній довжині волокон, тим 

вища міцність пряжі. Оскільки скручування зменшується з грубішими 

нитками, вони мають меншу міцність. І навпаки, подовження пряжі нижче у 

тонших нитках. Приклад типової структури повітряно-струменевої нитки 

наведено на рисунку 1.8. 
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Рисунок 1.8. Спіральне намотування паралельного волокнистого 

сердечника 

Повітряно-прядена пряжа характеризується специфічною структурою, 

що зумовлює тісний зв’язок між особливостями будови та експлуатаційними 

властивостями. Встановлено, що тиск і геометрія першого сопла, а також 

жорсткість волокон суттєво впливають на формування обмотувальних 

волокон і, відповідно, на якість пряжі. Сукупність параметрів процесу, 

конструкції сопла та властивостей волокон визначає кінцеві характеристики 

нитки. Підвищена нерівномірність і структурні дефекти спричиняють 

зниження розривної міцності, тоді як традиційні показники якості не повною 

мірою враховують специфічні елементи структури повітряно-струменевих 

ниток (Рис. 1.9–1.12), що додатково зменшують їхню міцність. 

 

Рисунок 1.9 Паралельний сердечник нитки з обмотувальними 

волокнами 
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Структурна властивість, показана на рисунку 1.9, забезпечує 

оптимальну структуру нитки для повітряно-струменевої нитки. Серцевина 

нитки складається з паралельних волокон. Серцевина нитки повністю 

оточена обмотувальними волокнами. Така форма забезпечує оптимальну 

міцність нитки. 

Товсті ділянки (див. малюнок 2.10) утворюються внаслідок 

забруднення або накопичення матеріалу в паралельному волокні серцевини. 

Ці товсті ділянки можуть призвести до того, що діаметр волокна серцевини 

стане занадто великим, а волокна обмотки — занадто короткими, щоб 

повністю обмотати серцевину, що спричинить недостатній тиск на волокно 

серцевини та зниження міцності нитки на розрив. 

Явище, зображене на рисунку 1.11, що характеризується завихреннями, 

є результатом агрегації волокон, інтегрованих в серцевину нитки, але не 

прилягаючих до неї щільно. Як наслідок, ця ділянка має меншу щільність 

порівняно з іншими ділянками нитки, хоча маса залишається однаковою по 

всій довжині. Таке неоптимальне прикріплення волокон негативно впливає 

на міцність нитки на розрив. 

У структурі типу «штопор» (Рис. 2.12) певна кількість обмотувальних 

волокон накопичується на прядильному конусі і одночасно намотується 

навколо серцевини нитки. В результаті перед і за цим пакетом 

обмотувальних волокон залишається мало або взагалі немає волокон, які 

оточують серцевину нитки і, таким чином, знижують міцність нитки.  

 

Рисунок 1.10 Товсте місце, спричинене забрудненням 
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Рисунок 1.11 Вихри волокон 

 

 

Рисунок 1.12 Структура штопора 

 

1.4 Датчик якості пряжі, або очищувач пряжі 

Пристрої для очищення пряжі на прядильних машинах контролюють 

нерівномірність виробленої пряжі. Датчик виявляє зміни діаметра пряжі. 

Відхилення, що перевищують встановлений діапазон, видаляються з пряжі. 

Для цього до очищувача прикріплені ножиці, які активуються при 

перевищенні порогових значень, і відповідна ділянка видаляється з пряжі. 

Основними відхиленнями, що вирізаються з пряжі, є тонкі місця, товсті місця 

та ворсинки. У таблиці 1.1 наведено властивості цих дефектів пряжі. 

Таблиця 1.1: Властивості дефектів пряжі 

 Товсті 

Місця 

Тонкі  

Місця 
Ворсинки 

Довжина дефекту [мм] ≥ 2 ≥ 2  4 

Відхилення від 
середнього діаметра [%] 35 - 100 -30 - -60 140 - 400 

 

Датчик якості пряжі складається з світлодіода та трьох фотодіодів, які 

вимірюють рівень вхідного світла (Рис. 1.13). Світлодіод випромінює 

світловий промінь, який падає на нитку. Нитка блокує світло, а фотодіод, 

розташований з іншого боку шляху нитки, фіксує її тінь. Два фотодіоди, 
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розташовані безпосередньо поруч із світлодіодом, вимірюють загальний 

рівень освітлення і слугують еталонним сигналом для обчислення затінення, 

спричиненого ниткою. Це призводить до тимчасової зміни діаметра нитки у 

вигляді її затінення. Для вимірювання нерівномірності нитки формується так 

зване значення CV. CV означає коефіцієнт варіації і описує нерівномірність 

прядених ниток. 

 

Рисунок 1.13. Будова датчика якості пряжі. 

 

Чим більше недоліків, тобто дефектів, має пряжа, тим вище значення 

CV пряжі. Це значення та очищення недоліків базуються на змінах діаметра 

пряжі. Крім того, два фотодіоди над і під світлодіодом виявляють світло, 

відбите пряжею. Воно змінюється залежно від діаметра, а також яскравості 

або кольору пряжі. Це надає можливість визначити забруднення сторонніми 

волокнами та згодом видалити їх. Структурні властивості дефектів у пряжі, 

виготовленій методом повітряного струменя, зумовлені не тільки змінами 

діаметра або сторонніми волокнами. Натомість за дефекти в пряжі 
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відповідають структурні властивості волокон. Водночас датчик реєструє 

лише зміни діаметра пряжі та її забруднення сторонніми волокнами і, 

ґрунтуючись на цьому, ідентифікує дефекти, тоді як характеристики, 

зумовлені особливостями намотування волокон, залишаються поза 

контролем. 

1.5 Штучні нейронні мережі та машинне навчання 

Штучні нейронні мережі широко відомі як потужні інструменти для 

моніторингу стану та аналізу різноманітних характеристик в багатьох 

галузях. Вони успішно застосовуються для діагностики несправностей 

підшипників кочення, моніторингу стану вітрових турбін, виявлення 

несправностей в механічних системах, в аналізі та прогнозування 

характеристик матеріалів, моніторингу фотоелектричних панелей в режимі 

реального часу, відстеження цілей в бездротових сенсорних мережах, 

моніторингу стану електричного обладнання на основі теплових зображень, 

медичної діагностики, діагностики стану підшипників двигунів, діагностики 

несправностей датчиків у системах управління двигунами внутрішнього 

згоряння. 

Машинне навчання (ML) є підгалуззю штучного інтелекту (AI) (Рис. 

1.14), що зосереджується на розробці алгоритмів і статистичних моделей, які 

дають змогу комп'ютерам навчатися на основі даних і приймати рішення на 

їх основі. Цей підхід відрізняється від традиційного програмування, де 

конкретні завдання програмуються явно. У ML системи навчаються 

розпізнавати закономірності та приймати рішення з мінімальним втручанням 

людини, що робить ML важливою основою багатьох систем і додатків AI. 

Як частина більш широкої галузі штучного інтелекту, що включає все 

від базових автоматизованих систем прийняття рішень до просунутих 

алгоритмів навчання та міркування, машинне навчання особливо відоме 

своєю здатністю розвиватися та адаптуватися через взаємодію з даними. 

Машинне навчання складається з трьох технік навчання (Рис 1.15.): 
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Рисунок 1.14. Штучний інтелект та підгалузі ШІ. 

 

 

Рисунок 1.15. Техніки навчання машинного навчання. 

 

1.    Навчання з наставництвом: передбачає навчання моделі на наборі 

даних, де відомий правильний результат, що дозволяє моделі з часом 

навчитися отримувати бажаний результат. 
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2.    Навчання без наставництва: цей метод працює з даними без міток, 

намагаючись знайти приховані закономірності або групування в даних без 

попереднього навчання. 

3.    Підкріплювальне навчання: у цьому підході моделі навчаються 

приймати послідовність рішень, навчаючись за допомогою винагород і 

покарань. 

Штучні нейронні мережі є підрозділом штучного інтелекту, що черпає 

натхнення з біологічних мереж людського мозку. ШНМ натхненні 

біологічним нейроном. Нейрони — це спеціалізовані клітини, які обробляють 

і передають інформацію за допомогою електричних і хімічних сигналів. Вони 

з'єднані між собою синапсами — сполучними елементами, що дозволяють 

нейронам спілкуватися один з одним. Ця мережа нейронів утворює складну 

адаптивну систему, здатну до навчання і запам'ятовування. Перекладаючи цю 

біологічну концепцію на мову обчислювальної техніки, ШНМ складаються зі 

штучних нейронів або «вузлів» (Рис. 1.16). 

 

Рисунок 1.16. Перцептрон - штучний нейрон. 

 

Показаний вузол також називається пороговою логічною одиницею 

(TLU) або перцептроном. Ці вузли з'єднані ребрами або «вагами», 

аналогічними синапсам у біологічному мозку. Кожен вузол отримує вхідні 
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дані, обробляє їх і передає вихідні дані іншим вузлам. Кожен вхідний сигнал 

є числом і пов'язаний з вагою. 

Загалом, перцептрон обчислює зважену суму всіх вхідних даних. Сила 

зв'язків (ваги) між вузлами визначає, наскільки один вузол впливає на інший. 

Зсув у перцептроні використовується для регулювання порогу, при якому 

перцептрон активується. Структура ANN часто включає кілька шарів: 

вхідний шар, один або кілька прихованих шарів (TLU) і вихідний шар, що 

складається з TLU. Дані надходять у мережу через вхідний шар, 

обробляються через приховані шари, а результат виходить із вихідного шару. 

Приховані шари дозволяють мережі вивчати складні закономірності та 

взаємозв'язки в даних.  

Штучні нейронні мережі навчаються на основі закономірностей у 

вхідних даних, які за потреби піддаються попередній обробці з метою 

виділення ключових ознак, підвищення точності та продуктивності моделі, а 

також відсікання хибних або малоінформативних спостережень. Після 

ініціалізації ваг (зазвичай випадковим чином) здійснюється пряме поширення 

сигналу: дані послідовно проходять крізь шари мережі, де кожен нейрон 

обчислює зважену суму входів і застосовує нелінійну функцію активації. 

Отриманий вихід порівнюється з еталонним значенням за допомогою функції 

втрат; на основі похибки в процесі зворотного поширення обчислюють 

градієнти за вагами та коригують їх за допомогою алгоритмів оптимізації, 

зокрема градієнтного спуску. Цей цикл «пряме поширення – обчислення 

втрат – зворотне поширення – оновлення ваг» багаторазово повторюється 

впродовж епох навчання, паралельно здійснюється валідація моделі та 

налаштування гіперпараметрів (структура мережі, швидкість навчання тощо), 

а кінцева якість оцінюється на тестовому наборі. 

Згорткові нейронні мережі (CNN) є різновидом моделей глибокого 

навчання, спеціалізованих на обробці даних зі структурою, подібною до 

сітки, насамперед зображень. Їх архітектура включає згорткові шари для 
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вилучення просторових ознак (країв, текстур, складних візерунків), шари 

об’єднання для зменшення розмірності та повністю зв’язані шари, які 

виконують узагальнення й класифікацію. Навчання CNN також базується на 

зворотному поширенні та градієнтному спуску: на основі градієнтів втрат по 

відношенню до ваг і зміщень фільтрів поступово формується ієрархія ознак, 

релевантних до поставленого завдання. Завдяки здатності автоматично 

вивчати просторові ієрархії ознак CNN досягли провідних результатів у 

розпізнаванні зображень і відео, аналізі медичних зображень, ігрових 

застосунках, системах автономного керування та інших задачах 

комп’ютерного зору. 

1.6 Штучні нейронні мережі YOLO (You Only Look Once) 

YOLO ґрунтується на використанні єдиної згорткової нейронної 

мережі, яка обробляє зображення цілком з метою одночасного виявлення та 

класифікації об’єктів. На відміну від традиційних алгоритмів детектування, 

що застосовують модель до множини локальних областей, така організація 

забезпечує високу швидкодію та ефективність обробки, що робить YOLO 

придатним для застосувань у режимі реального часу. Важливою особливістю 

є те, що під час навчання та тестування аналізується все зображення, 

унаслідок чого в моделі неявно кодується контекстна інформація щодо класів 

об’єктів та особливостей їхнього вигляду. 

Штучна нейронна мережа YOLO, відома своїми можливостями 

виявлення об'єктів, є значним проривом у галузі комп'ютерного зору, 

особливо відома своєю винятковою швидкістю та точністю. Центральним 

елементом архітектури YOLO є згорткова нейронна мережа (CNN), яка 

відрізняється високою ефективністю обробки та аналізу зображень. 

Нейронна мережа YOLO обробляє дані у вигляді сітки, такі як зображення. 

На відміну від традиційних систем виявлення об'єктів, які сканують 

зображення кілька разів для виявлення об'єктів, YOLO спрощує цей процес, 

розділяючи зображення на систему сітки, де кожна комірка сітки відповідає 
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за прогнозування об'єктів у ній. Цей метод дозволяє YOLO аналізувати все 

зображення за один раз під час навчання та тестування, підвищуючи його 

ефективність. CNN в YOLO витягує просторові ієрархії ознак із зображень за 

допомогою серії конволюційних шарів, шарів об'єднання та повністю 

з'єднаних шарів. Ця архітектура дозволяє мережі вивчати детальні 

представлення ознак різних об'єктів. 

Застосування YOLO є різноманітним, враховуючи його швидкість та 

ефективність. В автономних транспортних засобах він використовується для 

виявлення пішоходів, автомобілів та дорожніх знаків у режимі реального 

часу, що є необхідним для безпечної навігації. У системах безпеки YOLO 

допомагає у спостереженні, ідентифікуючи потенційні загрози або підозрілі 

дії. Промислова автоматизація може швидко виявляти дефекти або аномалії 

на складальних лініях, покращуючи процеси контролю якості. У 

промислових умовах стійкість YOLO до змін масштабу та оклюзії, а також 

здатність виявляти об'єкти на складному тлі роблять її підходящим вибором 

для моніторингу стану промислових машин. 
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2 ТЕХНОЛОГІЧНА ЧАСТИНА  

Методологічний підхід ґрунтується на послідовному описі процесу 

розроблення системи моніторингу стану прядильної машини з повітряним 

струменем та відповідної моделі машинного навчання. Насамперед 

розглядаються закономірності між варіюванням тиску в прядильній машині 

та зміною показників якості пряжі. Аналізується, як зміна технологічних 

параметрів впливає на структуру волокон, рівномірність, міцність та інші 

експлуатаційні характеристики пряжі. На цій основі визначаються фізично й 

технологічно обґрунтовані параметри, які можуть слугувати вхідними 

змінними для моделі моніторингу, а також вихідні показники, що 

відображають якість кінцевого продукту. 

Окрему увагу приділено даним, необхідним для формування надійної 

штучної нейронної мережі. Описуються вимоги до складу та обсягу вибірки, 

до достовірності й відтворюваності результатів вимірювань, а також до 

репрезентативності експериментів щодо реальних режимів роботи 

прядильної машини. Розглядаються підходи до планування експериментів із 

варіюванням тиску та інших параметрів, організація серійних вимірювань, 

методи зменшення впливу випадкових похибок. Деталізуються процедури 

попередньої обробки даних: нормування, масштабування, фільтрація шуму, 

виявлення й усунення аномальних спостережень, формування узгоджених 

наборів для навчання, валідації та тестування. Такий підхід дає змогу 

підвищити інформативність вибірки та забезпечити коректну роботу 

алгоритмів навчання. 

Далі описується структура штучної нейронної мережі, яка 

застосовується для відстеження стану прядильної машини та прогнозування 

показників якості пряжі. Обґрунтовується вибір архітектури: кількість і типи 

шарів, число нейронів, використані функції активації, способи регуляризації 

та запобігання перенавчанню. Пояснюється, яким чином обрана конфігурація 

дає змогу відобразити складні нелінійні взаємозв’язки між технологічними 
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параметрами процесу прядіння та характеристиками пряжі, а також 

забезпечити потрібну чутливість моделі до змін режиму роботи обладнання. 

Окреслюються вимоги до інтеграції моделі в програмно-апаратний комплекс 

моніторингу, включно з обмеженнями щодо обчислювальних ресурсів та 

можливістю функціонування в режимі, наближеному до реального часу. 

Процес розроблення моделі машинного навчання структурується на 

чотири послідовні етапи. Перший етап пов’язаний із формулюванням 

проблеми та виділенням ключових технологічних і якісних параметрів, а 

також із визначенням загальної концепції системи контролю. На другому 

етапі здійснюється підготовка даних: планування й проведення 

експериментів, реєстрація та оброблення вимірювань, побудова навчальних, 

валідаційних і тестових вибірок з урахуванням вимог до збалансованості й 

репрезентативності. Третій етап включає навчання й налаштування штучної 

нейронної мережі, вибір оптимізаційних алгоритмів, гіперпараметрів та 

критеріїв зупинки навчання, а також оцінювання здатності моделі до 

узагальнення. На четвертому етапі проводиться детальна оцінка побудованої 

моделі за заздалегідь визначеними показниками якості. Розглядаються 

результати моделювання, аналізуються похибки прогнозування, чутливість 

до зміни вхідних параметрів, стабільність роботи за різних режимів. 

Отримані висновки дають змогу визначити напрями подальшого 

вдосконалення системи, зокрема уточнення набору вхідних змінних, 

доопрацювання архітектури нейронної мережі або перегляд схем збирання й 

обробки даних. Така організація роботи має ітеративний характер: за потреби 

окремі етапи повторюються з урахуванням нових результатів, що забезпечує 

поступове підвищення точності, надійності та практичної ефективності 

розробленої системи моніторингу. 

2.1 Якісні властивості та тиск орертання 

Тиск повітря безпосередньо впливає на якість пряжі з точки зору її 

розривної міцності та ворсистості. Відомо, що збільшення швидкості подачі 
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та тиску в першому соплі до певної межі покращує розривну міцність пряжі. 

Однак за межами цієї межі або при зменшенні тиску прядіння якість пряжі 

погіршується через збільшення кількості дифектів. Якщо тиск повітря в 

прядильній форсунці зменшується, повітряні потоки більше не мають 

достатньої енергії, щоб забезпечити обертання обгорнутих волокон навколо 

паралельного серцевини пряжі. Крім того, більше не гарантується необхідне 

вирівнювання волокон для процесу прядіння, тому дефекти виникають 

частіше, що призводить до збільшення нерівномірності структури пряжі і, як 

наслідок, до зниження міцності пряжі на розрив. Крім того, тиск повітря, що 

подається на струмінь під час повітряного прядіння, є критичним 

параметром, який впливає на швидкість виробництва пряжі та параметри 

якості. Тиск повітря є критичним параметром у процесі повітряного 

прядіння, який безпосередньо впливає на якість пряжі. Він впливає на такі 

властивості пряжі, як міцність на розрив і пухнастість. Збільшення тиску 

повітря може змінити кінцеву швидкість і поліпшити міцність пряжі на 

розрив до певної межі. Однак, якщо перевищити цю межу, це може 

негативно вплинути на якість пряжі. 

Спочатку перевіряються якісні властивості пряжі щодо зміненого тиску 

прядіння. Аналізуються пряжі з двох визначених станів машини. Перший 

стан — це оптимальний стан машини. Тут тиск прядіння становить 5 бар. 

Пряжа виробляється при цьому тиску прядіння і перевіряється на якість за 

допомогою міцності на розрив. Точний процес повторюється для найнижчої 

робочої точки машини. Тут тиск прядіння становить 2 бари. Це мінімальне 

значення, при якому машина ще може виробляти пряжу. 

У подальшому ході цієї роботи проводиться розмежування між 

хорошою і поганою пряжею. Пряжа, вироблена при тиску прядіння 5 бар, 

класифікується як «хороша», а пряжа, вироблена при тиску прядіння 2 бари, 

класифікується як «погана». Ця процедура дозволяє отримати бінарну 

класифікацію. Для розробки нейронної мережі зображення пряжі цих двох 
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станів машини будуть використані для навчання нейронної мережі 

структурним властивостям пряжі. Далі мережа буде використана для 

перевірки структурних властивостей хорошої та поганої пряжі на 

зображеннях пряжі, виробленої між цими двома крайніми станами машини, 

та для перевірки наявності кореляцї між прогнозом нейронної мережі та 

якістю пряжі. 

2.2 База даних 

Кореляції між змінами параметрів прядильної машини та відповідними 

змінами структури пряжі мають бути відтворені в штучній нейронній мережі 

у вигляді навченої моделі. Після етапу навчання така модель повинна 

забезпечувати розпізнавання стану машини за зображеннями структури 

пряжі. Відповідно, навчальна вибірка повинна містити зображення пряжі, 

отриманої за різних станів машини. Оскільки пряжа виробляється з 

природної сировини (волокон), що характеризується істотними природними 

варіаціями текстури, навіть за незмінних параметрів процесу, ці коливання 

необхідно враховувати під час формування набору даних. З цієї причини для 

кожного стану машини використовується кілька тисяч зображень структури 

пряжі. 

Після оцифрування виконують контроль якості, у межах якого кожну 

оцифровану ділянку пряжі відносять до категорії «добра» або «погана». Це 

дає змогу однозначно пов’язати спостережувану структуру пряжі з певним 

«хорошим» або «незадовільним» станом машини. Навчальні дані 

формуються з оцифрованих фрагментів пряжі, що містять характерні 

структури на рівні волокон для відповідних станів і охоплюють максимально 

можливий спектр варіацій волоконної структури. 

За еталон «відмінного» стану машини приймається режим прядіння з 

тиском 5 бар, а «поганий» стан відповідає тиску 2 бар. Для кожного з цих 

двох режимів виготовляють пряжу, яка підлягає оцифруванню та 

подальшому використанню як навчальний матеріал. На цій основі штучна 
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нейронна мережа навчається виявляти характерні ознаки структури пряжі, 

пов’язані з мінімальним і відмінним станами машини, та інтерпретувати їх як 

індикатори відповідного технічного стану. 

Далі аналізується, чи можна використати прогнозування «добрих» і 

«поганих» структур пряжі для оцінювання її якості за проміжних значень 

тиску. Для цього розглядаються режими прядіння з тиском 3 і 4 бар, що 

лежать між двома станами, використаними на етапі навчання. Метою є 

перевірка здатності нейронної мережі узагальнювати знання про характерні 

структури, сформовані за крайніх режимів, і коректно ідентифікувати 

значущі особливості пряжі, виробленої за проміжних умов. 

2.2 Вибір структури нейронної мережі 

Глибокі нейронні мережі зарекомендували себе як особливо 

ефективний інструмент для навчання складних просторових структур на 

зображеннях у задачах класифікації та детекції. Вони здатні автоматично 

виокремлювати багаторівневі ознаки — від простих контурів і локальних 

текстур до високорівневих патернів, що відповідають певним об’єктам або 

станам технічних систем. До таких архітектур належить сімейство моделей 

YOLO, яке поєднує високу точність із малою затримкою оброблення й тому 

придатне для сценаріїв, де потрібна швидка інтерпретація зображень у 

режимі, близькому до реального часу. 

Архітектура YOLO особливо добре відповідає завданню встановлення 

відповідності між зображенням та певним станом машини. Модель 

одночасно аналізує все зображення, формуючи просторовий розподіл ознак, і 

видає прогноз щодо наявності структур, характерних для того чи іншого 

технологічного режиму. У випадку прядильної машини це означає 

можливість асоціювати специфічні структури пряжі, зафіксовані на 

зображенні, з «хорошим» або «незадовільним» станом обладнання. Таким 

чином, вихідні дані моделі можна інтерпретувати як індикатор поточного 
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стану машини, а сама мережа виконує роль інтелектуального перетворювача 

від зображення до діагностичного висновку. 

Для реалізації такої системи використовується підхід, у якому 

структура YOLO слугує основою як для етапу навчання, так і для 

подальшого прогнозування на нових зображеннях пряжі. Попередньо 

формується навчальна вибірка, що містить фотографії пряжі, отриманої за 

різних станів машини. Для їх підготовки застосовується онлайн-інструмент 

Roboflow, за допомогою якого виконуються анотація та організація даних: 

зображення маркуються відповідними класами або станами, задаються 

необхідні формати вивантаження, за потреби застосовуються засоби 

аугментації (масштабування, повороти, зміни яскравості тощо) для 

підвищення варіативності вибірки. 

Після завершення анотації сформований датасет експортується та 

завантажується до онлайн-середовища розробки, де реалізується процес 

навчання нейронної мережі. Для цього використовується бібліотека 

Ultralytics, яка надає попередньо визначену, оптимізовану структуру 

YOLOv5, а також зручні інструменти для конфігурації гіперпараметрів, 

запуску навчання, валідації та тестування моделі. У межах цього середовища 

налаштовуються параметри навчання (кількість епох, розмір пакета, 

швидкість навчання), визначається розподіл даних на навчальну, валідаційну 

й тестову підмножини та проводиться моніторинг показників якості під час 

навчання. 

У результаті формується навчена модель YOLOv5, здатна на основі 

вхідного зображення пряжі автоматично виділяти релевантні просторові 

ознаки й відносити зразок до певного стану машини. Такий підхід забезпечує 

не лише високий рівень автоматизації аналізу зображень, а й створює 

передумови для побудови системи моніторингу, що може працювати в 

режимі оперативного контролю якості та стану технологічного обладнання. 

 



31 

 

 

3 КОНСТРУКТОРСЬКА ЧАСТИНА 

3.1 Оцінка якості пряжі 

Для перевірки ниток, використаних для отримання даних, буде 

проаналізовано залежність між підвищенням тиску прядіння та міцністю 

нитки. Для цього використовується прилад для вимірювання натягу нитки 

виробництва (Рис. 3.1). 

У прилад затискається шматок нитки довжиною 25 см. Прилад тягне за 

шматок нитки, поки вона не розірветься. Вимірюється подовження нитки (у 

відсотках) та сила розтягування (у сантиньютонах), необхідна для розриву 

нитки. Потім виміряні значення відображаються на екрані. Згідно з цією 

специфікацією випробування якості нитки, довжина нитки, що 

випробовується, становить 25 см. Значення, виміряні за допомогою приладу 

для вимірювання натягу нитки, записуються в Excel разом з назвою нитки. 

Всім відрізкам нитки присвоюється назва, що складається з тиску прядіння, 

при якому була вироблена нитка, та номера, який збільшується для кожного 

нового відрізка нитки довжиною 25 см. Таким чином, кожне виміряне 

значення може бути приписане до відрізка нитки. 

 

Рисунок 3.1. Обладнання для вимірювання міцності  



32 

 

 

3.2 Експериментальна установка для генерації зображень 

Для виявлення волоконних структур у пряжі та дослідження 

морфологічної структури пряжі на рівні волокон необхідна система 

візуалізації. 

На рисунку 3.2 показано мікроскопічне зображення нитки, на якому 

видно структуру волокон нитки. За допомогою такої роздільної здатності 

можна аналізувати структури, характерні для ниток, виготовлених методом 

повітряного струменя. Оскільки мікроскопічні структури ниток необхідно 

оцифрувати на рівні волокон, оцифрувати можна лише дуже короткі волокна. 

Щоб все ж таки зафіксувати всі структурні властивості, які впливають на 

міцність нитки, і враховуючи, що обладнання для тестування якості нитки 

може перевіряти лише 25 см нитки, отримання зображення має 

здійснюватися таким чином, щоб 25 см нитки можна було зафіксувати без 

розривів.  

 

Рисунок 3.2. Приклад зображення нитки 

 

Це дозволяє побачити структуру нитки, характерну для повітряно-

струменевого методу. Обладнання для отримання зображень складається з 

наступних частин 

З роздільною здатністю обладнання на якому проводилась візуальна 

оцінка, можна зобразити лише кілька міліметрів нитки, а для якісного аналізу 

міцності нитки на розрив потрібно 25 см, розробляється система 
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автоматизації для оцифрування 25-сантиметрового відрізка нитки. Спочатку 

визначається точна довжина нитки, яку можна оцифрувати за допомогою 

фрагмента зображення. Вона оцінюється за допомогою міліметрової шкали, 

вставленої в область зображення (Рис. 3.3). На основі рисунку 3.3 довжина 

нитки, яку можна оцифрувати, становить приблизно 2,5 мм. Як уже 

згадувалося, нитка довжиною 25 см повинна бути оцифрована, щоб 

співвіднести виміряну міцність нитки з усіма характеристиками нитки 

всередині цієї 25-сантиметрової частини. Щоб не пропустити структури під 

час оцифрування нитки, необхідно зробити знімки, які перекриваються з 

іншими знімками 25-сантиметрової частини.  

 

Рисунок 3.3. Довжина нитки в рамці зображення, оцінена за 

допомогою міліметрової шкали 

 

Тому, через неточність вимірювання, довжина зображеної нитки 

визначається як 2,4 мм. Щоб створити безшовні зображення 25-

сантиметрової ділянки нитки, блок управління витягує нитку на 2,4 мм за 

допомогою двигуна, потім запускає блок управління камери і продовжує рух 

на один кадр зображення (2,4 мм). Ця процедура продовжується до повної 

оцифровки 25-сантиметрового відрізка нитки. Для повної оцифровки 25-



34 

 

 

сантиметрового відрізка нитки з зображеннями довжиною 2,4 мм потрібно 

105 зображень. 

Для отримання придатних для аналізу зображень необхідно 

забезпечити стабільну та відтворювану напругу нитки в зоні зйомки. 

Фотографування виконується за зупиненого руху нитки, що дає змогу 

досягти максимальної роздільної здатності та чіткості відтворення її 

структури. Важливо, щоб у момент зйомки нитка займала однакове 

просторове положення та не зміщувалася вздовж осей x, y та z траєкторії 

руху, оскільки навіть незначні переміщення призводять до розмиття 

зображення. З цією метою сформовано спеціальний шлях руху нитки з 

використанням напрямних елементів, які фіксують її положення в зоні 

спостереження та перешкоджають подальшому зміщенню після зупинки 

двигуна. 

Після припинення обертання двигуна внаслідок наявного скручування 

в середині нитки ще деякий час зберігається внутрішній рух волокон. Щоб 

уникнути розмиття зображень, система формування зображень вводить паузу 

тривалістю 2 с після кожного переміщення нитки, перш ніж ініціювати 

захоплення кадру, забезпечуючи таким чином досягнення ниткою 

стаціонарного стану. Вказане явище зумовлене тим, що волокна, з яких 

сформована нитка, під час розгону двигуна короткочасно розтягуються, а 

протидіючою силою виступає натяг, спричинений скручуванням. Після 

зупинки двигуна зовнішня рушійна сила зникає, і натяг, обумовлений 

скручуванням, повертає волокна у вихідне положення, після чого система 

досягає механічної рівноваги. На основі цього принципу реалізовано процес 

автоматизованого формування безшовних цифрових зображень 25-

сантиметрової ділянки нитки. 

Експериментальна установка побудована з використанням двигуна 

прядильної машини типу Autoairo; для керування використано штатний 

контролер цієї машини. Логіка роботи тестової установки реалізується за 
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допомогою внутрішніх бібліотек керування, написаних мовою 

програмування C, що дає змогу безпосередньо задавати параметри руху 

двигуна та синхронізувати їх із системою візуалізації. 

Автоматизована оцифровка 25-сантиметрових відрізків пряжі має 

виконуватися максимально швидко за умови збереження високої деталізації 

зображення структури. Для цього в блоці керування двигуном задаються 

системні параметри, які за потреби можуть регулюватися: 

•  прискорення двигуна; 

•  час очікування до надсилання тригерного сигналу на блок 

формування зображення;  

•  регульований час експозиції камери, скоординований із 

переміщенням нитки на 2,4 мм. 

Для параметра прискорення обирають мінімально можливі значення, 

щоб зменшити динамічні навантаження на пряжу та уникнути небажаних 

деформацій структури. Запуск камери здійснюється за допомогою 

аналогового вихідного сигналу контролера прядильної машини, який 

безпосередньо підключається до блока керування формуванням зображення, 

забезпечуючи синхронізацію руху нитки та моменту зйомки. 

Після завершення оцифровки відповідна 25-сантиметрова ділянка 

пряжі затискається в обладнанні для вимірювання міцності. Далі проводиться 

якісний та кількісний аналіз на основі виміряної розривної сили нитки. У 

підсумку формується набір даних, що поєднує цифрові зображення 

структури нитки з інформацією про її міцність на розтяг, що створює основу 

для подальшого моделювання та навчання системи штучного інтелекту. 

3.3 База даних 

Нейронна мережа навчається на основі даних, що відповідають двом 

граничним станам повітряно-струменевої прядильної машини. Як класи 

використовуються два фіксовані режими тиску прядіння: 5 бар – як 

еталонний, «стандартний» робочий стан машини, та 2 бар – як мінімальний 
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допустимий стан, за якого машина ще здатна стабільно виробляти пряжу. 

Для кожного з цих режимів попередньо виготовляється приблизно один 

кілометр пряжі, що забезпечує достатній обсяг матеріалу для формування 

репрезентативної вибірки. Навчання здійснюється в постановці, орієнтованій 

на структуру пряжі, а не на відмінності сировини. Тому модель 

налаштовується на даних, незалежних від зміни матеріалу: використовується 

одна й та сама прядена сировина з фіксованими властивостями, виготовлена 

виключно з бавовни. Це дає змогу мінімізувати вплив варіацій у сировині та 

сфокусуватися на змінах структурних характеристик нитки, зумовлених 

лише різними станами машини. 

Для того щоб модель отримала достатньо інформації про пряжу в 

кожному з двох режимів, для навчання та валідації відбирається по 10 метрів 

пряжі на кожен стан машини. Оскільки випробувальне обладнання для 

вимірювання міцності пряжі та формування зображень працює з відрізками 

завдовжки 25 см, кожні 10 метрів пряжі поділяються на 40 окремих ділянок 

такого розміру. Таким чином, для кожного класу формується 40 відрізків по 

25 см, які піддаються оцифруванню та подальшому аналізу. Щоб забезпечити 

максимальну варіативність структури в межах кожного 25-сантиметрового 

фрагмента, між послідовними ділянками пряжу додатково безперервно 

розмотують на 5–10 метрів, перш ніж знову фіксувати наступні 25 см для 

зйомки. Це дозволяє уникнути надто сильної кореляції між сусідніми 

ділянками й збільшити різноманітність локальних структур пряжі всередині 

одного класу. У підсумку нейронна мережа отримує ширший спектр 

можливих варіацій структури при незмінному стані машини, що підвищує її 

здатність виділяти характерні, а не випадкові ознаки. 

Із 40 оцифрованих 25-сантиметрових ділянок пряжі, що відповідають 

кожному стану машини, 35 використовуються безпосередньо для навчання та 

валідації нейронної мережі, тобто для вилучення ознак і коригування ваг 

моделі. Решта 5 відрізків зберігаються для етапу інференції та 
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застосовуються для незалежної перевірки якості навченої моделі. Такий 

поділ дає змогу оцінювати узагальнювальну здатність мережі на зразках, які 

не брали участі в навчанні. 

Кожна оцифрована ділянка пряжі представлена у вигляді набору з 105 

зображень, що послідовно відображають структуру нитки вздовж відрізка 

довжиною 25 см. Таким чином, для одного класу (тобто одного стану 

машини) формується 105 × 40 = 4200 зображень, а для двох класів – загалом 

8400 зображень. Отже, повний набір даних складається з 4200 зображень для 

стану з тиском 5 бар і 4200 зображень для стану з тиском 2 бар. Із цієї 

сукупності 7350 зображень використовуються для процесу навчання та 

валідації моделі, тоді як 1050 зображень (по 525 на кожен клас) резервуються 

для тестування після завершення навчання, що дає змогу об’єктивно оцінити 

якість узагальнення (Рис. 3.4.).   

 

Рисунок 3.4. Розподіл набору даних; 8400 зображень, 

рівномірно розподілених між 5 барами та 2 барами 

 

Окрім двох граничних станів, аналіз охоплює проміжні режими роботи 

машини. Тиск прядіння на машині додатково регулюється з кроком 1 бар між 

значеннями 2 та 5 бар, тобто встановлюються проміжні режими з тиском 3 та 

4 бар. Для кожного з цих режимів також виготовляється один кілометр пряжі, 

однак цей матеріал використовується не для навчання, а для інференції – 
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перевірки того, як модель, навчена лише на крайніх станах, поводиться за 

проміжних умов. Для кожного з проміжних тисків (3 і 4 бар) оцифровується 

п’ять 25-сантиметрових ділянок пряжі. Кожен із цих відрізків додатково 

піддається якісній оцінці за допомогою випробувань на розтягування, під час 

яких вимірюється сила, необхідна для розриву нитки. Порівнюючи 

результати інференції нейронної мережі з фактичними даними про міцність, 

можна оцінити чутливість і точність моделі як інструмента контролю стану 

повітряно-струменевої прядильної машини за параметром тиску прядіння. 

Додатковим важливим аспектом є стабільність умов формування 

зображень. Випробувальна установка для отримання зображень ізольована 

від впливу зовнішнього середовища, зокрема від змін умов освітлення, 

відблисків, випадкових тіней та інших оптичних факторів. Це унеможливлює 

появу штучних кореляцій між варіаціями освітлення під час зйомки та 

зміною властивостей пряжі. Таким чином, модель навчається саме на 

структурних особливостях нитки, а не на паразитних артефактах зображення, 

що підвищує надійність і практичну цінність отриманих результатів. 
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4. НАУКОВО-ДОСЛІДНА ЧАСТИНА 

4.1 Тиск прядіння та міцність нитки на розрив 

Взаємозв'язок між тиском прядіння та силою розтягування нитки 

досліджується математично. Для цього сили розтягування нитки наносяться 

на графік відповідно до назв ниток та аналізуються з метою визначення, чи 

супроводжується зниження тиску прядіння зниженням сили розтягування 

нитки. Для цього спочатку розглядаються два крайні стани повітряно-

струменевої прядильної машини (5 бар та 2 бар). 

Таблиця 4.1. Значення сили розтягування нитки  

Клас Мінімальний Максимальний Середнє 
значення 

Стандартне 
відхилення 

5 Бар 230 сН 306 сН 272,2 сН 21,96 сН 

4 Бар 242 сН 303 сН 271,8 сН 18,27 сН 

3 Бар 175 сН 256 сН 208,4 сН 24,90 сН 

2 Бар 22 сН 114 сН 67,9 сН 23,16 сН 

 

На рисунку 4.1 показані результати вимірювання міцності пряжі для 

пряжі, витканої з тиском 5 і 2 бари. Натяг пряжі на одиницю тиску прядіння 

чітко показує значну різницю в натягу, необхідному для розриву пряжі, між 

двома тисками прядіння. Максимальне значення для класу 5 бари становить 

306 сН, а для класу 2 бари — 114 сН. Середні значення для класу 5 бар 

становлять 272,7 сН, а для класу 2 бар — 67,9 сН. Середнє значення для 

класу 5 бар становить 274 сН, а для класу 2 бар — 71,5 сН. Ці значення 

показують, що якісні властивості при 5 і 2 барах значно відрізняються, про 

що свідчать значні відмінності в міцності нитки на розрив. 

Далі буде перевірено міцність на розрив ниток, які не 

використовувалися для навчання. Ці нитки були вироблені при тиску 

прядіння 3 і 4 бари. На рисунку 4.2 показано зміну всіх сил розтягування 

ниток для різних тисків прядіння машини. 
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Рисунок 4.1. Значення міцності нитки для тиску прядіння 2 і 5 

бар 
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Рисунок 4.2. Значення міцності пряжі для всіх виготовлених 25-

сантиметрових частин пряжі 
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Графік показує, що натяг нитки при 5 і 4 барах є подібним і 

знаходиться в одному діапазоні. Це можна побачити з середнього значення 

двох класів, яке становить 272,2 сН при 5 барах і 271,8 сН при 4 барах. 

Втрата натягу нитки спостерігається лише при 3 барах. Середнє значення тут 

становить 208,4 сН, що відповідає зменшенню сили натягу нитки приблизно 

на 23% порівняно з класами 4 і 5 бар. Значення 2 бари мають найнижчу 

міцність нитки на розрив. Тут спостерігається зменшення на 75% із 

значенням 67,9 сН порівняно з 5 і 4 барами. Значення показують, що сила 

натягу нитки зменшується із зменшенням тиску прядіння. Хоча зменшення 

між 4 і 5 барами є дещо низьким, зменшення від 3 барів тиску прядіння є 

помітним і найвищим при 2 барах. 

Це доводить взаємозв'язок між тиском прядіння і міцністю нитки на 

розрив. Таким чином, нейронна мережа може бути навчена на основі 

кореляції в даних, що сила натягу нитки зменшується із зменшенням тиску 

прядіння, і відповідних зображень, що описують ці умови роботи машини. 

4.2 Тиск прядіння та міцність нитки на розрив 

У Даному розділі аналізуються результати навчання нейронної мережі 

зі структурою YOLOv5m. Мережа навчалася протягом 20 епох. Результати 

будуть зосереджені на втратах класифікації в процесі навчання, як 

згадувалося раніше, а також на точності класифікації. 

Протягом 20 епох спостерігалося постійне зменшення трьох основних 

категорій втрат: втрати рамок, втрати об'єктів і втрати класів. Всі функції 

втрат показують, що процес навчання працює добре після 20 епох. Оскільки 

модель повинна розпізнавати лише обмежувальну рамку і, отже, об'єкт на 

зображеннях, це доводить, що підхід працює. Слід лише зазначити, що криві 

втрат рамки та об'єкта все ще демонструють тенденцію до зниження після 20 

епох. З цього можна зробити висновок, що модель досягне ще кращих 

результатів щодо цих двох функцій втрат протягом подальших епох. Однак 

на даному етапі це не буде розглядатися далі, оскільки використовується 
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лише властивість класифікації YOLO. Більш важливим для застосування 

класифікації тиску прядіння нитки на зображеннях є перебіг втрати 

класифікації, показаний помаранчевим кольором. Крива показує, що ця 

втрата в класифікації після 20 епох має стабільно низьке значення для набору 

даних навчання (Рис. 4.3.). 

 

Рисунок 4.3. Прогресія втрат під час тренувань 

Результати валідаційних втрат показані на рисунку 4.4. 

Як і під час етапу навчання, аналіз функцій втрат на валідаційному 

наборі свідчить, що модель виходить на низький рівень похибок уже після 

приблизно 20-ї епохи. Втрати рамок та об’єкта зберігаються на відносно 

низьких значеннях і практично стабілізуються на 20-й епосі. Водночас для 

задачі класифікації тиску ключовим є характер зміни втрат класифікації: 

спостерігається їх короткочасне зростання в районі 7-ї та 9-ї епох, що може 

інтерпретуватися як ознака перенавчання. Проте надалі крива втрат 

класифікації вирівнюється, набуває стабільного характеру й досягає низького 

рівня після 20-ї епохи. Зберігається загальна спадна тенденція, що формально 

допускає подальше покращення моделі за умов збільшення кількості епох; 

однак, з огляду на вже дуже низькі значення втрат після 20-ї епохи, можна 

вважати, що тривалість навчання є достатньою. Узагальнюючи, поведінка 

кривих втрат на навчальній і валідаційній вибірках підтверджує здатність 
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нейронної мережі ефективно виконувати класифікацію, що буде додатково 

верифіковано на тестовому наборі даних у наступному розділі. 

 

Рисунок 4.4. Прогресія втрат валідації 

4.3 Прогнозування тиску обертання 

У даному розділі ми використовуємо навчену нейронну мережу для 

прогнозування тиску прядіння на зображеннях, які не були використані під 

час навчання. Процес починається з ниток, вироблених при тиску прядіння, 

подібному до того, що використовувався для навчання. Це робиться для 

оцінки нейронної мережі та перевірки її здатності розрізняти навчені тиски 

прядіння в екстремальних станах машини.  

  

а б 

Рисунок 4.5. Приклад результату виведення: а – таск 5 Бар, б – 

тиск 2 Бар. 
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Далі ми аналізуємо, чи може мережа точно розрізняти тиски прядіння 

між двома екстремальними станами. Це визначить, наскільки точно модель 

може класифікувати стани машини щодо тиску прядіння. Висновок робиться 

індивідуально на 105 зображеннях, що представляють 25-сантиметрову 

ділянку пряжі (Рис. 4.5). 

Розглянуто результати роботи моделі для зображень пряжі, отриманих 

при тисках 5 і 2 бар, які не використовувалися під час етапу навчання і, 

відповідно, виконують роль незалежного тестового набору. Висновки, 

зроблені на основі аналізу 25-ти сантиметрові відрізків, надалі 

використовуються для кількісної оцінки точності моделі на раніше невідомих 

даних, тобто для перевірки її здатності до узагальнення поза межами 

навчальної вибірки. Таким чином, обрані 25-сантиметрові ділянки пряжі 

виконують функцію репрезентативних тестових зразків для порівняння 

прогнозів нейронної мережі з фактичними режимами формування пряжі. 

Оскільки модель формує прогноз для кожного окремого зображення в 

межах 25-сантиметрового відрізка нитки, для отримання узагальненого 

висновку на рівні всього відрізка результати класифікації агрегуються. 

Іншими словами, для 25-сантиметрової ділянки пряжі, що представлена 

множиною з 105 зображень, окремі прогнози об’єднуються шляхом 

підрахунку частки зображень, для яких модель передбачає належність до 

класу «5 бар». Такий підхід дозволяє перейти від поодиноких рішень для 

зображень до інтегральної характеристики всієї ділянки пряжі. 

У задачі бінарної класифікації між зразками виготовленимипри тиску  

2 та 5 Бар клас із 5 Бар кодується як 1, а клас із 2 Бар — як 0. Це дає змогу 

інтерпретувати числовий вихід моделі як ймовірність або ступінь належності 

до режиму 5 бар. Обчислюючи відсоток прогнозів класу «5 бар» серед 105 

зображень, що відповідають одному 25-сантиметровому відрізку пряжі, 

отримуємо показник, який можна безпосередньо порівнювати між різними 

зразками. Чим вищим є цей відсоток, тим більше характерних ознак режиму 
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5 бар нейронна мережа виявила у відповідній ділянці пряжі. Оскільки 

класифікація є бінарною (0 або 1), згаданий відсоток еквівалентний 

середньому значенню прогнозів моделі для даного відрізка: збільшення 

середнього значення свідчить про більшу кількість прогнозів класу 1 (5 бар). 

Окрім інтерпретації ступеня подібності до режиму 5 бар, такий підхід до 

агрегування прогнозів використовується для подальшого обчислення 

точності моделі на рівні 25-сантиметрових відрізків пряжі, що забезпечує 

більш прикладну оцінку її ефективності для реальних виробничих умов. 

На наступному графіку (Рис. 4.6) показано середні значення прогнозів 

для 25-сантиметрових відрізків пряжі, виготовлених при тиску 5 і 2 бари, які 

не використовувалися для навчання. Середні значення прогнозів для тиску 5 

барів показано червоними точками, а середні значення прогнозів для тиску 2 

бари — синіми точками. 

 

Рисунок 4.6. Результати дослідження структури пряжі, 

виробленої з тиском прядіння 5 бар і 2 бар 

Графік показує чітку різницю між середніми значеннями прогнозів для 

структур пряжі 5 бар і 2 бар. Середнє значення прогнозів для 25-

сантиметрової частини пряжі можна чітко розрізнити. Точність моделі 

відповідає середнім значенням прогнозів для 25-сантиметрових частин пряжі. 
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Точність моделі розраховується за допомогою точних прогнозів для кожного 

класу тиску прядіння. Для цього використовуються 105 зображень частин 

пряжі з набору тестових даних і розраховується відсоток точних прогнозів. 

Таблиця 4.2. Точність прогнозування для тестових ділянок пряжі 

25см Ділянка пряжі Точність прогнозування 

5 Бар 36 98.1% 

5 Бар 37 95.2% 

5 Бар 38 100% 

5 Бар 39 100% 

5 Бар 40 98.1% 

2 Бар 36 93.3% 

2 Бар 37 95.2% 

2 Бар 38 94.2% 

2 Бар 39 100% 

2 Бар 40 98.1% 

Таблиця 4.3. Точність прогнозування за класами 

Клас Точність 
прогнозування 

5 Бар 98.28% 

2 Бар 96.16% 

 

Сукупні результати оцінювання точності прогнозування на тестовому 

наборі даних для режимів 5 та 2 бар свідчать, що модель демонструє високу 

ефективність у розрізненні зображень пряжі, сформованої за цих двох 

режимів роботи. Це дає підстави стверджувати, що нейронна мережа 

навчилася коректно ідентифікувати інформативні просторові структури, 

характерні для двох ключових режимів: оптимального стану машини (5 

барів) та її погіршеного технічного стану (2 бари). 

Водночас, для забезпечення практично значущої точності 

прогнозування реального стану машини необхідно встановити, чи корелюють 

отримані модельні прогнози з експериментальними вимірюваннями натягу 

нитки. Такий аналіз дасть змогу виявляти критичні стани обладнання, 

своєчасно розпізнавати зниження сил натягу нитки та, відповідно, 

діагностувати погіршення якості пряжі. Розгляд зазначеної кореляції та її 
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впливу на можливості діагностики стану машини буде подано в наступному 

розділі. 

 

Рисунок 4.7. Результати дослідження структури пряжі, 

виробленої з тиском прядіння 3 і 4 бари 

На наступному етапі дослідження було здійснено поглиблений аналіз 

зображень пряжі, отриманих з машини за умов зміни тиску прядіння від 5 до 

2 бар. Основна увага зосереджувалася на результатах прогнозування для 

пряжі, виробленої за проміжних режимів роботи обладнання, а саме при 

тиску прядіння 4 та 3 бар, з акцентом на 25-сантиметрових відрізках пряжі як 

на репрезентативних елементарних ділянках. Такий підхід дає змогу оцінити, 

наскільки чутливою є модель до відхилень тиску від номінального режиму та 

як змінюються її прогнози при переході від «ідеальних» до погіршених умов 

формування нитки.  

Важливим завданням було встановлення взаємозв’язку між 

прогнозованим тиском прядіння, виміряними силами розтягування пряжі та її 

якісними характеристиками. Це дає підстави розглядати модельні прогнози 

не лише як індикатор режиму тиску, а й як опосередковану характеристику 

структурного стану пряжі та потенційних змін її споживчих властивостей. 

Графічні результати для 25-сантиметрових ділянок пряжі, сформованих при 
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тиску прядіння 4 і 3 бар на повітряно-струменевій прядильній машині типу 

Autoairo, відображають частку прогнозів класу «5 бар» у межах кожного 

відрізка, що складається зі 105 кадрів. Відсоток таких прогнозів 

використовується як кількісна міра подібності відповідної ділянки пряжі до 

еталонного режиму 5 бар, що, у свою чергу, створює основу для подальшого 

аналізу кореляції з натягом нитки та показниками якості пряжі. 

 

Рисунок 4.8. Результати дослідження структури пряжі, 

виробленої при усіх варіантах тисків прядіння 

Середні значення для серій зображень ниток демонструють більш 

помітні відхилення між зображеннями в межах класів тиску прядіння. 

Спостерігається певне перекриття діапазонів значень для різних режимів. 

Порівняння з результатами вимірювання натягу нитки показує, що подібна 

картина має місце і для механічних характеристик. Водночас виняткові 

випадки відрізняються від тих, що були зафіксовані під час вимірювань сили 

розтягування. На рисунку 4.8 наведено зміну значень для всіх 5-барних 

ділянок у 25-сантиметрових відрізках пряжі, використаних для формування 

висновків. 
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Таблиця 4.4: Точність прогнозування за класами 2-5 

Клас Мінімальний Максимальний Середнє 
значення 

5 Бар 95,2% 100% 98,3% 

4 Бар 70,2% 98,1% 90,5% 

3 Бар 50,0% 85,6% 62,7% 

2 Бар 0,0% 6,7% 3,8% 

 

Характер зміни модельних прогнозів є подібним до результатів 

вимірювань сили розтягування нитки. Для коректного порівняння 

відповідних класів тиску прядіння обчислюються середні значення для 

траєкторій кожного класу, аналогічно до підходу, застосованого під час 

аналізу натягу. Інференційний аналіз демонструє кореляцію з якісними 

характеристиками пряжі: зі зменшенням тиску прядіння частка прогнозів 

класу 5 бар у 25-сантиметрових ділянках пряжі знижується. Класи можна 

розрізнити як за крайніми, так і за середніми значеннями, причому розрив із 

класом тиску 2 бари є відносно значним. Обидва підходи виявляють певне 

перекриття діапазонів значень, однак за середніми показниками класи чітко 

відмежовуються. Це створює можливість контролю та ідентифікації стану 

машини на основі розрахунку середніх значень, а отже, дає змогу 

використовувати розроблену систему для моніторингу умов тиску прядіння 

повітряно-струменевої прядильної машини за структурними властивостями 

виготовленої пряжі. 
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5. СПЕЦІАЛЬНА ЧАСТИНА  

5.1 Попередня обробка дани 

Попередня обробка призначена для видалення характеристик 

зображень, які можуть представити нейронній мережі помилкові кореляції. 

Крім того, на зображенні має бути представлено якомога більше структурних 

властивостей ниток. Тому для зміни інформації про структуру нитки на 

зображенні не використовуються фільтри чи інші методи. Завдяки високій 

роздільній здатності камери найменші рухи нитки в області зображення, 

вгору або вниз, також збільшуються на зображенні. Щоб виключити будь-які 

випадкові кореляції між положенням нитки на зображенні та зміненою 

структурою нитки, всі нитки розміщуються точно в центрі фотографій, щоб 

уникнути відхилень у даних щодо положення нитки на зображенні. 

Чорно-білий розподіл на зображенні використовується для визначення 

положення нитки на зображенні. Середній кут нитки обчислюється за 

допомогою середнього значення цього розподілу по всьому зображенню. 

Потім цей кут обертає зображення, щоб отримати майже рівне положення 

всіх ниток на зображенні. Програмування цих функцій виконується в 

MATLAB. 

Для мережевих структур з конволюційними шарами та шарами 

максимального об'єднання необхідні прямокутні зображення. Тому 

фотографії заповнюються чорними пікселями по верхньому і нижньому 

краях, поки розмір зображення не досягне 1600x1600 пікселів. Далі 

зображення змінюються до максимального розміру для мережевої структури 

YOLO, щоб мережа також мала найбільш значущі джерела інформації для 

процесу навчання. Це 1280x1280 пікселів. Всі зображення піддаються цьому 

процесу. Це програмування також реалізовано в MATLAB. 

Крім того, існуючий набір даних поділяється на набір даних для 

навчання та набір даних для тестування. Набір даних для навчання, що 

складається з ділянок пряжі розміром 35x25 см для кожного класу тиску 
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прядіння, завантажується в Roboflow і використовується для навчання 

нейронної мережі. Решта ділянок пряжі розміром 5x25 см для кожного класу 

тиску прядіння пізніше використовуються для тестування навченої моделі. 

Зображення повинні бути марковані для навчання мережі YOLO. Для 

цього вставляється розмір обмежувальної рамки всього зображення. Потім 

обмежувальна рамка маркується класом тиску прядіння, з яким було 

вироблено відповідну пряжу. Таким чином, нейронна мережа вивчає 

властивості структур пряжі, характерні для станів машини. Для цього 

використовується онлайн-інструмент Roboflow. 7350 зображень (3675 

зображень для 5 бар і 3675 для 2 бар) завантажуються в Roboflow у вигляді 

CSV-файлу, що містить координати обмежувальної рамки та назву мітки. 

Розмір обмежувальної рамки вибирається таким чином, щоб на зображеннях 

були присутні всі властивості структури пряжі. Оскільки окремі волокна 

можуть виступати за межі області зображення через різну шерстистість 

фотографій, розмір обмежувального прямокутника вибирається за розміром 

всього зображення (Рис. 5.1). Оскільки маркується все зображення, 

використовується тільки здатність YOLO до класифікації. Модель навчається 

з однаковим розміром обмежувального прямокутника для всіх класів. Тому 

властивість розпізнавання об'єктів нейронної мережі YOLO не 

використовується. 

Далі Roboflow створює набір даних, розділений на навчальний та 

валідаційний. Все зображення позначається обмежувальною рамкою та 

відповідним класом для анотації. 

Наступним кроком є визначення гіперпараметрів структури мережі 

YOLOv5. Наскільки це можливо, всі значення залишаються на стандартних 

налаштуваннях структури. Коригуються лише параметри, які заважають 

запуску процесу навчання. Це глибина структури YOLOv5 і розмір пакета. 

Ultralytics надає різні архітектури YOLOv5, які можна використовувати для 

навчання (Рис. 5.2). 
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5 бар 2 бар 

Рисунок 5.1. Приклад обмежувальної рамки та маркування в Roboflow 

 

 

Рисунок 5.2. Попередньо навчені нейронні мережі YOLOv5 

 

Різні моделі відрізняються за розміром і, отже, за тривалістю процесу 

навчання, а на наступному етапі — за часом, необхідним для інференції, та 

обсягом пам'яті, необхідним для навчання моделей. Детальні відмінності тут 

не розглядатимуться, оскільки метою є використання якомога більшої моделі 

для вилучення якомога більшої кількості інформації з зображень, а потім їх 

класифікація. Попередньо навчені моделі YOLOv5x та YOLOv5l не можуть 

розпочати навчання з зображеннями пряжі. Тільки за допомогою структури 

YOLOv5m з розміром партії 8 можна активувати процес навчання. Через 

великий розмір моделі одна епоха триває приблизно 12 хвилин. Тому 
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навчання обмежується 20 прогонами даних, і перевіряється, наскільки добре 

модель вже працює після цих 20 епох. 

5.2 Оцінка 

Для процесу навчання використовується набір даних для навчання та 

валідації, маркований та розділений у Roboflow (35x25 см на клас). Набір 

тестових даних, що складається з решти 5x25 см ділянки пряжі за класом 

тиску прядіння (5 бар, 2 бар), використовується після процесу навчання для 

тестування та оцінки моделі. Оскільки використовується тільки здатність 

YOLO до класифікації, буде проаналізовано втрати класифікації в процесі 

навчання. Крім того, на тестовому наборі даних буде розрахована точність 

класифікації тиску прядіння на зображеннях пряжі. Після цього зображення 

структур пряжі 3 і 4 бари аналізуються за допомогою нейронної мережі, щоб 

визначити, чи існує кореляція між зниженням тиску прядіння і кількістю 

прогнозів 5 барів у 25-сантиметровій ділянці пряжі. 

При оцінюванні процесу навчання нейронної мережі аналізуються 

значення функції втрат та показники ефективності класифікації на 

навчальному й валідаційному наборах даних з метою діагностики можливого 

перенавчання або недонавчання моделі. Оскільки в даному випадку 

використовується лише класифікаційна складова архітектури YOLO, основна 

увага приділяється саме втратам класифікації, які відображають здатність 

моделі правильно призначати клас розпізнаним об’єктам. Цей показник 

обчислюється на основі бінарної кросентропійної втрати для значень 

упевненості кожного прогнозованого обмежувального прямокутника й 

характеризує відмінність між прогнозованими й фактичними класами: низьке 

значення втрат класифікації свідчить про те, що модель коректно відтворює 

належність об’єктів до класів, тоді як збільшення втрат сигналізує про 

погіршення якості узагальнення. Порівняння втрат на навчальному та 

валідаційному наборах дає змогу інтерпретувати поведінку моделі: суттєво 

вищі втрати на валідації у поєднанні з низькими втратами на навчанні 
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вказують на перенавчання, коли мережа фактично «запам’ятовує» навчальні 

приклади й не здатна надійно працювати з новими даними; одночасно високі 

втрати на обох наборах свідчать про недонавчання або недостатню виразну 

здатність обраної архітектури, яка не в змозі опанувати приховані залежності 

в даних. Для зіставлення прогнозів моделі з експериментально виміряною 

міцністю пряжі 25-сантиметрова ділянка нитки описується 105 окремими 

зображеннями, для кожного з яких модель формує прогноз класу (тиску 

прядіння). Вважається, що чим частіше для цих 105 зображень 

передбачається клас, відповідний тиску 5 бар (умовно «добра» структура 

пряжі), тим вищою є якість відповідної 25-сантиметрової ділянки; тому для 

оцінювання моделі використовується середнє значення частки прогнозів 

класу 5 бар по всіх зображеннях цієї ділянки. Інференція реалізується в 

середовищі Colab: спочатку аналізуються зображення для тисків 5 і 2 бар, що 

не використовувалися під час навчання, послідовно обробляються 105 

зображень, які відповідають одному відрізку пряжі, і визначається тиск 

прядіння, до якого структура найбільш подібна. Оскільки вимірювання сили 

розтягування можливе лише для відрізків довжиною 25 см, агрегований 

прогноз для цієї ділянки ставиться у відповідність із виміряною розривною 

силою, що дозволяє досліджувати кореляцію між структурними ознаками 

пряжі на зображеннях та її механічними властивостями. Додатково, окрім 

зображень, отриманих за тисків 5 і 2 бар, у режимі інференції 

використовуються відрізки пряжі, вироблені за проміжних тисків 3 і 4 бар: 

аналізується по п’ять ділянок довжиною 25 см для кожного з цих режимів 

(усього 10×25 см), щоб з’ясувати, чи здатна навчена модель відрізняти 

структуру пряжі за проміжних значень тиску між двома граничними станами 

машини. Усі зображення, що подаються на вхід моделі під час інференції, 

проходять ту саму процедуру попередньої обробки, що й навчальні дані, аби 

уникнути появи вхідних ознак, з якими мережа не стикалася на етапі 

навчання, та забезпечити коректність порівняння результатів. 
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6 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 

 

6.1 Організація охорони праці при роботі з системою управління 

 

Охорона праці розглядає проблеми забезпечення здорових і безпечних 

умов праці. Виявляє і вивчає можливі причини нещасних випадків, 

професійних захворювань, аварій, вибухів, пожеж і розробляє систему 

заходів і вимог з метою виключення цих причин і створення безпечних і 

сприятливих для людини умов праці. 

Завдання охорони праці є зведення до мінімуму імовірності 

пошкодження або захворювання працівників з одночасним забезпеченням 

комфорту при максимальній продуктивності праці. 

Навчання працівників безпеці праці проводять відповідно до вимог 

ГОСТ 12. 0.004 - 79, який встановлює порядок і види навчання. На всіх 

підприємствах і в організаціях незалежно від характеру і ступеню небезпеки 

виробництва навчання працівників проводять при підготовці нових 

робітників, проведенні різноманітних видів інструктажів і підвищенні 

кваліфікації. 

Контроль за своєчасним і якісним навчанням виконує відділ охорони 

праці чи інженер з охорони праці, або ІТП, на якого наказом керівника 

підприємства покладено ці обов'язки. Ті, що вперше поступають на роботу, 

навчання проходять згідно з "Типовим положенням про підготовку і 

підвищення кваліфікації робітників". В журналі обліку навчальної роботи 

реєструють навчальну тему, за якою проводилось навчання. 

Інструктаж працюючих поділяють на вступний, початковий, на 

робочому місці, повторний, позаплановий і початковий. 

Вступний інструктаж з усіма, хто поступає на роботу незалежно від їх 

освіти і стажу роботи по даній професії, проводить інженер з охорони праці 

за програмою, затвердженою головним інженером підприємства, про 
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проведення вступного інструктажу з обов'язковим підписом того, хто 

проводив інструктаж і того, хто його отримував. 

Початковий інструктаж на робочому місці, повторний, позаплановий і 

поточний проводить керівник робіт. 

Початковий інструктаж на робочому місці проводять при прийомі на 

роботу нових робітників за інструкцією з охорони праці, розробленою для 

окремих професій або видів робіт. Всі робітники після цього інструктажу і 

перевірки знань 2-5 змін (залежно від навичок і стажу роботи) працюють під 

наглядом бригадира чи майстра, потім оформляється допуск до їх 

самостійної праці. 

Повторний інструктаж проходять всі працівники незалежно від 

кваліфікації, освіти і стажу роботи через три місяці. Його проводять з метою 

перевірки знання робітниками правил і норм з охорони праці. 

Позаплановий інструктаж проводять коли змінилися правила охорони 

праці або технологічний процес, обладнання, інструмент та інші фактори, що 

впливають на безпеку праці; коли працівники порушують правила охорони 

праці, що можуть призвести чи призвели до травм, аварій чи пожежі, вибуху. 

Його проводять індивідуально чи з групою робітників однієї професії за 

програмою початкового інструктажу на робочому місці. При його реєстрації 

вказують причину, яка спричинила його проведення. 

Умови праці мають велике значення практично для всіх виробничих 

показників - продуктивності праці, якості робіт, безпеки працівників та інше. 

Санітарно-гігієнічні умови праці характеризуються показниками 

виробничого середовища - рівнем освітлення, мікрокліматичними 

параметрами, загазованістю і запиленістю повітряного середовища, рівнем 

шуму і вібрації, наявністю іонізуючого випромінювання та інше. 
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6.2 Електробезпека 

 

Електричні установки, з якими доводиться мати справу практично всім 

працюючим по встановленню та налагодженню засобів автоматизації, 

виявляють для людини велику потенційну небезпеку, яка збільшується у 

зв'язку з тим, що органи чуття людини не можуть на відстані виявити 

присутність електричної напруги на обладнанні. 

Степінь ураження електричним струмом залежить від цілого ряду 

факторів: значення сили струму, електричного опору тіла людини та 

тривалості протікання через неї струму, виду та частоти струму, 

індивідуальних властивостей людини та умов навколишнього середовища. 

Конструкція електроустановок має відповідати умовам їх експлуатації 

та забезпечувати захист персоналу від дотику з струмоведучими та рухомими 

частинами, а обладнання - від попадання всередину посторонніх твердих тіл 

та води. 

Конструкція, вид виконання, спосіб встановлення, клас ізоляції 

застосовуваних провідників, кабелів, пристроїв та іншого електрообладнання 

відповідають вимогам електробезпеки. За ступенем ураження людей 

електричним струмом котельня відноситься згідно ПУЕ 1.1.13 до категорії 

приміщень з підвищеною небезпекою (висока температура, можливість 

одночасного дотику до металевих елементів технологічного обладнання або 

металоконструкцій будинку та металевих корпусів електрообладнання). 

У нормальному режимі роботи обладнання - можливість ураження 

працівників електричним струмом виключена. Але на випадок аварії для 

запобігання ураження струмом людей передбачене захисне заземлення. 

Згідно ПУЕ 1.7.65 допустимий опір заземлення повинен бути не більшим 10 

Ом. 
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При виконанні монтажних робіт використовуються переносні 

електроінструменти (електродрилі, електрошліфувальні установки, тощо). 

Для забезпечення безпечної праці корпуси однофазних електроприймачів 

повинні занулюватись. 

Захист людини від ураження електричним струмом в мережах з 

зануленням здійснюється тим, що при замиканні одної з фаз на занулений 

корпус в ланці цієї фази виникає струм короткого замикання, що діє на 

струмовий захист (плавкий запобіжник, автомат), в результаті чого 

відбувається відключення аварійної ділянки від мережі. Крім того, ще до 

спрацювання захисту струм короткого викликає перерозподіл напруги в 

мережі, що приводить до зниження напруги корпусу відносно землі. Таким 

чином, занулення зменшує напругу дотику та обмежує час, на протязі якого 

людина, що доторкнулася до корпусу, може попасти під дію напруги. 

Для того, щоб забезпечити швидке (на протязі декількох секунд) 

відключення аварійної ділянки, струм короткого замикання повинен бути 

достатньо великим. Відповідно до вимог ПУЕ струм короткого замикання 

повинен не менше ніж в три рази перевищувати номінальний струм плавкої 

вставки найближчого запобіжника або номінальний струм нерегульованого 

розчеплювача автоматичного вимикача. При використанні автоматичних 

вимикачів, що мають тільки електромагнітний розчіплювач (відсічку), струм 

короткого замикання повинен перевищувати значення струму встановлення 

миттєвого спрацювання в 1,25-1,4 рази в залежності від номінального 

струму. 

В однофазних електроприймачів, що включені між фазним та нульовим 

робочим проводами, занулення корпусів слід виконувати з допомогою 

окремого (третього) провідника, який повинен з'єднувати корпус 

електроприймача з нульовим захисним проводом. В таких випадках 

під'єднувати корпуси електроприймачів для забезпечення електробезпеки до 

нульового робочого проводу недопустимо, оскільки при його розриві 
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(перегоранні запобіжника) всі під'єднані до нього корпуси виявляться під 

фазною напругою відносно землі. 

В мережі з зануленням недопустимо використовувати заземлення 

окремих електроприймачів, не під'єднавши їх перед цим до нульового 

захисного провідника. В цьому випадку при замиканні фази на заземлений, 

але не приєднаний до нульового захисного провідника корпус створюється 

коло струму через заземлення цього корпусу та заземлення нейтралі джерела 

струму. Такий випадок небезпечний, оскільки засоби захисту не зможуть 

відключити такий електроприймач через мале значення струму і тому 

небезпечна напруга на всіх корпусах може зберігатися тривалий період, поки 

заземлений приймач не буде відключений вручну. 

Важливо відмітити, що якщо занулений корпус одночасно заземлений, 

то це тільки покращує умови безпеки, оскільки забезпечує додаткове 

заземлення нульового захисного проводу. 

Для ізоляції людини від частин електроустановок, що знаходяться під 

напругою, використовуються основні та допоміжні ізолюючі засоби, а саме 

слюсарно-монтажний інструмент з ізольованими ручками, коврики, ізолюючі 

підставки, тощо. 

У приміщеннях, де знаходяться вимірювальні прилади, необхідно 

забезпечити виконання заходів по боротьбі з статичною електрикою (тобто 

прилади повинні бути заземлені). Найпростішим засобом є підтримка 

відносної вологості повітря на рівні 50 - 60 % за допомогою побутового 

електрозволожувача. 

Підлогу слід виконувати відповідно до ГОСТ 12.4.124-83, 

використовуючи антистатичне покриття на проходах і біля робочих місць. 

Робітникам рекомендовано носити одежу з природних матеріалів або з 

комбінованих - природних і штучних волокон. Для зняття електростатичних 

зарядів з одежі слід використовувати антистатики побутового призначення. 
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Оскільки корпуси приладів виконані з металу, то для усунення 

небезпеки ураження людини електричним струмом (можливий пробій на 

корпус приладу) використовується захисне заземлення. 

 

6.3 Розрахунок заземлення 

 

Розрахуємо систему заземлення для електроустаткування, яке працює 

від напруги 220 В. 

 

Визначаємо опір грунту:  =  = 2*200 = 400 Ом м, 

де - коефіцієнт підсилення; 

— питомий опір грунту (вибирається з довідкової літератури). 

Визначаємо опір одиночного вертикального заземлювача: 

 

де t - відстань від середини заземлювача до поверхні грунту, м; 

l,d - довжина і діаметр стержня заземлювача, м; 

R  = 96 Ом. 

Визначаємо опір сталевої полоси, що з'єднує стержневі заземлювачі:  

 

Ом. 

Визначаємо орієнтовне чмсло стержневих заземлювачів: 

шт; 

- допустимий по нормам опір заземляючого пристрою, 

- коефіцієнт використання вертикальних заземлювачів (для 

орієнтовного розрахунку приймається рівним 1). 
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Приймаємо розміщення вертикальних заземлювачів по контуру з 

відстанню між стальними заземлювачами рівним 21. З довідкової літератури 

визначаємо = 0,66 і  = 0,39. 

Визначаємо необхідну кількість вертикальних заземлювачів 

 

Розраховуємо загальний розрахунковий опір аземлюючого пристрою R 

з врахуванням з'єднувальної полоси 

Ом. 

Розрахунок проведено правильно, оскільки виконується умова R [r ]. 

Розрахунок штучного заземлення: 

Приймаємо, що опір захисного заземлення не повинен перевищувати 4 

Ом: 

 

 

де R33 – опір захисного заземлення; 

Rc – опір стержневих заземлювачів; 

Rп - опір поперечних заземлювачів. 

 

Рисунок 6.1 - Пристрій заземлення 

4  – плавка вставка; 2 – електроустановка; 3 – з’єднувальна штаба; 4 – 

трубчатий заземлювач 
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Опір одиночного стержневого заземлювача розтіканню електричного 

струму: 

 

де h – відстань від поверхні грунту до заземлювача і становить 0,8 м; 

l – довжина стержневого заземлювача 3 м; 

d – діаметр стержневого заземлювача 50 мм. 

 

Опір одиночного поперечного заземлювача: 

 

 

де l – довжина поперечного заземлювача 2,5 м; 

b – ширина полоси заземлювача 30 мм; 

 - розрахунковий опір грунту: для поперечних електродів 1000 Ом·м, 

для стержневих електродів 750 Ом·м. 

 

В наслідок взаємовпливу вводимо коефіцієнт використання 

заземлювачів:  

 

де Rд – допустимий опір заземлення, що становить 4 Ом; 

Rо – опір одиночного заземлювача. 
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З цієї формули методом ітерацій підбирають n, при якому =1: 

n Rn Rc Ro ŋ 

1 398,1 143,8 105,6 26,1 

5 398,1 143,8 105,6 5,2 

10 398,1 143,8 105,6 2,6 

15 398,1 143,8 105,6 1,7 

20 398,1 143,8 105,6 1,3 

25 398,1 143,8 105,6 1,1 

26 398,1 143,8 105,6 1,0 

27 398,1 143,8 105,6 0,9 

Отже приймаємо кількість одиночних заземлюючих електродів рівною 

26. 
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ОСНОВНІ ВИСНОВКИ КВАЛІФІКАЦІЙНОЇ РОБОТИ 

За результатами виконання кваліфікаційної роботи обґрунтовано 

доцільність застосування інтелектуальних методів для моніторингу 

технічного стану повітряно-струменевої прядильної машини та пов’язаних із 

ним показників якості пряжі, зокрема міцності на розрив. Показано, що 

стабільність технологічного режиму, насамперед параметри тиску, істотно 

впливає на формування структури пряжі, а отже — на її експлуатаційні 

характеристики. Встановлено, що традиційні підходи контролю якості мають 

обмеження щодо оперативності та повноти виявлення структурних 

відхилень, що зумовлює потребу в автоматизованому неруйнівному контролі 

на основі візуальних даних. 

У межах роботи сформовано експериментальну базу для машинного 

навчання: отримано та підготовлено масив зображень структури пряжі для 

двох крайніх режимів роботи обладнання, організовано коректний поділ 

вибірки на навчальну, валідаційну та тестову частини, а також виконано 

механічні випробування на розрив для встановлення зв’язку між візуальними 

ознаками та показниками міцності. Це дало змогу підтвердити 

інформативність обраного способу представлення даних і забезпечити 

підґрунтя для побудови моделі, здатної відрізняти якісні та проблемні 

режими формування пряжі. 

Розроблено й апробовано підхід до автоматизованої класифікації 

зображень із застосуванням методів комп’ютерного зору та штучного 

інтелекту на основі архітектури YOLOv5 із використанням інструментів 

підготовки даних і навчання. Експериментальні результати засвідчили високу 

ефективність розпізнавання двох граничних режимів, що підтверджує 

придатність запропонованого рішення для задач контролю якості та індикації 

відхилень у роботі прядильної машини. Окремо досліджено поведінку моделі 

на проміжних значеннях тиску, що демонструє потенціал подальшого 
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розвитку підходу в напрямі багатокласової оцінки станів або кількісного 

прогнозування показників якості. 
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