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АНОТАЦІЯ  

Розроблення та дослідження автоматизованої системи класифікації стану 

обладнання на основі методів машинного навчання (комплексна тема) // 

Кваліфікаційна робота освітнього рівня «Магістр» // Андрушків Віктор 

Володимирович, Назаревич Богдан Васильович // Тернопільський національний 

технічний університет імені Івана Пулюя, факультет прикладних інформаційних 

технологій та електроінженерії, кафедра комп’ютерно-інтегрованих технологій, 

група КТм-61 // Тернопіль, 2025 // C. 101, рис. – 33, табл. – 0, додат. – 1, бібліогр. 

– 20.  

Ключові слова: алгоритми машинного навчання, випадкові ліси, підсилені 

дерева, нейронні мережі, метод k-найближчих сусідів, метод опорно-векторних 

машин, автоматизована система діагностики, вібраційні сигнали, 

підшипниковий вузол, класифікація станів. 

 

Кваліфікаційна робота присвячена розробленню та дослідженню 

автоматизованої системи класифікації технічного стану обладнання на основі 

методів машинного навчання. Актуальність дослідження зумовлена 

необхідністю підвищення надійності та безпеки експлуатації промислового 

обладнання, зокрема роторних машин, шляхом впровадження інтелектуальних 

методів обробки вимірювальних даних. 

Метою роботи є: розроблення автоматизованої системи класифікації 

технічного стану підшипникового вузла на основі аналізу вібраційних сигналів 

із використанням методів машинного навчання. 

У першому розділі кваліфікаційної роботи проаналізовано сучасні підходи 

до технічної діагностики обладнання, зокрема методи вібраційного аналізу, 

спектральної обробки сигналів та застосування сенсорних систем. Розглянуто 

основні типи дефектів підшипникових вузлів та їхні діагностичні ознаки, а також 

наведено огляд методів машинного навчання, що використовуються для 

класифікації технічних станів обладнання. 
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У другому розділі детально описано характеристики вібраційних сигналів, 

процес формування набору даних, етапи попередньої обробки, сегментації 

сигналів та обчислення статистичних, амплітудних і спектральних ознак. 

Обґрунтовано вибір програмного забезпечення для реалізації алгоритмів 

машинного навчання. 

У третьому розділі кваліфікаційної роботи розроблено структуру 

автоматизованої системи класифікації стану обладнання, описано алгоритми 

обробки вібраційних сигналів та класифікації на основі випадкових лісів, 

підсилених дерев, нейронних мереж, опорно-векторних машин і методу k-

найближчих сусідів. Також наведено опис програмної реалізації системи та 

модуля візуалізації результатів. 

У четвертому розділі представлено результати експериментальних 

досліджень класифікації чотирьох станів підшипникового вузла: нормального 

стану, дефекту внутрішнього кільця, дефекту зовнішнього кільця та дефекту тіла 

кочення. Проведено порівняння ефективності різних методів машинного 

навчання, аналіз точності класифікації, похибок та стабільності моделей на 

основі експериментальних даних набору Case Western Reserve University. 

У п’ятому розділі кваліфікаційної роботи оцінено ефективність 

запропонованої автоматизованої системи та наведено рекомендації щодо її 

практичного впровадження в промислові процеси з урахуванням вимог 

комп’ютерно-інтегрованих технологій. 

У шостому розділі розглянуто питання охорони праці та безпеки 

життєдіяльності, зокрема аналіз шкідливих і небезпечних факторів виробничого 

середовища та організацію безпечних умов роботи з персональним 

комп’ютером. 
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ANNOTATION  

Development and research of an automated system for equipment condition 

classification based on machine learning methods (complex topic) // Master's degree 

qualification work / Andrushkiv Viktor Volodymyrovych, Nazarevych Bohdan 

Vasylovych // Ternopil Ivan Puluj National Technical University, Faculty of Applied 

Information Technologies and Electrical Engineering, Department of Computer-

Integrated Technologies, group KTm-61 // Ternopil, 2025 // P. 101, Fig. 33, Table 0, 

Supplement 1, Bibliography 20.   

Keywords: machine learning algorithms, random forests, boosted trees, neural 

networks, k-nearest neighbours method, support vector machines method, automated 

diagnostic system, vibration signals, bearing assembly, condition classification. 

  

The thesis is devoted to the development and research of an automated system 

for classifying the technical condition of equipment based on machine learning 

methods. The relevance of the research is determined by the need to improve the 

reliability and safety of industrial equipment, in particular rotary machines, through the 

introduction of intelligent methods of processing measurement data. 

The aim of the work is to develop an automated system for classifying the 

technical condition of a bearing assembly based on the analysis of vibration signals 

using machine learning methods. 

The first chapter of the thesis analyses modern approaches to technical 

diagnostics of equipment, in particular methods of vibration analysis, spectral signal 

processing and the use of sensor systems. The main types of bearing assembly defects 

and their diagnostic signs are considered, and an overview of machine learning 

methods used to classify the technical condition of equipment is provided. 

The second chapter describes in detail the characteristics of vibration signals, the 

process of forming a data set, the stages of pre-processing, signal segmentation, and 

the calculation of statistical, amplitude, and spectral features. The choice of software 

for implementing machine learning algorithms is justified. 
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The third chapter of the thesis develops the structure of an automated equipment 

condition classification system and describes algorithms for processing vibration 

signals and classification based on random forests, boosted trees, neural networks, 

support vector machines, and the k-nearest neighbours method. A description of the 

software implementation of the system and the results visualisation module is also 

provided. 

The fourth chapter presents the results of experimental studies on the 

classification of four bearing unit conditions: normal condition, inner ring defect, outer 

ring defect, and rolling element defect. A comparison of the effectiveness of different 

machine learning methods, analysis of classification accuracy, errors, and model 

stability based on experimental data from the Case Western Reserve University dataset 

is performed. 

The fifth chapter of the thesis evaluates the effectiveness of the proposed 

automated system and provides recommendations for its practical implementation in 

industrial processes, taking into account the requirements of computer-integrated 

technologies. 

The sixth chapter examines issues of occupational health and safety, in particular 

the analysis of harmful and hazardous factors in the production environment and the 

organisation of safe working conditions with personal computers. 
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ПЕРЕЛІК СКОРОЧЕНЬ І ТЕРМІНІВ 

 

АС – автоматизована система; 

АСД – автоматизована система діагностики; 

ANN – штучна нейронна мережа (Artificial Neural Network); 

BF – дефект тіла кочення (Ball Fault); 

CWRU – Case Western Reserve University (експериментальний набір даних); 

DAQ – система збору даних (Data Acquisition); 

FFT – швидке перетворення Фур’є (Fast Fourier Transform); 

HMI – людино-машинний інтерфейс (Human–Machine Interface); 

IRF – дефект внутрішнього кільця підшипника (Inner Race Fault); 

k-NN – метод k-найближчих сусідів (k-Nearest Neighbors); 

ML – машинне навчання (Machine Learning); 

MLP – багатошаровий персептрон (Multi-Layer Perceptron); 

ORF – дефект зовнішнього кільця підшипника (Outer Race Fault); 

RF – випадковий ліс (Random Forest); 

RMS – середньоквадратичне значення сигналу (Root Mean Square); 

SCADA – система диспетчерського керування та збору даних (Supervisory 

Control And Data Acquisition); 

SVM – опорно-векторна машина (Support Vector Machine); 

BT – підсилені дерева рішень (Boosted Trees); 

SANN – модуль нейронних мереж у STATISTICA (Statistica Artificial Neural 

Networks). 
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 ВСТУП  

Актуальність теми. Сучасний етап розвитку промисловості 

характеризується активним впровадженням інтелектуальних технологій, 

цифрових систем керування та засобів автоматизації. Зростання складності 

технічних об’єктів, інтенсифікація виробничих процесів, підвищення вимог до 

надійності та безпеки експлуатації обладнання визначають потребу у переході 

від традиційних регламентних методів обслуговування до систем, здатних 

здійснювати постійний моніторинг технічного стану машин і своєчасно 

ідентифікувати ознаки можливих відмов. У таких умовах особливої актуальності 

набувають автоматизовані системи класифікації технічного стану, основані на 

аналізі інформаційних параметрів роботи обладнання. 

Одним із ключових елементів багатьох машин і механізмів, що визначає 

їхню працездатність, є підшипникові вузли. Підшипники кочення забезпечують 

підтримання ротора у заданому положенні, зменшують сили тертя, стабілізують 

кінематичні характеристики та дозволяють передавати навантаження при 

високих швидкостях обертання. Їх використовують в електродвигунах, 

компресорах, насосах, верстатах, вентиляторах, турбінах, редукторах і більшості 

енергоємних технологічних агрегатів. Порушення працездатності підшипників 

призводить до підвищених вібрацій, зниження ефективності роботи обладнання, 

появи аварійних режимів та передчасного виходу з ладу інших елементів 

системи. За статистичними даними, до 50% відмов роторних механізмів 

пов’язані саме з руйнуванням підшипникових вузлів, що підкреслює важливість 

своєчасної діагностики їхнього стану. 

Традиційні підходи до технічної діагностики ґрунтуються на експертному 

аналізі вібраційних сигналів, спектральних характеристик, термографічних 

даних та акустичних параметрів. Однак такий аналіз потребує кваліфікації 

персоналу, а також, значних витрат часу чи може бути недостатньо ефективним 

при складних або нестаціонарних режимах роботи обладнання. Крім того, 

експертні методи обмежені суб’єктивністю оцінювання та невідтворюваністю 
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прийнятих рішень. У свою чергу, зростання обсягу даних, що надходять від 

сенсорів у реальному часі, вимагає застосування автоматизованих засобів 

інтелектуальної обробки інформації. 

На цьому тлі значний розвиток отримують методи машинного навчання 

(МН), які відкривають принципово нові можливості для побудови 

автоматизованих систем технічної діагностики. Моделі МН здатні розпізнавати 

приховані закономірності у виміряних сигналах, виконувати високоточну 

класифікацію станів і адаптуватися до зміни умов експлуатації. На відміну від 

класичних алгоритмів обробки сигналів, методи машинного навчання 

дозволяють одночасно працювати з великими масивами даних, автоматично 

знаходити інформативні ознаки та покращувати якість розпізнавання під час 

збільшення навчальної вибірки. 

Застосування МН у діагностиці підшипникових вузлів особливо актуальне. 

Вібраційні сигнали містять інформацію про стан доріжок кочення, тіл кочення 

та кілець підшипника, і при їх якісному аналізі можна своєчасно визначити появу 

дефектів або небезпечних режимів. У сучасних дослідженнях продемонстровано, 

що такі алгоритми, як k-найближчих сусідів (k-NN), опорно-векторні машини 

(SVM), випадкові ліси (Random Forest), підсилені дерева (Boosted Trees) та 

штучні нейронні мережі (ANN), забезпечують точність класифікації станів 

підшипника на рівні 90–98%, що робить їх перспективними інструментами для 

практичних систем моніторингу. 

Мета і задачі дослідження:  є розроблення та дослідження 

автоматизованої системи класифікації технічного стану підшипникового вузла 

на основі машинного навчання. На відміну від традиційних підходів, система 

орієнтована на одночасний аналіз декількох груп ознак — статистичних, 

амплітудних та спектральних, що підвищує її інформативність та точність. Для 

дослідження обрано чотири стани підшипникового вузла: нормальний стан, 

дефект внутрішнього кільця (IRF), дефект зовнішнього кільця (ORF) та дефект 

тіла кочення (BF). Саме така класифікація є однією з найбільш актуальних для 
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промислових систем, адже ці типи дефектів найчастіше проявляються на 

практиці. 

Об’єкт, методи та джерела дослідження. Об’єктом дослідження є 

підшипникові вузли роторного обладнання. 

Предметом дослідження є процес класифікації технічного стану 

підшипникових вузлів на основі аналізу вібраційних сигналів із використанням 

методів машинного навчання. У роботі застосовуються методи аналізу сигналів, 

статистичної обробки даних, спектрального аналізу, а також алгоритми 

машинного навчання. Джерелом експериментальних даних є відкритий набір 

даних Case Western Reserve University (CWRU), що широко використовується в 

наукових дослідженнях і забезпечує достовірність та відтворюваність отриманих 

результатів. 

Практичне значення одержаних результатів полягає у можливості 

застосування розробленої автоматизованої системи класифікації для оцінювання 

технічного стану підшипникових вузлів у промислових умовах. Такий підхід 

дозволяє автоматизувати процес діагностики, підвищити точність розпізнавання 

дефектів та зменшити залежність результатів від суб’єктивного експертного 

аналізу. 

Використання алгоритмів МН, зокрема випадкових лісів, підсилених 

дерев, нейронних мереж, k-найближчих сусідів та опорно-векторних машин, дає 

змогу обробляти величезні обсяги вібраційних даних і забезпечувати високу 

точність класифікації станів обладнання. Зокрема, розроблені моделі інтегрують 

в системи моніторингу та комп’ютерно-інтегровані виробничі комплекси. 

Загалом, отримані результати сприяють підвищенню надійності 

експлуатації роторного обладнання, зниженню ризику аварійних відмов та 

використовують як основу для подальшого розвитку інтелектуальних систем 

технічної діагностики в різних галузях промисловості. 
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РОЗДІЛ 1. АНАЛІТИЧНА ЧАСТИНА 

 

1.1 Аналіз сучасних підходів до технічної діагностики обладнання 

 

Технічна діагностика є ключовим елементом забезпечення надійності та 

безпечної експлуатації промислового обладнання. Зі зростанням складності 

машин, інтенсифікацією процесів та зростанням вимог до безперервності 

виробництва актуальним стає застосування методів, здатних своєчасно 

визначати відхилення у роботі технологічних систем. Технічна діагностика 

охоплює комплекс методів, спрямованих на виявлення, оцінювання та 

прогнозування технічного стану елементів машин і агрегатів за допомогою 

аналізу вимірювальних параметрів, таких як вібрації, температура, шум, 

електричні сигнали, тиск або деформації. 

Традиційно діагностика обладнання здійснювалася на основі планового 

технічного обслуговування, коли стан машин оцінювався за регламентними 

інтервалами, незалежно від фактичного рівня зношування. Такий підхід є 

недостатньо ефективним, оскільки не враховує реальний технічний стан 

обладнання та може призводити до надмірного обслуговування або, навпаки, до 

невчасного виявлення дефектів. У відповідь на ці недоліки сформувався підхід 

станом-орієнтованого обслуговування (Condition-Based Maintenance, CBM), 

який передбачає безперервний моніторинг параметрів роботи обладнання та 

виявлення дефектів за фактичними вимірюваннями. 

Одним із найбільш розповсюджених підходів у технічній діагностиці є 

вібраційний аналіз. Він базується на положенні про те, що більшість дефектів 

машинних елементів – підшипників, зубчастих передач, роторів 

супроводжуються змінами амплітудно-частотних характеристик. Вібраційні 

сигнали дозволяють ідентифікувати початкові стадії руйнування, виявити 

характерні частоти дефектів та оцінити їх інтенсивність. Розгорнуте теоретичне 

та практичне обґрунтування методів вібраційної діагностики подане у класичних 

роботах R. B. Randall, де наведено фундаментальні принципи обробки сигналів, 
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фільтрації шумів та інтерпретації діагностичних параметрів [1]. Проксиміті-

датчики (proximity probes) вимірюють відносне переміщення ротора відносно 

корпусу або підшипникового вузла (рис. 1.1). Такий тип вимірювань дозволяє 

зафіксувати орбіту ротора, його зміщення та динамічну нестійкість, що є 

важливими ознаками дефектів роторної системи, таких як розбалансування, 

перекіс або підвищений знос. 

 

Рисунок 1.1 – Сучасний приклад встановлення датчика абсолютної 

вібрації (velocity transducer/accelerometer) на корпусі підшипникового вузла 

електродвигуна [2] 

 

Водночас прискорювачі (accelerometers), які часто називають сейсмічними 

датчиками, реєструють абсолютну вібрацію корпусу обладнання. Це зовсім 

інший тип інформації, адже він характеризує реакцію конструкції в цілому на 

механічні збурення. Важливо усвідомлювати, що відносні та абсолютні 

вимірювання не є еквівалентними - вони відображають різні фізичні процеси та 

можуть не збігатися за характером зміни сигналу. Ці параметри настільки 

відрізняються, що їх можна порівняти з температурою та тиском пари: обидва 

описують її стан, але не є взаємозамінними. Таким чином, поєднання 

абсолютних і відносних методів вимірювання дозволяє отримати комплексне 
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уявлення про динамічну поведінку обертового обладнання та підвищити 

точність технічної діагностики [3-6]. 

Одним із основних інструментів вібраційної діагностики є спектральний 

аналіз (FFT). На відміну від часової форми сигналу, спектр дозволяє виділити 

частотні компоненти, характерні для різних типів дефектів та збурень. Це 

особливо важливо у випадках, коли вібрації утворюються одночасно кількома 

джерелами: механічними (обертання вала, підшипники, дисбаланс) і 

електромагнітними (частота живлення електродвигуна). Як показано на рис. 1.2, 

використання режиму FFT zoom забезпечує підвищену роздільну здатність 

спектра в околі вибраної частоти, що дозволяє чітко відокремити гармоніки 

обертальної частоти валу від гармонік мережевої частоти. Такий підхід є 

важливою складовою сучасних методів діагностики, оскільки забезпечує 

точнішу інтерпретацію спектральних компонентів та сприяє підвищенню 

достовірності оцінювання технічного стану обладнання. 

 

Рисунок 1.2 – Спектральний аналіз вібраційного сигналу індукційного двигуна: 

(a) базовий спектр із виділеною областю для збільшення (zoom band);  

(b) збільшений zoom-спектр, що дозволяє розділити гармоніки обертальної 

частоти валу та частоти живлення [1] 
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До сучасних підходів діагностики також належать методи аналізу струмів 

електродвигунів, термографія, акустична емісія, ультразвукова діагностика, 

спектральний аналіз мастил та візуально-оптичні методи контролю. Кожен із цих 

методів має свої переваги та обмеження, однак загальна тенденція полягає у 

переході до комплексного використання багатьох параметрів. 

Важливою характеристикою сучасного промислового обладнання є 

можливість інтеграції великої кількості сенсорів, здатних формувати потоки 

даних, зокрема, це є передумовами для застосування цифрових двійників, систем 

інтернету речей (IoT) та індустрії 4.0, де технічна діагностика виконується у 

режимі постійного спостереження та аналізу. Одним із ключових напрямів 

розвитку таких систем стає застосування методів машинного навчання. 

У класичних методах діагностики формування діагностичних ознак 

здійснювалося вручну на основі експертного досвіду, що обмежувало 

можливості точного розпізнавання складних або багатокомпонентних сигналів. 

На відміну від цього, методи МН аналізують великі масиви даних, виявляють 

приховані залежності та класифікують технічний стан обладнання за 

комплексними характеристиками. Застосування алгоритмів МН у діагностиці 

дає змогу підвищити точність виявлення дефектів, зменшити час обробки 

сигналів та забезпечити адаптивність системи до змін умов експлуатації [7-8]. 

Особливо перспективними є методи, що поєднують в собі аналіз часових, 

амплітудних, статистичних та спектральних параметрів. Вони дозволяють 

виявляти не тільки явні, а й приховані або низькоамплітудні дефекти, що раніше 

могли залишатися непоміченими. Таким чином, технічна діагностика поступово 

трансформується з експертно-орієнтованої дисципліни у високотехнологічну 

галузь, де пріоритетною є інтеграція методів обробки сигналів та 

інтелектуальних алгоритмів. 

Узагальнюючи, сучасні підходи до технічної діагностики спрямовані на 

підвищення точності, автоматизації та оперативності виявлення технічних станів 

обладнання. Застосування систем машинного навчання дозволяє перейти до 
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якісно нового рівня моніторингу, що поєднує аналіз сенсорних даних, 

моделювання, прогнозування та прийняття рішень у єдиному інтелектуальному 

комплексі. 

 

1.2 Підшипникові вузли як об’єкт моніторингу: типи дефектів та їх 

діагностичні ознаки 

 

Підшипникові вузли є критично важливими елементами роторних машин, 

оскільки забезпечують підтримання валу, передачу крутного моменту та 

зменшення тертя між рухомими поверхнями. Їхній технічний стан безпосередньо 

впливає на надійність, ресурс та енергоефективність обладнання. Через 

циклічний характер навантажень, мікропластичні деформації, забруднення 

мастила та порушення умов експлуатації підшипники схильні до розвитку 

втомних дефектів, які з часом переходять у серйозні пошкодження. Оскільки до 

50 % аварій роторних машин пов’язано саме з підшипниками, вони є 

пріоритетним об’єктом технічної діагностики й автоматичного моніторингу. 

У процесі роботи на доріжках кочення та на тілах кочення виникають 

локальні дефекти - сколи (spalls), раковини, мікротріщини, зони лущення. Як 

показано на рис. 1.3, руйнування з поверхневого етапу переходить у більш 

глибокі дефекти, що призводять до появи ударних імпульсів у вібраційному 

сигналі. Ці імпульси формують модуляційний вібраційний сигнал, характерний 

для підшипникових дефектів. 
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Рисунок 1.3 – Генерація модульованого сигналу при розвитку дефекту 

внутрішнього кільця [1] 

 

Підшипники кочення є складними механічними системами, у яких 

елементи контактують під значними радіальними та осьовими навантаженнями. 

У процесі тривалої експлуатації на поверхнях доріжок кочення та тіл кочення 

виникають втомні дефекти, забруднення, порушення геометрії, що призводить 

до появи ударних вібраційних компонентів у сигналі. Виявлення цих дефектів 

ґрунтується на аналізі комбінації часових, спектральних та модуляційних ознак, 

а також характерних діагностичних частот (BPFI, BPFO, BSF, FTF). 

Нижче розглянуто чотири класи станів, які є базовими для задач 

вібраційної діагностики та класифікації за допомогою методів машинного 

навчання (рис.1.4). 

 

 

Рисунок 1.4 – Типи дефектів підшипникового вузла: (a) Ball Fault, (b) 

Outer Race Fault, (c) Inner Race Fault, (d) Cage Fault [7] 
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1. Нормальний стан (Normal Condition) 

У нормальному стані геометрія всіх елементів підшипника відповідає 

заводським параметрам, мастильний прошарок розподілений рівномірно, а 

контакт між тілами кочення та доріжками кочення є плавним і стабільним. 

Ознаки нормального стану у часовій області: 

- сигнал має низьку амплітуду й є близьким до гармонічного; 

- відсутні ударні імпульси; 

- значення RMS, Peak-to-Peak, Crest Factor перебувають у допустимих 

межах. 

Ознаки у спектральній області: 

- спектр містить низькочастотну складову, пов’язану з обертанням валу; 

- відсутні частоти дефектів (BPFO, BPFI, BSF); 

- - рівномірний розподіл енергії без різких піків. 

Нормальний стан використовується як базова категорія для навчання 

моделей машинного навчання, оскільки дозволяє точно відділити дефекти навіть 

початкової стадії. 

2. Дефект тіла кочення (Ball Fault, BF) 

Тіла кочення (кульки або ролики) зазнають локальних пошкоджень у 

вигляді сколів або втомних тріщин. На відміну від доріжок кочення, тіло кочення 

обертається навколо своєї осі, тому пошкоджена зона контактує з різними 

сегментами доріжок, що створює неперіодичний характер імпульсів. Фізична 

природа сигналу: 

- кулька здійснює як обертання навколо своєї осі, так і рух по доріжці; 

- дефектна зона вступає у контакт під різними кутами, що створює ударні 

імпульси зі змінною періодичністю; 

- вібрація модулюється через ковзання тіла кочення. 

Ознаки в часовій області: 

- імпульси нерівномірні за інтервалом. 

- спостерігається періодична зміна амплітуди (модуляція); 
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- підвищене значення Crest Factor, Kurtosis. 

Спектральні ознаки: 

- поява енергії на частоті BSF (Ball Spin Frequency); 

- наявні бічні смуги навколо гармонік BSF; 

- часто домінує високочастотна складова. 

Неперіодичність імпульсів робить BF складнішим для класифікації, однак 

спектральні особливості дозволяють досягати високої точності після envelope-

аналізу. 

3. Дефект зовнішнього кільця (Outer Race Fault, ORF) 

Оскільки зовнішнє кільце є нерухомим, дефект розташований у фіксованій 

точці відносно корпусу. Кожне проходження тіла кочення через дефект генерує 

удар, що робить сигнал строго періодичним. Фізична природа сигналу: 

- імпульси виникають з постійним інтервалом, коли кулька “натрапляє” 

на дефект; 

- дефект не зміщується, тому частотні компоненти стабільні. 

Часові ознаки: 

- чіткі, періодично повторювані імпульси; 

- амплітуда імпульсів стабільна; 

- RMS може зростати повільно на початковій стадії. 

Спектральні ознаки: 

- яскраво виражений пік на Ball Pass Frequency Outer; 

- гармоніки BPFO (2×, 3×…); 

- вузькі смуги та низький рівень частотного дрейфу. 

ORF вважається одним із “найлегших” дефектів для розпізнавання 

методами машинного навчання, оскільки формує стабільний частотний патерн. 

4. Дефект внутрішнього кільця (Inner Race Fault, IRF) 

На відміну від зовнішнього кільця, внутрішнє кільце обертається разом із 

валом. Це означає, що локальний дефект “рухається” під тілами кочення, 

утворюючи більш складний ударний характер. Фізична природа сигналу: 
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- дефект з’являється під кульками під час обертання; 

- генерується модуляція частотами обертання валу; 

- імпульси можуть накладатися на нерівномірний розподіл 

навантаження. 

Часові ознаки: 

- імпульси повторюються частіше, ніж у ORF; 

- амплітуда імпульсів змінюється залежно від розподілу навантаження. 

Спектральні ознаки: 

- піки на частоті Ball Pass Frequency Inner; 

- бічні смуги довкола шпиндельної частоти (shaft frequency); 

- зміщення енергії у середньовисокі частоти. 

IRF часто складніший для виявлення на ранніх етапах, оскільки його 

ознаки маскуються шумом або іншими збуреннями вала. 

ML-моделі демонструють найкращі результати при використанні 

спектральних ознак + envelope-аналітики. 

5. Дефект сепаратора (Cage Fault) 

Хоча дефекти сепаратора зустрічаються рідше, вони можуть викликати 

значні зміни у динаміці підшипника. Ознаки: 

- поява низькочастотних компонент на Fundamental Train Frequency; 

- розбалансована поведінка кульок; 

- ускладнення картини спектру через хаотичні модуляції. 

Розуміння механізмів формування сигналів дозволяє: 

- правильно вибрати ознаки (features); 

- формувати збалансовані набори даних; 

- оптимально поєднувати часові та спектральні параметри; 

- підвищити точність класифікації; 

- інтерпретувати роботу моделі. 
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Дефекти ORF та IRF формують чіткі патерни, що спрощує їх 

розпізнавання, тоді як BF та Cage Fault вимагають складніших методів обробки 

(envelope, wavelet, циклічний спектр). 

В умовах промислової експлуатації підшипники зазнають різних режимів 

навантажень: ударних, циклічних, нерівномірних, теплових та динамічних. 

Унаслідок цього на їхніх елементах виникають реальні пошкодження, які мають 

складну фізичну природу та різноманітні форми прояву. Саме реальні дефекти, 

а не ідеалізовані моделі, визначають поведінку підшипникового вузла й 

формують характерні вібраційні сигнали. 

Для побудови ефективних автоматизованих систем діагностики важливо 

розуміти, як саме виглядають ці дефекти, у яких умовах вони виникають та які 

ознаки проявляються у виміряних сигналах. Нижче наведено опис реальних 

дефектів, які фіксуються у лабораторних та промислових умовах, з прикладами 

з найбільш авторитетних експериментальних баз даних (CWRU, PRONOSTIA, 

NASA (IMS)). 

CWRU [7] є найпопулярнішою експериментальною базою у світі для 

досліджень машинного навчання в діагностиці підшипників. Вона містить сотні 

записів вібраційних сигналів для чотирьох станів: Normal (нормальний стан), 

Outer Race Fault (ORF), Inner Race Fault (IRF), Ball Fault (BF). У лабораторії 

підшипники штучно модифікували за допомогою електроерозійної обробки 

(EDM) для формування контрольованих дефектів. Таким чином забезпечувалася 

повторюваність і порівнюваність експериментів. На рис. 1.5 наведено фотографії 

чотирьох станів підшипника з набору CWRU (Case Western Reserve University). 
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Рисунок 1.5 – Фотографії підшипників з дефектами (CWRU Dataset) [9] 

 

Загалом, реальні дефекти підшипників мають складну фізичну природу, 

відрізняються формою прояву та створюють у вібраційних сигналах характерні, 

але часто зашумлені та модуляційні структури. Аналіз реальних пошкоджень з 

баз даних CWRU, PRONOSTIA, IMS демонструє важливість урахування 

реальних умов експлуатації під час побудови автоматизованих систем 

класифікації стану підшипникових вузлів. Саме реалістичність сигналів та 

багатоваріантність їх проявів є ключовими факторами успіху моделей 

машинного навчання, що використовуються у технічній діагностиці. 

 

1.3 Сенсори, датчики та контролери для моніторингу підшипникових вузлів 

 

Ефективність системи технічної діагностики значною мірою залежить від 

точності та повноти збирання інформації про роботу обладнання. Вирішальну 

роль у цьому відіграють вимірювальні сенсори, модулі збору даних (DAQ) та 

промислові контролери, які забезпечують реєстрацію, первинну обробку та 

передачу сигналів. У випадку підшипникових вузлів вимірювальна система 

повинна характеризуватися високою чутливістю, достатньою частотою 

дискретизації та стійкістю до промислових завад, оскільки дефекти часто 
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проявляються у вигляді короткотривалих імпульсів та високочастотних 

компонент. 

Моніторинг стану підшипників неможливий без застосування 

спеціалізованих сенсорних систем, здатних реєструвати зміни фізичних 

параметрів, що виникають унаслідок зношування, ударних процесів або 

погіршення мастил. Сучасні технології контролю базуються на високоточних 

датчиках, які забезпечують вимірювання вібрації, температури, акустичної 

емісії, тиску та електричних характеристик приводу. У поєднанні з цифровими 

контролерами та системами збору даних ці сенсори формують комплексну 

інфраструктуру для автоматизованої діагностики. 

Датчики та сенсори є ключовими елементами автоматизованих систем 

моніторингу, оскільки саме вони забезпечують оперативний збір даних про 

параметри технологічного процесу. До основних вимірювальних параметрів 

належать температура, тиск, вібрація, швидкість обертання, деформації та 

акустичні сигнали. Отримана сенсорна інформація дозволяє в режимі реального 

часу оцінювати технічний стан обладнання, своєчасно виявляти відхилення від 

нормальної роботи та формувати основу для діагностики можливих дефектів. 

Інтеграція таких датчиків у автоматизовані системи керування забезпечує 

підвищення точності контролю, оперативність реагування та можливість 

застосування методів МН для інтелектуальної обробки даних. 

У даному підрозділі розглядаються основні типи сенсорів, що 

використовуються для діагностики підшипникових вузлів, а також архітектура 

апаратних рішень для їх інтеграції у сучасні комп’ютерно-інтегровані виробничі 

системи. 

1. Акселерометри — ключовий інструмент для діагностики підшипників 

Акселерометри є основним типом датчиків, що застосовуються у 

вібраційному моніторингу. 

Вони перетворюють прискорення вібрацій у електричний сигнал, який 

відображає зміну механічної енергії під час контакту тіл кочення з дефектами. 
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1.1 П’єзоелектричні акселерометри (Piezoelectric Accelerometers) - це 

стандарт де-факто у діагностиці підшипників (рис.1.6). 

 

 

 

Рисунок 1.6 – П’єзоелектричний акселерометр Brüel & Kjær типу 4524-B, 

призначений для високоточних вимірювань вібрації у діапазонах, 

характерних для дефектів підшипників. 

 

Переваги: 

- висока чутливість у діапазоні від 0.1 до 20–40 кГц; 

- низький рівень шуму; 

- стійкість до промислових умов (температура, волога, електричні 

завади);  

- здатність реєструвати ударні імпульси — ключову ознаку дефектів. 

Типовими виробниками є Brüel & Kjær, PCB Piezotronics, SKF CMAS. 

Найважливіший параметр: частота дискретизації. Для підшипників 
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рекомендується 25–50 кГц, а для високошвидкісних машин - до 200 кГц, щоб 

уловлювати високочастотні модульовані компоненти та резонансні піки. 

2. Проксиміті-датчики (Eddy Current Probes) 

Проксиміті-датчики вимірюють відносне переміщення валу відносно 

корпусу, на відміну від акселерометрів, що вимірюють абсолютне прискорення. 

Вони особливо важливі у роторних системах, тому що дозволяють: 

- вимірювати орбіту ротора; 

- реєструвати неврівноваженість, викривлення, радіальний биєння; 

- фіксувати зміщення через зношення підшипників. 

Датчик створює високочастотне електромагнітне поле, і відстань до валу 

визначається за зміною вихідного струму (рис.1.7). 

Перевагами є: 

- висока точність на низьких частотах; 

- можливість працювати в умовах високих температур; 

- не залежить від стану корпусу. 

Недоліком є обмежена чутливість до високочастотних імпульсів, тобто, не 

ідеальний для раннього виявлення дефектів підшипника, але критично важливий 

для діагностики ротора. 
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Рисунок 1.7 – Проксиміті-датчик Bently Nevada серії 3300 XL для 

вимірювання відносного переміщення ротора відносно підшипникового 

корпуса 

 

3. Датчики ультразвукової емісії (Ultrasonic AE Sensors) 

Ультразвукові датчики реєструють elastic waves, що виникають під час 

мікроруйнування матеріалу. Вони фіксують не вібрацію валу чи корпусу, а 

акустичні імпульси від зародження тріщин. 

Застосування: 

- раннє виявлення дефектів (incipient faults); 

- особливо актуальні для мастильної деградації та початкового 

лущення доріжок кочення. 

Типи сигналів: 

- частоти 20–300 кГц; 

- короткотривалі імпульси високої енергії. 
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Ультразвук часто застосовують у поєднанні з вібраційним аналізом для 

підвищення точності діагностики. 

  

Рисунок 1.8 – Датчики ультразвукової емісії (Acoustic Emission Sensors) 

 

4. Температурні датчики (RTD, термопари) 

Температура є непрямим індикатором технічного стану підшипника, 

підвищення температури може вказувати на: 

- зниження якості мастила; 

- надмірне навантаження; 

- початкову стадію дефектів доріжок кочення; 

- внутрішнє тертя у сепараторі. 

Хоча температурні датчики не дають чіткої інформації про тип дефекту, 

вони важливі для комбінованих систем моніторингу, що використовують методи 

машинного навчання з багатьма вхідними ознаками (рис.1.9). 
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Рисунок 1.9 – Температурні датчики 

 

5. Апаратні засоби збору даних (DAQ) для підшипникової діагностики 

Застосовуються для реєстрації сигналів з датчиків, їх цифрової обробки та 

передавання у SCADA/PLC/IoT-системи. У комп’ютерно-інтегрованих системах 

використовуються такі типи DAQ-рішень: 

5.1 Промислові системи National Instruments (NI CompactDAQ, NI 

CompactRIO) (рис.1.10). 

 

 

 

  

Рисунок 1.10 – NI CompactDAQ / NI CompactRIO - промислові DAQ-

контролери 
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Переваги: 

- висока частота дискретизації (до MHz); 

- модульність (під різні типи датчиків); 

- інтеграція з LabVIEW, Python, MATLAB. 

5.2 ПЛК-контролери Siemens, Schneider, Omron (рис.1.11) забезпечують: 

- збір сигналів від акселерометрів (через відповідні модулі); 

- обробку сигналів (RMS, crest factor); 

- передавання у SCADA (WinCC, Wonderware, Ignition). 

  

 

Рисунок 1.11 – Siemens S7-1200 / S7-1500 + модулі аналогових входів 

SM1231AI 

 

Такі контролери є основою автоматизованих систем на підприємствах та є 

типовим рішенням для інтеграції моніторингу з SCADA та системами керування 

технологічними процесами 

5.3 Raspberry Pi + акселерометри ADXL355/ADXL345 
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Це бюджетні, компактні IoT-рішення для локального моніторингу 

(рис.1.12). Тобто, застосовуються у IoT-моніторингу, навчанні, low-cost 

рішеннях. Перевагами є: 

- доступність; 

- низьке енергоспоживання; 

- можливість інтеграції у мережі Industry 4.0. 

Найважливіша характеристика: 

- не така висока точність, як у п’єзоелектричних датчиків, але достатня 

для навчальних стендів і базових задач моніторингу. 

 

 

 

 

 

Рисунок 1.12 – Raspberry Pi + цифрові акселерометри (ADXL355, ADXL345) 

 

5.4 Arduino + MPU6050 / ADXL335 
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Використовуються у навчальних стендах та лабораторних роботах 

(рис.1.13). 

Застосовується у: 

- університетських лабораторіях; 

- демонстраційних установках; 

- навчальних проєктах. 

 

 

 

 

Рисунок 1.13 – Arduino + MPU6050 / ADXL335 

 

Нижча точність компенсується простотою і наочністю. 

Отже, сенсорні системи та промислові контролери є ключовими 

складовими автоматизованого моніторингу підшипникових вузлів. 

Акселерометри залишаються найбільш інформативними датчиками для 

діагностики дефектів, тоді як проксиміті-датчики, ультразвукові сенсори та 

температурні датчики забезпечують додаткові канали інформації. 

Інтеграція цих датчиків із системами DAQ, ПЛК-контролерами та 

платформами SCADA створює основу для впровадження систем МН, котрі 

здатні класифікувати технічний стан обладнання з високою точністю. 
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1.4  Огляд методів МН для класифікації технічного стану обладнання 

  

Сучасний розвиток автоматизованих систем моніторингу стану 

обладнання супроводжується інтенсивним впровадженням методів машинного 

навчання, які забезпечують високу точність та надійність діагностичних рішень. 

На відміну від традиційних алгоритмів, що ґрунтуються на ручному виборі 

порогів або експертних правил, методи машинного навчання здатні автоматично 

аналізувати багатовимірні простори ознак, виявляти приховані закономірності та 

формувати узагальнені моделі для класифікації технічного стану обладнання. Це 

особливо актуально для складних об’єктів, таких як підшипникові вузли, де 

вібраційні сигнали відзначаються нелінійністю, нестабільністю та високою 

варіабельністю. 

Різні методи машинного навчання мають свої переваги, обмеження та 

сфери застосування. Нижче розглянуто найбільш поширені алгоритми, що 

успішно використовуються для класифікації технічного стану обладнання на 

основі вібраційних, температурних, акустичних та комбінованих сигналів. 

Алгоритм k-NN є одним із найпростіших, проте ефективних методів 

класифікації. Його сутність полягає у визначенні класу нового об’єкта за класами 

найближчих сусідів у просторі ознак [10]. У задачах технічної діагностики він 

забезпечує високі результати за умови якісної нормалізації ознак та достатнього 

обсягу даних. Перевагами k-NN є інтуїтивна зрозумілість, відсутність етапу 

тренування та гнучкість при додаванні нових даних. Тоді як недоліками 

чутливість до розмірності простору, велика обчислювальна складність для 

великих вибірок та залежність від масштабування ознак. 

У контексті діагностики підшипників k-NN часто застосовується для 

класифікації станів за часовими або статистичними ознаками, такими як RMS, 

crest factor, skewness, kurtosis. 

Метод опорно-векторних машин є одним з найпоширеніших інструментів 

класифікації технічного стану завдяки здатності ефективно працювати із 
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нелінійно роздільними даними [11]. Модель будує оптимальну гіперплощину, 

що максимізує відстань між класами. Використання ядрових функцій 

(радіальної, поліноміальної, сигмоїдальної) дозволяє відображати дані у простір 

вищої розмірності, де вони стають лінійно роздільними. Перевагами SVM є 

висока точність класифікації, стійкість до перенавчання та ефективність на 

малих вибірках. Тоді як недоліками складність налаштування гіперпараметрів 

(C, gamma) та висока обчислювальна складність для великих наборів даних. 

У вібраційній діагностиці SVM проявляє себе особливо добре при роботі 

зі спектральними ознаками та ознаками високого рівня, отриманими після 

обробки сигналу (envelope spectrum, cepstrum, wavelet-функції). 

Випадковий ліс є ансамблевим методом, що поєднує велику кількість дерев 

рішень, зменшуючи варіативність і підвищуючи точність класифікації [12]. 

Алгоритм добре працює на шумних, нелінійних, багатовимірних та 

неоднорідних даних. Перевагами є висока точність та стійкість до шумів, висока 

інтерпретованість результатів, оцінка важливості ознак (feature importance) та 

хороша узагальнювальна здатність. А недоліками є потенційне переобчислення 

при великій кількості дерев та обмеженість у моделюванні дуже складних 

нелінійностей порівняно з нейромережами. 

У задачах моніторингу підшипників Random Forest часто демонструє 

точність 92–98 %, особливо при використанні наборів ознак, що поєднують 

часові, статистичні та частотні характеристики. 

Boosting-методи будують модель шляхом послідовного додавання слабких 

учнів, які покращують помилки попередніх. XGBoost і LightGBM є потужними 

реалізаціями бустингу, що широко застосовуються в інженерних задачах. 

Перевагами є найкращі результати на табличних даних, стійкість до 

незбалансованих класів, можливість моделювання складних нелінійностей та 

висока продуктивність і гнучкість. У той час недоліками є значна кількість 

гіперпараметрів та ризик перенавчання при неправильному налаштуванні [13-

14]. 
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Для класифікації станів підшипників XGBoost часто перевершує Random 

Forest, особливо при великій кількості ознак (20–50). 

Класичні нейронні мережі (MLP) використовуються для аналізу складних 

залежностей між ознаками [15]. Вони добре підходять для задач класифікації за 

розширеним набором параметрів. Перевагами є здатність моделювати складні 

нелінійні взаємозв’язки, можливість роботи з великим набором ознак та хороша 

точність у задачах з достатнім обсягом даних. Тоді як недоліками є ризик 

перенавчання та висока залежність від правильного підбору структури. 

У задачах класифікації підшипників NN часто досягають точності >95%, 

особливо у комбінації з оптимізаторами Adam та функцією активації ReLU. 

Загалом, методи МН забезпечують високу ефективність при класифікації 

технічного стану обладнання. Для задачі діагностики підшипникових вузлів 

найбільш результативними є алгоритми ансамблевого навчання та нейронні 

мережі, які дозволяють досягати точності понад 95–99 %. Вибір методу залежить 

від обсягу даних, доступних обчислювальних ресурсів та вимог до моделі [16-

20]. 

 

1.5  Аналіз існуючих систем автоматизованої діагностики та їх недоліків 

  

Автоматизовані системи технічної діагностики займають ключове місце в 

сучасному промисловому виробництві, оскільки забезпечують безперервне 

спостереження за станом устаткування, раннє виявлення відхилень та 

прогнозування відмов. В останні десятиліття на ринку з'явилася велика кількість 

апаратно-програмних систем, що реалізують функції моніторингу вібрацій, 

температури, акустичної емісії, електричних параметрів та інших фізичних 

величин. Попри значний прогрес у розвитку сенсорних технологій та 

обчислювальних платформ, більшість існуючих систем має суттєві обмеження, 

що знижують ефективність діагностики складних об’єктів, таких як 

підшипникові вузли і роторні механізми. 
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Промисловими системами автоматизованої діагностики є: 

1) SKF, Schaeffler, NSK – інтегровані рішення для моніторингу 

підшипників. Ці виробники пропонують системи на основі: 

- вібраційних сенсорів (акселерометри, сейсмічні датчики); 

- датчиків температури та мастильного матеріалу; 

- програмних платформ для аналізу спектральних характеристик; 

- засобів предиктивної аналітики. 

Системи добре підходять для моніторингу великих підшипників агрегатів, 

турбін, вентиляторів та насосів. Однак аналіз здебільшого обмежується 

правилами (rule-based) та пороговими значеннями (threshold-based), що знижує 

адаптивність до змін умов експлуатації. 

2) Brüel & Kjær (B&K), Bently Nevada (GE) – високоточні системи роторної 

діагностики. Вони пропонують: 

- проксиміті-датчики для вимірювання відносної вібрації ротора; 

- високоточні акселерометри та давачі швидкості; 

- контролери 3500/3701 та інші системи захисту машин; 

- програмні комплекси для аналізу орбіт, спектрів, Bode/Nyquist та ін. 

Ці системи широко використовуються в енергетиці та нафтовій 

промисловості, однак потребують значних фінансових вкладень, а діагностика 

здебільшого спирається на класичні методи без гнучких алгоритмів навчання. 

3) Siemens, Emerson, Honeywell – системи моніторингу на базі 

SCADA/PLC. Такі рішення орієнтовані на: 

- інтеграцію датчиків у технологічні процеси; 

- збір потокових даних у реальному часі; 

- виявлення аварійних ситуацій. 

Проте алгоритми в таких системах обмежені простими логічними 

правилами, а глибокий аналіз стану потребує додаткового підключення 

сторонніх інструментів. 
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4) ПЗ для діагностики: NI LabVIEW, MATLAB, Python-бібліотеки. Це 

універсальні платформи, що забезпечують: 

- збір вібраційних даних (DAQ); 

- спектральний аналіз (FFT, STFT, wavelets); 

- обробку сигналів; 

- можливість реалізації моделей МН. 

Такі інструменти є дуже потужними, вимагають ручного налаштування та 

кваліфікації спеціаліста, а готові рішення для автоматизованої класифікації є 

обмеженими. Основними недоліками існуючих систем автоматизованої 

діагностики є: 

1) Залежність від експертних правил і порогів. Більшість промислових 

систем використовує традиційний підхід, де діагностичні рішення приймаються 

на основі: 

- граничних значень RMS; 

- пікових амплітуд; 

- правил типу “якщо crest factor > X, то дефект Y”. 

Недоліки: 

- немає адаптації до зміни умов експлуатації; 

- система не навчається; 

- низька чутливість до ранніх дефектів; 

- не враховує складні нелінійні взаємозв’язки. 

2) Обмеженість у роботі з багатовимірними та високочастотними 

сигналами. Сучасні підшипники генерують: 

- високочастотні імпульси; 

- складні спектральні структури; 

- модульовані сигнали; 

- сильний шум. 

Класичні методи аналізу часто не здатні відокремити інформативні 

компоненти від шуму без глибокої ручної обробки. 
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3) Висока вартість професійних систем. Системи Bently Nevada, SKF чи 

Brüel & Kjær можуть коштувати десятки тисяч доларів. 

Недоліки: 

- недоступність для малих підприємств; 

- обмежена масштабованість; 

- складність модернізації чи кастомізації. 

4) Фрагментованість підходів. Багато систем орієнтовані лише на один тип 

сигналу: 

- тільки вібрація; 

- тільки температура 

- тільки акустика. 

Такий підхід призводить до неповної картини стану обладнання, оскільки 

дефекти проявляються комплексно. 

5) Відсутність гнучкої інтеграції з машинним навчанням. 

Хоча деякі сучасні системи містять базові алгоритми аналітики, реальне 

навчання моделей (ML/CNN/LSTM) зазвичай відсутнє. 

Недоліки: 

- моделі не оновлюються з часом; 

- немає самоадаптації; 

- складно впроваджувати кастомні рішення. 

6) Низька здатність виявляти ранні дефекти. Класичні методи добре 

працюють на зрілих, а не початкових дефектах. 

Ранні стадії пошкоджень підшипника формують малопомітні 

високочастотні компоненти, які: 

- слабко виділяються у класичному спектрі; 

- потребують envelope-аналізу або wavelet-методів; 

- часто губляться через шум обладнання. 

7) Обмежена інтерпретованість у складних системах. У 

багатокомпонентних машинах (насосних агрегатах, турбінах) джерела вібрацій: 
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- накладаються; 

- взаємодіють; 

- формують складну картину спектрів. 

Багато систем не можуть розділяти внески окремих компонентів (вал, 

підшипники, редуктор, електродвигун). 

Узагальнення та потреба в удосконалених системах діагностики показує, 

що навіть найсучасніші промислові системи мають значні обмеження, які 

знижують ефективність контролю технічного стану обладнання. Серед 

ключових потреб виділяють: 

- автоматизоване та адаптивне виявлення дефектів без втручання експерта; 

- застосування моделей МН для роботи зі складними вібраційними 

сигналами; 

- можливість класифікації багатьох станів підшипника (Normal, IRF, ORF, 

BF); 

- інтеграція з DAQ-системами, SCADA та хмарними платформами; 

- здатність до самооновлення і самонавчання; 

- доступність і масштабованість рішень. 

У зв’язку з цим актуальним постає розроблення автоматизованої системи 

класифікації технічного стану обладнання на основі методів МН, що дозволяє: 

- підвищити точність визначення дефектів; 

- виявляти ранні стадії поломок; 

- зменшити потребу в експертних налаштуваннях; 

- забезпечити самонавчання системи на нових даних; 

- скоротити затрати на обслуговування. 

Аналіз існуючих промислових систем автоматизованої діагностики 

показав, що попри значний прогрес у розвитку сенсорних технологій, засобів 

збору даних та аналітичних платформ, більшість сучасних рішень залишаються 

обмеженими у своїх функціональних можливостях. Поширені системи 

здебільшого орієнтовані на пороговий або експертно-орієнтований аналіз, що не 
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дозволяє ефективно виявляти ранні стадії дефектів та адаптуватися до змін умов 

експлуатації. Також характерними недоліками є висока вартість обладнання, 

відсутність гнучкої інтеграції методів МН, недостатня інформативність при 

роботі з багатокомпонентними вібраційними сигналами та обмежені можливості 

масштабування. Сукупність цих факторів обумовлює потребу у розробленні 

нових автоматизованих систем, здатних забезпечити інтелектуальну обробку 

даних, автоматичну класифікацію станів обладнання та більш точне виявлення 

дефектів підшипникових вузлів. У цьому контексті застосування методів МН 

відкриває перспективи для створення діагностичних рішень нового покоління. 
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РОЗДІЛ 2. ТЕХНОЛОГІЧНА ЧАСТИНА 

 

2.1 Характеристика вібраційних сигналів та вибір інформаційних 

параметрів 

 

Вібраційні сигнали є основним джерелом інформації для діагностики стану 

підшипникових вузлів та інших елементів роторних систем. Їх фізична природа 

визначається складною сукупністю механічних процесів, котрі виникають під 

час роботи обладнання, а саме, контактними взаємодіями тіл кочення з 

доріжками, зміною навантаження, мікроударними явищами, тертям, 

дисбалансом, розцентруванням та електромагнітними впливами приводу. 

Унаслідок цього вібраційний сигнал має широкосмуговий, нелінійний та 

нестаціонарний характер, що ускладнює його обробку традиційними методами, 

але робить інформативним для алгоритмів МН. 

Вібраційний сигнал підшипника складається з кількох компонентів: 

- низькочастотної складової, що відображає загальну кінематику системи 

(обертання валу, дисбаланс, розцентрування); 

- гармонічних складових, пов’язаних із частотами обертання валу та 

геометричними періодичностями; 

- ударних імпульсів, що виникають унаслідок локальних дефектів — сколів, 

тріщин або піттінгу; 

- високочастотної шумової компоненти, яка є результатом взаємодії 

контактних поверхонь та трибологічних ефектів; 

- модульованих сигналів, що утворюються внаслідок зміни навантаження 

при проходженні дефекту через зону контакту. 

Для підшипникових вузлів найбільш характерними є імпульсні та 

модульовані структури сигналу, амплітуда та частота яких змінюються 

пропорційно глибині та типу дефекту (внутрішнє кільце, зовнішнє кільце, тіло 

кочення). Важливо, що ранні дефекти, на відміну від зрілих, проявляються у 

вигляді слабких високочастотних імпульсів, які добре виявляються після 
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застосування envelope-аналізу, детектування огинаючої або wavelet-

преобразувань. 

Для формування вхідних даних машинного навчання необхідно здійснити 

попередній вибір інформативних параметрів (feature extraction). Такий підхід 

дозволяє зменшити розмірність простору ознак, виділити суттєві характеристики 

та забезпечити стійкість класифікації до шумів та артефактів. Виділяють три 

основні групи інформаційних параметрів: 

1. Часові (статистичні) параметри. Ці ознаки описують загальну форму 

сигналу та інтенсивність коливань. Основні показники включають: 

- середнє значення (Mean) – характеризує постійну складову сигналу та 

використовується для контролю зсуву нульового рівня; 

- середньоквадратичне значення (RMS) – інтегральний показник енергії 

вібрації, що широко застосовується як загальний індикатор стану 

обладнання; 

- стандартне відхилення (STD) – міра розсіювання значень сигналу відносно 

середнього; 

- дисперсія (Variance) – відображає інтенсивність коливань; 

- коефіцієнт асиметрії (Skewness) – дозволяє виявляти перекоси розподілу 

амплітуд, характерні для дефектних режимів; 

- коефіцієнт ексцесу (Kurtosis) – один із найбільш інформативних 

параметрів для діагностики підшипників, чутливий до наявності ударних 

імпульсів та локальних пошкоджень; 

Статистичні параметри описують розподіл амплітуд сигналу в часовій 

області та є базовими індикаторами технічного стану підшипникового вузла. 

Вони відзначаються простотою обчислення та високою стійкістю до шумів. 

2. Амплітудні ознаки. Дозволяють кількісно оцінити пікові та імпульсні 

прояви вібрацій, що є типовими для дефектів підшипникових вузлів. Вони 

особливо корисні для виявлення ранніх стадій пошкоджень. До цієї групи 

належать: 
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- максимальне та мінімальне значення сигналу (Max, Min); 

- Peak-to-Peak – різниця між максимальним та мінімальним значенням, що 

характеризує розмах коливань; 

- Crest Factor – відношення пікового значення до RMS, чутливий до 

поодиноких імпульсів; 

- Impulse Factor – відношення пікового значення до середнього модуля 

сигналу; 

- Shape Factor – співвідношення RMS та середнього модуля сигналу; 

- Clearance Factor – використовується для виявлення дефектів з високою 

імпульсністю. 

Амплітудні параметри ефективно доповнюють статистичні ознаки, 

оскільки дозволяють відрізняти дефекти з різною інтенсивністю ударних 

процесів.  

3. Частотні характеристики (FFT-параметри). Аналіз спектра дозволяє 

виділити: 

- гармоніки частоти обертання валу та їх кратні; 

- характерні частоти дефектів підшипника (BPFO, BPFI, BSF, FTF); 

- енергетичні компоненти у високочастотному діапазоні; 

- пікові значення та амплітуди в окремих частотних смугах; 

- відношення енергії корисного сигналу до шуму. 

Застосування zoom FFT підвищує роздільну здатність у вузьких 

діапазонах, де проявляються низькоамплітудні дефекти. Частотні ознаки є 

критично важливими для класифікації станів підшипників, оскільки кожен тип 

дефекту має унікальний спектральний відбиток. 

4. Ознаки огинаючої (Envelope Features). Для підшипників найбільш 

інформативними є параметри, отримані після: 

- демодуляції сигналу; 

- детектування огинаючої; 

- застосування фільтрації високих частот. 
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У спектрі огинаючої легко виділяються характерні частоти дефектів: 

- BPFO - дефект зовнішнього кільця; 

- BPFI - дефект внутрішнього кільця; 

- BSF - дефект тіла кочення; 

- FTF - дефект сепаратора. 

Саме envelope spectrum найчастіше використовується у машинному 

навчанні, оскільки він демонструє чіткі регулярні структури, придатні для 

класифікації. 

У цій роботі для формування входів моделей машинного навчання 

використовуються: 

- статистичні характеристики (RMS, STD, kurtosis, skewness); 

- амплітудні характеристики (peak, crest factor, impulse factor); 

- енергетичні компоненти спектра; 

- параметри спектра огинаючої; 

- домінантні частоти та їх кратні; 

- інтегральні та індексні ознаки (Vibration severity index, Energy index). 

Такий вибір забезпечує високу інформативність та чутливість до дефектів, 

збереження мінімально достатньої кількості ознак, адаптивність моделей до 

різних умов експлуатації, стійкість до шумів, властивих реальним 

вимірюванням. 

Такий комплексний підхід до виділення інформаційних параметрів 

вібраційного сигналу є важливим для побудови ефективної системи класифікації 

стану підшипникових вузлів. Поєднання часових, частотних та демодульованих 

характеристик дозволяє отримати всебічне уявлення про фізичні процеси 

всередині механізму та забезпечує високу точність алгоритмів МН. Відібраний 

набір ознак формує оптимальний базис для подальшого моделювання, 

тренування та тестування класифікаційних моделей. 
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2.2 Формування набору даних: джерела, попередня обробка та сегментація 

сигналів 

 

У даній роботі формування даних здійснюється на основі 

експериментальних вібраційних сигналів, отриманих з відкритих та 

загальновизнаних джерел, що широко використовуються у наукових 

дослідженнях з діагностики підшипників. Основним джерелом є база даних 

CWRU Bearing Data Center, котра містить вібраційні сигнали для різних режимів 

роботи та станів підшипникових вузлів. База CWRU включає записи для 

чотирьох технічних станів підшипника: 

- нормальний стан (Normal); 

- дефект внутрішнього кільця (Inner Race Fault, IRF); 

- дефект зовнішнього кільця (Outer Race Fault, ORF); 

- дефект тіла кочення (Ball Fault, BF). 

Сигнали зібрані з використанням п’єзоелектричних акселерометрів при 

різних швидкостях обертання та навантаженнях, що забезпечує достатню 

варіативність даних. Використання стандартизованої та добре документованої 

бази дозволяє забезпечити відтворюваність результатів і коректне порівняння з 

іншими дослідженнями. 

Перед формуванням ознак та навчанням моделей машинного навчання 

вібраційні сигнали проходять етап попередньої обробки, метою якої є усунення 

завад, нормалізація даних та підвищення інформативності сигналів. 

Основні етапи preprocessing включають: 

- видалення постійної складової (DC offset), тобто, дійснюється шляхом 

віднімання середнього значення сигналу для уникнення спотворень у 

спектральному аналізі; 

- фільтрація сигналів, а саме, застосовуються смугові або високочастотні 

фільтри для виділення діапазонів, у яких проявляються дефекти 
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підшипників. Це дозволяє зменшити вплив низькочастотних коливань, 

пов’язаних з дисбалансом або перекосом валу; 

- нормалізація та масштабування, зокрема, для забезпечення коректної 

роботи алгоритмів МН сигнали або виділені ознаки приводяться до 

єдиного масштабу, наприклад, за допомогою стандартної нормалізації (z-

score) або мін–макс масштабування; 

- усунення шумів та артефактів, тобто, використовуються методи 

згладжування, віконні функції та фільтрація для зменшення впливу 

випадкових завад та перешкод вимірювання; 

- реалізація цих процедур дозволяє отримати стабільні та однорідні сигнали, 

придатні для подальшої сегментації та виділення ознак. 

Оскільки вібраційні сигнали мають значну тривалість і є нестаціонарними, 

для формування навчальних прикладів застосовується сегментація сигналів на 

часові вікна. Такий підхід дозволяє збільшити кількість навчальних зразків і 

локалізувати характерні особливості сигналу. Процедура сегментації включає: 

- вибір довжини вікна (наприклад, 1024, 2048 або 4096 відліків); 

- визначення перекриття між сусідніми вікнами (зазвичай 25–50 %); 

- формування незалежних сегментів для подальшого аналізу. 

Кожне вікно розглядається як окремий зразок з відповідною міткою класу, 

що відповідає технічному стану підшипника. Такий підхід особливо ефективний 

для виявлення локальних імпульсних проявів дефектів та забезпечує кращу 

узагальнювальну здатність моделей МН. 

Після сегментації та попередньої обробки з кожного вікна обчислюється 

набір інформаційних параметрів, описаних у підрозділі 2.1. Отримані значення 

формують вектор ознак, який разом із відповідною міткою класу (Normal, IRF, 

ORF, BF) включається до фінального набору даних. Сформований набір даних 

використовується для: 

- навчання моделей МН; 

- тестування алгоритмів; 
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- порівняльного аналізу ефективності різних методів класифікації. 

Для забезпечення коректної оцінки результатів дані поділяються на 

навчальну та тестову вибірки з дотриманням принципів випадковості та 

збалансованості класів. 

Таким чином, формування набору даних для автоматизованої класифікації 

стану підшипникових вузлів включає послідовні етапи вибору джерел даних, 

попередньої обробки сигналів та сегментації за часовими вікнами. Реалізація цих 

процедур дозволяє підвищити інформативність вібраційних сигналів, зменшити 

вплив шумів та забезпечити створення репрезентативної вибірки для навчання 

моделей машинного навчання. Отриманий набір даних є надійною основою для 

подальшої побудови, навчання та оцінювання ефективності алгоритмів 

класифікації технічного стану обладнання. 

 

2.3 Вибір і обґрунтування програмного забезпечення 

 

Реалізація автоматизованої системи класифікації технічного стану 

обладнання на основі методів машинного навчання потребує використання 

програмного забезпечення, яке забезпечує повний цикл обробки даних - від 

імпорту експериментальних сигналів до навчання моделей, аналізу результатів 

та візуалізації. Вибір програмного забезпечення є важливим етапом, тому що він 

визначає гнучкість системи, точність обчислень, зручність експериментів та 

можливість подальшої інтеграції у автоматизовані системи керування. 

У межах даної роботи програмні засоби обиралися з урахуванням таких 

критеріїв: 

- підтримка статистичної та спектральної обробки сигналів; 

- наявність вбудованих алгоритмів машинного навчання; 

- можливість роботи з великими даних; 

- інтерпретованість моделей; 

- доступність для навчальних і наукових цілей; 
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- можливість інтеграції з іншими інструментами. 

Програмним середовищем для реалізації автоматизованої системи 

класифікації в даній роботі обрано STATISTICA. Це універсальний програмний 

пакет для статистичного аналізу та машинного навчання, який широко 

застосовується у наукових дослідженнях та інженерній практиці. Перевагами 

використання STATISTICA є: 

- наявність вбудованих алгоритмів класифікації (нейронні мережі, k-

найближчих сусідів, опорно-векторні машини, дерева рішень, ансамблеві 

методи); 

- зручний інтерфейс для роботи з даними та CSV-файлами; 

- підтримка повного циклу аналізу: preprocessing, feature selection, навчання, 

валідація та тестування моделей; 

- можливість візуалізації отриманихмрезультатів у вигляді графіків, 

матриць помилок, ROC-кривих; 

- відсутність необхідності глибоких навичок програмування, що є важливим 

для освітнього процесу. 

STATISTICA дозволяє ефективно реалізувати багатокласову класифікацію 

станів підшипникового вузла (нормальний стан, дефекти внутрішнього та 

зовнішнього кільця, дефект тіла кочення) на основі сформованого набору ознак. 

Для окремих етапів попередньої обробки сигналів, формування набору 

даних та автоматизації обчислень у роботі передбачено використання мови 

програмування Python. Python є де-факто стандартом у галузі аналізу даних і МН. 

Перевагами Python є: 

- велика кількість наукових бібліотек (NumPy, SciPy, Pandas, scikit-learn); 

- зручні інструменти для обробки сигналів та роботи з часовими рядами; 

- можливість швидкого прототипування алгоритмів; 

- сумісність із результатами, отриманими у STATISTICA. 

Python використовується як допоміжний інструмент для підготовки даних 

(наприклад, перетворення MAT-файлів у CSV, сегментація сигналів, 
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автоматичний розрахунок ознак), після чого сформовані набори даних 

імпортуються у STATISTICA для навчання та аналізу моделей. 

Окрім STATISTICA та Python, у галузі технічної діагностики широко 

застосовуються такі програмні продукти, як MATLAB, LabVIEW, NI DIAdem та 

спеціалізовані SCADA-платформи. У порівнянні з цими системами STATISTICA 

забезпечує оптимальне співвідношення між функціональністю, простотою 

використання та придатністю для навчально-наукових задач. 

Вибір комбінації STATISTICA та Python дозволяє реалізувати повний цикл 

автоматизованої класифікації стану обладнання, забезпечити гнучкість у роботі 

з даними та алгоритмами, підвищити відтворюваність результатів, адаптувати 

систему до різних даних і типів сигналів та сформувати програмно-аналітичну 

основу, придатну для подальшої інтеграції у комп’ютерно-інтегровані системи. 

Таким чином, обґрунтований вибір програмного забезпечення є важливою 

складовою технологічної частини роботи. Застосування STATISTICA як 

основного середовища для реалізації моделей машинного навчання у поєднанні 

з Python для попередньої обробки даних дозволяє створити ефективну, гнучку та 

зручну автоматизовану систему класифікації технічного стану обладнання. 

Обрані програмні засоби повністю відповідають завданням дослідження та 

вимогам сучасних комп’ютерно-інтегрованих технологій. 
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РОЗДІЛ 3. КОНСТРУКТОРСЬКА ЧАСТИНА 

 

3.1 Проектування структури автоматизованої системи класифікації стану 

обладнання 

 

Проектування структури автоматизованої системи класифікації стану 

обладнання є ключовим етапом конструкторської частини роботи, оскільки саме 

на цьому етапі визначається архітектура системи, взаємодія її компонентів та 

логіка обробки інформації. Розроблювана система орієнтована на 

автоматизоване розпізнавання технічного стану підшипникового вузла на основі 

аналізу вібраційних сигналів із застосуванням методів МН. 

Автоматизована система розглядається як багаторівнева програмно-

апаратна структура, що забезпечує повний цикл діагностики: від збору 

вимірювальних даних до формування рішення щодо класу технічного стану 

обладнання. Такий підхід відповідає сучасній концепції комп’ютерно-

інтегрованих систем і дозволяє забезпечити масштабованість, гнучкість та 

можливість подальшої інтеграції у промислові інформаційні середовища. 

Структурно автоматизована система класифікації стану обладнання 

складається з таких основних функціональних рівнів (рис.3.1): 

1. Рівень вимірювання (сенсорний рівень); 

2. Рівень збору та попередньої обробки даних; 

3. Аналітичний рівень (обробка сигналів і машинне навчання); 

4. Рівень прийняття рішень і візуалізації результатів. 

Кожен із зазначених рівнів виконує окремі функції, а їх взаємодія 

забезпечує цілісність і автоматизованість процесу діагностики. 
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Рисунок 3.1 – Автоматизована система класифікації стану обладнання 

 

1. Рівень вимірювання та збору сигналів. 

На першому рівні системи здійснюється реєстрація фізичних параметрів, 

що відображають динамічний стан підшипникового вузла. Основним 

інформативним параметром є вібрація, яка фіксується за допомогою 

п’єзоелектричних акселерометрів або сейсмічних датчиків, встановлених на 

корпусі підшипника. До функцій сенсорного рівня належать: 

- вимірювання вібраційного прискорення у заданому частотному діапазоні; 

- забезпечення достатньої чутливості для виявлення ранніх дефектів; 

- формування аналогового або цифрового сигналу для подальшої обробки. 

Отримані сигнали передаються до системи збору даних (DAQ) або 

промислового контролера, який виконує оцифрування сигналів із заданою 

частотою дискретизації та розрядністю. 

Типові компоненти (датчики): 

- акселерометри (датчики вібрації): найважливіші сенсори для діагностики 

роторного обладнання (підшипники, редуктори, мотори). Вони фіксують 

прискорення вібрації за різними осями; 
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- датчики температури (термопари, RTD, пірометри): виявляють перегрів, 

викликаний тертям, електричними проблемами або недостатнім 

змащенням; 

- датчики акустичної емісії: дозволяють виявляти мікротріщини в матеріалі, 

витоки газів/рідин або проблеми змащення на дуже ранніх стадіях 

(ультразвуковий діапазон); 

- електричні сенсори (струмові кліщі, датчики напруги): аналіз споживання 

струму двигуном (Motor Current Signature Analysis - MCSA) для виявлення 

електричних дефектів ротора чи статора; 

- датчики стану масла: аналізатори в'язкості, вмісту води або лічильники 

частинок металу в мастилі. 

2.  Рівень попередньої обробки та підготовки даних. 

Цей рівень слугує мостом між аналоговим світом сенсорів та цифровим 

світом аналітики. Він часто реалізується на базі периферійних обчислювальних 

пристроїв (Edge Computing devices) або промислових контролерів (PLC/IoT 

Gateway), розташованих безпосередньо біля обладнання. Основні функції: 

- аналого-цифрове перетворення (АЦП): перетворення безперервного 

аналогового сигналу від сенсорів у дискретний цифровий потік даних з 

великою частотою дискретизації; 

- фільтрація шумів: видалення високочастотних перешкод або мережевого 

гулу (наприклад, 50 Гц), котрі не являють корисної інформації про стан 

обладнання; 

- нормалізація та масштабування: пданих від різних типів сенсорів до 

єдиного масштабу для аналізу; 

- сегментація (віконна обробка): розбиття безперервного потоку даних на 

короткі часові відрізки ("вікна") для аналізу; 

- первинна валідація: перевірка цілісності даних (наприклад, виявлення 

обриву датчика). 
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Метою цього етапу є підвищення якості даних та підготовка їх до 

виділення інформативних ознак. Попередня обробка може виконуватися як на 

рівні програмного забезпечення, так і частково на рівні контролера або 

вбудованої системи. 

3. Аналітичний рівень: обробка сигналів і машинне навчання. 

Це "мозок" системи, який зазвичай розміщується на потужних серверах 

(локальних або хмарних). На цьому рівні "сирі" цифрові дані перетворюються на 

інформацію про стан об'єкта. Аналітичний рівень є центральною частиною 

автоматизованої системи та відповідає за: 

- обчислення статистичних, амплітудних та спектральних ознак; 

- формування векторів ознак для кожного сегмента сигналу; 

- навчання та тестування моделей МН; 

- класифікацію технічного стану підшипникового вузла. 

У межах даної роботи реалізується багатокласова класифікація, яка 

передбачає розпізнавання чотирьох станів обладнання, а саме, нормальний стан, 

дефект внутрішнього кільця, дефект зовнішнього кільця та дефект тіла кочення. 

Для реалізації цього рівня використовується програмне середовище 

STATISTICA, яке забезпечує зручну реалізацію алгоритмів машинного навчання 

та аналіз результатів класифікації. 

4.  Рівень прийняття рішень та візуалізації 

Завершальним етапом роботи системи є формування діагностичного 

рішення та представлення результатів у зручному для користувача вигляді. Цей 

рівень є інтерфейсом для користувача (оператора, інженера з надійності, 

керівника). Він перетворює складні математичні результати аналітики на 

зрозумілі бізнес-інсайти та дії. На цьому рівні реалізуються: 

- візуалізація (дашборди): відображення загального стану парку обладнання 

(наприклад, у вигляді "світлофора": зелений – норма, жовтий – 

попередження, червоний – тривога). Можливість детального перегляду 

трендів розвитку дефектів та спектрограм для експертів; 
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- аларми та сповіщення: автоматичне надсилання SMS, e-mail або push-

повідомлень відповідальному персоналу при виявленні критичного 

дефекту або аномалії; 

- діагностичні висновки: система не просто каже "Помилка", а вказує 

ймовірну причину: "З високою ймовірністю (85%) виявлено дефект 

внутрішньої обойми підшипника на вузлі №3"; 

- інтеграція з CMMS/ERP: автоматичне створення наряд-замовлень на 

обслуговування (work orders) в системах управління підприємством 

(наприклад, SAP PM, IBM Maximo) на основі прогнозу системи; 

- рекомендації щодо дій: надання підказок персоналу, наприклад: 

"Рекомендовано провести змащування протягом 48 годин" або 

"Запланувати заміну вузла на наступний плановий ремонт". 

Рівень візуалізації може бути реалізований у вигляді графічного 

інтерфейсу, звітів або інтеграції з SCADA-системами, що відповідає вимогам 

комп’ютерно-інтегрованих виробництв. 

Узагальнено, автоматизовану систему класифікації стану обладнання 

можна представити як послідовність функціональних блоків: 

Датчики → DAQ / Контролер → Попередня обробка → Виділення ознак → 

Модель машинного навчання → Класифікація стану → Візуалізація результатів 

Така структура є універсальною, масштабованою та придатною для 

реалізації як у лабораторних умовах, так і у промислових системах моніторингу. 

Спроєктована структура автоматизованої системи класифікації стану 

обладнання забезпечує комплексний підхід до технічної діагностики 

підшипникових вузлів. Чіткий розподіл функцій між рівнями системи дозволяє 

реалізувати автоматизований цикл обробки даних, підвищити точність 

класифікації та забезпечити гнучкість і масштабованість розробленого рішення. 

Запропонована архітектура створює основу для подальшої реалізації алгоритмів 

машинного навчання та інтеграції системи у сучасні комп’ютерно-інтегровані 

технології. 
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3.2 Розроблення алгоритму обробки вібраційних сигналів 

 

Розроблення алгоритму обробки вібраційних сигналів є важливим етапом 

створення автоматизованої системи класифікації стану обладнання, оскільки 

саме від якості алгоритмічної обробки залежить інформативність ознак, точність 

класифікації та надійність діагностичних рішень. Алгоритм повинен 

забезпечувати послідовну, відтворювану та автоматизовану обробку 

вимірювальних даних, отриманих від сенсорів вібрації. 

У межах даної роботи алгоритм орієнтований на аналіз вібраційних 

сигналів підшипникових вузлів та реалізацію багатокласової класифікації їх 

технічного стану із застосуванням методів машинного навчання. 

Алгоритм обробки вібраційних сигналів реалізується у вигляді 

послідовності функціональних етапів, кожен з яких виконує визначене завдання. 

Узагальнено алгоритм включає такі основні кроки (рис.3.1): 

- зчитування вібраційних сигналів; 

- попередня обробка сигналів; 

- сегментація сигналів на часові вікна; 

- обчислення інформативних ознак; 

- формування векторів ознак; 

- класифікація технічного стану обладнання; 

- формування та відображення результатів. 
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Рисунок 3.2 – Алгоритм обробки вібраційних сигналів 

 

1. Підготовка вхідних даних. 

На першому етапі алгоритму здійснюється зчитування вібраційних 

сигналів, отриманих з вимірювальної системи або з експериментальних баз 

даних (зокрема CWRU Bearing Dataset). Сигнали представляють собою дискретні 

часові ряди вібраційного прискорення, зареєстровані з фіксованою частотою 

дискретизації. 

Для коректної подальшої обробки виконується перевірка цілісності даних, 

приведення сигналів до єдиного формату та за потреби нормалізація рівня 

амплітуд. 

2. Попередня обробка вібраційних сигналів. 

Попередня обробка сигналів спрямована на зменшення впливу шумів та 

небажаних складових. Тут реалізуються такі операції як видалення постійної 

складової сигналу, фільтрація сигналів із використанням смугових або 

низькочастотних фільтрів та нормалізація або масштабування сигналів. 

Застосування попередньої обробки дозволяє підвищити стабільність 

алгоритму та забезпечити коректне виділення ознак на наступних етапах. 

3. Сегментація сигналів методом віконування. 
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Для підвищення кількості навчальних зразків та забезпечення локального 

аналізу вібраційних процесів сигнал поділяється на фрагменти фіксованої 

довжини — часові вікна. Сегментація може виконуватися без перекриття або з 

частковим перекриттям вікон. 

Вибір довжини вікна та ступеня перекриття визначається компромісом між 

часовою та частотною роздільною здатністю. Сегментація дозволяє зафіксувати 

короткотривалі зміни сигналу, характерні для дефектів підшипників. 

4. Обчислення інформативних ознак. 

Для кожного вікна сигналу обчислюється набір інформативних ознак, які 

відображають статистичні, амплітудні та спектральні властивості вібрацій. До 

таких ознак належать: 

- середнє значення, дисперсія, стандартне відхилення; 

- RMS, peak-to-peak, crest factor; 

- асиметрія та ексцес; 

- домінантні частоти та спектральна енергія. 

5. Отримані ознаки формують вектор, котрий є вхідними даними для 

моделей МН. 

6. Класифікація технічного стану обладнання. 

На основі сформованих векторів ознак реалізується класифікація 

технічного стану підшипникового вузла. Для цього використовуються методи 

МН, такі як k-найближчих сусідів, опорно-векторні машини, випадкові ліси, 

підсилені дерева та штучні нейронні мережі. 

Результатом роботи класифікатора є віднесення кожного вікна сигналу до 

одного з чотирьох класів стану обладнання. 

7. Формування результатів. 

На цьому етапі алгоритму здійснюється агрегація результатів класифікації, 

оцінювання достовірності рішень та формування підсумкового висновку щодо 

стану обладнання. Результати можуть бути представлені у вигляді класу 
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технічного стану, ймовірностей належності до класів чи статистики помилок 

класифікації. 

Цей етап забезпечує готовність алгоритму до інтеграції у автоматизовані 

системи моніторингу та візуалізації. 

Розроблений алгоритм обробки вібраційних сигналів забезпечує 

послідовну та автоматизовану реалізацію процесу діагностики стану 

підшипникових вузлів. Його структура дозволяє поєднати класичні методи із 

сучасними алгоритмами МН, що створює основу для ефективної класифікації 

технічного стану обладнання та подальшої практичної реалізації 

автоматизованої діагностичної системи. 

 

3.3 Розроблення алгоритму класифікації на основі методів МН 

  

Розроблення алгоритму класифікації є центральним етапом побудови 

автоматизованої системи діагностики, оскільки саме класифікатор забезпечує 

перехід від виміряних і оброблених сигналів до формального рішення щодо 

технічного стану обладнання. Зокрема, на відміну від класичних експертних 

підходів, де рішення формується за жорстко заданими порогами або правилами, 

методи машинного навчання дозволяють побудувати модель на основі даних, яка 

здатна виявляти складні закономірності та забезпечувати високу точність 

розпізнавання дефектів. 

У даній роботі алгоритм класифікації орієнтований на багатокласове 

розпізнавання стану підшипникового вузла за результатами аналізу вібраційних 

сигналів. Розглядаються чотири стани: нормальний режим, дефект внутрішнього 

кільця (IRF), дефект зовнішнього кільця (ORF) та дефект тіла кочення (BF). 

Вихідним результатом алгоритму є клас стану обладнання, а вхідними даними є 

вектори ознак, сформовані на етапі обробки сигналів. 

Задача класифікації формалізується як віднесення кожного вектора ознак 

Х до одного з чотирьох класів Y, що відповідають технічному стану підшипника 
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(рис. 3.3). Тут вхідні дані: ознаки вібраційних сигналів (статистичні, амплітудні, 

спектральні показники). Тоді як вихідні дані: мітка класу стану підшипникового 

вузла (Normal, IRF, ORF, BF). 

 

Рисунок 3.3 – Алгоритм класифікації стану підшипникового вузла 

 

Така постановка задачі є типовою для задач технічної діагностики в рамках 

концепції data-driven підходів, де рішення формується на основі аналізу великого 

обсягу експериментальної інформації. 

Алгоритм класифікації на основі методів машинного навчання 

реалізується як послідовність таких етапів (рис.3.4): 

- завантаження набору даних (вектори ознак + мітки класів); 

- попередня підготовка даних (очищення, масштабування, балансування); 

- розподіл даних на вибірки (навчальна/тестова); 

- навчання моделей машинного навчання; 

- оцінювання якості класифікації; 

- вибір найкращої моделі та налаштування гіперпараметрів; 

- формування фінального алгоритму прийняття рішень (класифікація нових 

сигналів); 

- збереження моделі та підготовка до інтеграції в систему. 
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Рисунок 3.4 – Алгоритм класифікації на основі методів машинного навчання 

 

Така структура забезпечує відтворюваність експериментів, коректне 

порівняння моделей і можливість впровадження алгоритму в прикладне 

програмне забезпечення. 

Перед навчанням моделей машинного навчання виконується комплекс 

процедур підготовки даних: 

- перевірка пропусків та усунення некоректних значень; 

- нормалізація або стандартизація ознак (особливо критично для SVM і k-

NN); 

- перевірка дисбалансу класів і, за необхідності, застосування балансування 

(undersampling/oversampling); 

- контроль кореляцій між ознаками (для уникнення надмірності та 

спрощення моделі). 

У контексті використання STATISTICA важливим є забезпечення 

коректного формату таблиці даних: рядок - один сегмент сигналу, стовпці - 

ознаки, окремий стовпець - клас. 

У роботі передбачено використання декількох класичних і сучасних 

методів МН, які широко застосовуються в задачах діагностики. 
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Паралельне навчання кількох моделей є важливим елементом 

дослідження, оскільки дозволяє порівняти їх ефективність у межах однієї задачі 

та визначити найкращий підхід. 

Для оцінювання якості роботи класифікатора застосовуються стандартні 

метрики багатокласової класифікації: 

- Accuracy (точність класифікації); 

- Precision / Recall / F1-score для кожного класу; 

- Confusion Matrix (матриця помилок) для аналізу типових переплутувань 

між станами; 

- ROC/AUC (за потреби у форматі one-vs-rest). 

Оцінювання дозволяє визначити, які методи краще розпізнають конкретні 

типи дефектів (наприклад, IRF може бути ближчим до ORF за спектральними 

ознаками, що проявляється у матриці помилок). 

Після порівняльного аналізу моделей здійснюється вибір оптимальної 

моделі за сукупністю критеріїв, а саме, максимальна точність, стабільність 

результатів, мінімізація помилок для критичних класів та обчислювальна 

ефективність. 

У середовищі STATISTICA алгоритм класифікації реалізується як 

послідовність операцій (рис.3.5): 

- імпорт таблиці ознак (CSV); 

- визначення цільової змінної (клас); 

- вибір методів (SVM, RF, Boosted Trees, k-NN, MLP); 

- налаштування параметрів навчання; 

- запуск навчання та тестування; 

- аналіз метрик і матриці помилок; 

- збереження результатів і формування звітів. 

STATISTICA дозволяє формувати протоколи моделей та зберігати 

параметри навчання, що важливо для відтворюваності експериментів. 
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Рисунок 3.5 – Реалізація алгоритму класифікації на основі методів машинного 

навчання 

 

Розроблений алгоритм класифікації на основі методів машинного 

навчання забезпечує автоматизоване розпізнавання технічного стану обладнання 

за векторами ознак, сформованими з вібраційних сигналів. Використання 

кількох моделей (k-NN, SVM, випадкові ліси, підсилені дерева, нейронні мережі) 

створює можливість порівняльного аналізу та вибору найбільш ефективного 

підходу для багатокласової діагностики. Отримані результати в подальших 

експериментах можуть бути використані для інтеграції класифікатора в загальну 

структуру автоматизованої системи та забезпечення надійного визначення станів 

підшипникового вузла. 

 

3.4 Опис програмної реалізації системи (інтерфейс, модулі, функціональні 

блоки) 

 

Програмна реалізація автоматизованої системи класифікації стану 

обладнання визначає практичну придатність розробленого підходу, оскільки 

забезпечує перехід від теоретичної моделі до інструменту, здатного виконувати 

повний цикл обробки даних і прийняття рішень. У межах даної роботи програмна 

реалізація орієнтована на використання STATISTICA як базового аналітичного 
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середовища, що дозволяє організувати імпорт даних, їх попередню обробку, 

побудову моделей машинного навчання, оцінювання якості класифікації та 

формування звітів. За потреби окремі етапи (зокрема автоматизоване 

формування ознак або підготовка даних) можуть реалізовуватись за допомогою 

Python, що підвищує гнучкість системи та її адаптивність до різних форматів і 

джерел сигналів. 

Програмну реалізацію системи доцільно будувати за модульним 

принципом, зокрема, кожен модуль відповідає за окремий етап обробки даних 

або функціональний блок системи. Це забезпечує можливість заміни або 

розширення окремих компонентів без зміни всієї системи, відтворюваність 

експериментів (фіксація параметрів і сценарію обробки), зручність інтеграції у 

комп’ютерно-інтегровані системи моніторингу, масштабованість (збільшення 

кількості сенсорів, каналів, класів, ознак тощо). 

В загальному, програмна структура системи складається з модулів: 

імпорту даних, попередньої обробки, виділення ознак, навчання моделей, 

класифікації, візуалізації та формування звітності (рис. 3.6). 

 

Рисунок 3.6 – Програмна структура системи 

 

Програмна реалізація автоматизованої системи класифікації стану 

обладнання побудована за модульним принципом і забезпечує повний цикл 

діагностики: від імпорту даних і формування ознак до навчання моделей 

машинного навчання, класифікації станів та візуалізації результатів. 
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Використання STATISTICA як основного програмного середовища дозволяє 

реалізувати алгоритми машинного навчання без надмірної складності 

програмування, забезпечити відтворюваність експериментів і підготувати 

повний набір результатів (графіки, таблиці, метрики), необхідних для наукового 

обґрунтування ефективності системи. 
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РОЗДІЛ 4. НАУКОВО-ДОСЛІДНА ЧАСТИНА 

  

4.1 Проведення експерименту із класифікації чотирьох станів 

підшипникового вузла 

  

Науково-дослідна частина роботи спрямована на експериментальну 

перевірку ефективності розробленої автоматизованої системи класифікації стану 

обладнання на основі методів МН. Тут, об’єктом дослідження є підшипниковий 

вузол роторного обладнання, технічний стан якого оцінюється за параметрами 

вібраційних сигналів. 

Для проведення експерименту використано відкритий еталонний набір 

даних CWRU [8], який широко застосовується у наукових дослідженнях з 

діагностики підшипників. Даний набір містить вібраційні сигнали, отримані з 

експериментального стенду електродвигуна з кульковими підшипниками, для 

різних режимів роботи, а також типів дефектів. Вимірювання здійснювалися за 

допомогою акселерометрів, встановлених на корпусі двигуна, з високою 

частотою дискретизації, що забезпечує достатню інформативність сигналів для 

спектрального та статистичного аналізу. 

У рамках експерименту розглядалися чотири стани підшипникового вузла, 

що відповідають задачі багатокласової класифікації: 

- нормальний стан (Normal) – відсутність пошкоджень доріжок кочення та 

тіл кочення; 

- дефект внутрішнього кільця (Inner Race Fault, IRF) – локальні 

пошкодження доріжки внутрішнього кільця; 

- дефект зовнішнього кільця (Outer Race Fault, ORF) – дефекти на доріжці 

зовнішнього кільця; 

- дефект тіла кочення (Ball Fault, BF) – пошкодження кульок у вигляді сколів 

або раковин. 
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На першому етапі експерименту виконувалося формування вибірки даних. 

Сирі вібраційні сигнали були розділені на фрагменти фіксованої довжини з 

використанням ковзного вікна, що дозволило збільшити обсяг навчальної 

вибірки та зберегти часову структуру сигналів. Для кожного сегмента 

здійснювалася попередня обробка, яка включала усунення постійної складової, 

нормалізацію та, за необхідності, фільтрацію шумових компонент. 

Далі для кожного вікна сигналу обчислювався набір інформаційних ознак, 

який включав статистичні, амплітудні та спектральні параметри. Отриманий 

вектор ознак використовувався як вхідні дані для моделей МН, зокрема, 

вихідною змінною виступав клас технічного стану підшипника. 

На наступному етапі експерименту дані було поділено на навчальну та 

тестову вибірки. Навчальна вибірка використовувалася для побудови моделей 

класифікації, тоді як тестова – для незалежної оцінки їхньої узагальнюючої 

здатності. У межах дослідження застосовувалися різні алгоритми МН, зокрема 

метод k-найближчих сусідів, опорно-векторні машини, випадкові ліси, а також 

нейронні мережі, що дозволило порівняти їхню ефективність у задачі 

багатокласової діагностики. 

Ефективність класифікації оцінювалася за стандартними метриками, 

такими як загальна точність (accuracy), матриця помилок, а також показники 

чутливості та специфічності для окремих класів. Особлива увага приділялася 

здатності моделей розрізняти дефекти внутрішнього та зовнішнього кілець, 

оскільки їхні вібраційні прояви часто мають подібний спектральний характер. 

Проведений експеримент дозволив оцінити працездатність розробленої 

автоматизованої системи класифікації в умовах, наближених до реальних, та 

підтвердити доцільність застосування методів МН. Зокрема, дані результати 

стали основою для подальшого аналізу та порівняння моделей, що буде 

розглянуто в наступних підрозділах науково-дослідної частини. 
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4.2  Порівняння методів МН Помилка! Закладку не визначено. 

  

У даному підрозділі проведено порівняльний аналіз ефективності різних 

методів МН, котрі застосовують для класифікації технічного стану 

підшипникового вузла за параметрами вібраційних сигналів. Метою порівняння 

є визначення найбільш придатного алгоритму для реалізації автоматизованої 

системи діагностики з точки зору точності, стійкості до шумів та обчислювальної 

складності. 

Для експериментального дослідження були обрані алгоритми, які 

найчастіше використовуються у задачах технічної діагностики та аналізу 

часових рядів: 

- метод k-найближчих сусідів (k-NN); 

- опорно-векторні машини (SVM); 

- випадковий ліс (Random Forest); 

- підсилених дерев (Boosted trees); 

- багатошаровий персептрон (MLP). 

Усі моделі навчалися на одному й тому ж наборі ознак, сформованому на 

основі статистичних, амплітудних та спектральних характеристик вібраційних 

сигналів. Це забезпечило коректність порівняння та виключило вплив різних 

представлень даних на результати класифікації. 

Метод k-NN використовувався як базовий алгоритм, що не потребує 

складного етапу навчання та ґрунтується на геометричній близькості векторів 

ознак. Його перевагою є простота реалізації та наочність, однак результати 

експерименту показали, що точність класифікації суттєво залежить від вибору 

параметра k та масштабу ознак. Крім того, при збільшенні обсягу вибірки 

зростають обчислювальні витрати на етапі класифікації, що обмежує 

застосування методу в системах реального часу. 

Опорно-векторні машини продемонстрували вищу стабільність 

результатів та кращу здатність до розділення класів у випадку нелінійних 
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залежностей між ознаками. Використання ядрових функцій дозволило 

ефективно відокремити чотири класи технічного стану підшипників навіть за 

наявності шумів у даних. Водночас недоліком SVM є підвищена чутливість до 

вибору параметрів ядра та відносно висока обчислювальна складність на етапі 

навчання. 

Метод випадкового лісу, який належить до ансамблевих алгоритмів, 

показав високу точність та стійкість до перенавчання. Завдяки поєднанню 

великої кількості дерев рішень цей підхід ефективно працює з неоднорідними 

ознаками та дозволяє оцінювати їхню важливість у процесі класифікації. За 

результатами експерименту Random Forest забезпечив точність класифікації, 

перевищуючи 90%, та продемонстрував хорошу узагальнюючу здатність на 

тестовій вибірці. 

Багатошаровий персептрон, як представник нейронних мереж, дозволив 

моделювати складні нелінійні залежності між параметрами вібраційних 

сигналів. За умови належного вибору архітектури мережі та параметрів навчання 

MLP продемонстрував найкращі результати класифікації серед розглянутих 

методів.  

Порівняльний аналіз результатів класифікації показав, що всі досліджувані 

методи здатні розпізнавати чотири стани підшипникового вузла з достатньо 

високою точністю. Однак найбільш збалансованими з точки зору точності, 

стійкості до шумів та обчислювальної ефективності виявилися ансамблеві 

методи та нейронні мережі.  

Для класифікації технічного стану підшипникового вузла на основі 

вібраційних сигналів у роботі було реалізовано та досліджено декілька моделей 

машинного навчання. Штучна нейронна мережа типу багатошарового 

персептрона (MLP 10-29-4,) будувалася з використанням вихідного шару з 

функціями активації Identity та Softmax, що забезпечує коректну реалізацію 

багатокласової класифікації. Навчена нейронна мережа продемонструвала 

високу здатність до розпізнавання чотирьох станів підшипникового вузла. 
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В ансамблевих методах машинного навчання застосовано моделі Random 

Forest та Boosted Trees з кількістю дерев 1000, що дозволило підвищити 

стабільність класифікації та зменшити вплив випадкових коливань у вхідних 

даних. Для методу опорно-векторних машин (SVM) використано 40 опорних 

векторів, що забезпечило ефективне розділення класів у просторі ознак. У методі 

k-найближчих сусідів (k-NN) для обчислення подібності між об’єктами 

застосовано евклідову відстань, яка є найбільш поширеною метрикою для задач 

класифікації вібраційних сигналів. 

Вибірка складала 1537 елементів, 70% випадковим чином вибрані для 

навчальної вибірки, тоді як 30% використані для тестування.  

На рис. 4.1 наведено матриці плутанини (confusion matrices), отримані за 

результатами тестування різних методів МН для задачі класифікації чотирьох 

станів підшипникового вузла: нормального стану, дефекту внутрішнього кільця 

(IRF), дефекту зовнішнього кільця (ORF) та дефекту тіла кочення (BF). 

Представлені результати демонструють високу якість класифікації для всіх 

розглянутих алгоритмів, зокрема багатошарового класифікатора, SVM, k-

найближчих сусідів (KNN), випадкового лісу (RF) та бустингових дерев (BT). У 

більшості випадків спостерігається практично повна відсутність помилок між 

класами, що свідчить про чітке розділення ознак, характерних для кожного типу 

дефекту. Особливо показовими є результати для нормального стану, який 

коректно ідентифікується всіма моделями з максимальною точністю. Незначні 

відмінності між методами проявляються лише у кількості правильно 

класифікованих зразків окремих дефектних станів, однак загальна точність усіх 

моделей перевищує 90%.  
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а) 

 

б) 

 

в) 

 

г) 

 

д) 

Рисунок 4.1 − Матриці невідповідностей для різних методів машинного 

навчання при класифікації чотирьох станів підшипникового вузла (BF, IRF, 

Normal, ORF) на тестовій вибірці, отримані методами НМ (а), SVM (б), k-NN 

(в), RF (г) та BT (д) 

 

На рис. 4.2-4.4 наведено криві кумулятивного приросту (Gains Chart) для 

чотирьох класів стану підшипникового вузла, отримані за результатами роботи 

нейронної мережі типу MLP (10–29–4), RF та BT. Для кожного класу (ORF, 

Normal, IRF, BF) порівнюється крива моделі з базовою лінією випадкового 

вгадування. Як видно з графіків, крива моделі суттєво випереджає базову, що 



 

72 

 

свідчить про високу здатність методів концентрувати правильні класифікації у 

верхніх перцентилях вибірки. Зокрема, для дефектних станів (IRF, ORF, BF) 

досягається майже 100% правильних відповідей уже в перших 20–30% 

відсортованих спостережень, що вказує на чітку відокремлюваність класів у 

просторі ознак. Для нормального стану також спостерігається стабільне 

зростання показника gain, що підтверджує коректне розпізнавання справного 

режиму роботи.  

 

а) 

 

б) 

 

в) 

 

г) 

Рисунок 4.2 − Криві кумулятивного приросту для чотирьох класів стану 

підшипникового вузла (ORF, Normal, IRF, BF), отримані за результатами 

класифікації нейронною мережею MLP (10–29–4) 
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а) 

 
б) 

 
в) 

 
г) 

 

Рисунок 4.3  − Криві накопиченого приросту, що демонструють високу 

ефективність класифікації станів підшипникового вузла методом Random Forest 
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Рисунок 4.4  − Криві накопиченого виграшу для моделі Boosted Trees при 

класифікації станів підшипникового вузла 

 

Отримані результати свідчать, що всі розглянуті методи МН забезпечують 

високу точність класифікації станів підшипникового вузла, а використання 

ансамблевих підходів та нейронних мереж дозволяє досягти найкращих 

показників узагальнюючої здатності моделей. 

На рис. 4.5 наведено результати аналізу важливості вхідних ознак для 

задачі класифікації станів підшипникового вузла, отримані на основі 

побудованих моделей машинного навчання. Як видно з поданих діаграм, 

найбільший внесок у розпізнавання класів роблять енергетичні та амплітудно-

статистичні характеристики вібраційних сигналів, зокрема середньоквадратичне 

значення (RMS), енергія в частотній смузі (Band Energy), амплітуда «пік–пік» 

(Peak-to-Peak) та стандартне відхилення (StdDev). Високу інформативність 

також демонструють показники, чутливі до імпульсних складових сигналу, такі 

як ексцес (Kurtosis) та імпульсний фактор (Impulse Factor), що є характерними 

для дефектів підшипників кочення. Менш вагомими, проте корисними для 

уточнення класифікації, виявилися коефіцієнт асиметрії (Skewness), гребеневий 

фактор (Crest Factor), домінантна частота (f_dom) та середнє значення сигналу 

(Mean). Отримані результати підтверджують доцільність використання 

комбінованого набору статистичних, амплітудних і спектральних ознак, 
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оскільки саме їх сукупність забезпечує високу точність класифікації чотирьох 

технічних станів підшипникового вузла. 

 

а) 

 

б) 

 

Рисунок 4.5 − Важливість вхідних ознак для класифікації станів 

підшипникового вузла, методами випадкових лісів (а) та підсилених дерев (б) 

 

4.3 Аналіз точності, похибок класифікації та стабільності моделей 

 

Оцінювання ефективності автоматизованої системи класифікації станів 

обладнання є ключовим етапом науково-дослідної частини роботи. У межах 

даного дослідження аналіз якості класифікації здійснювався на основі комплексу 

статистичних показників, зокрема загальної точності (accuracy), матриць 

невідповідностей (confusion matrix), кривих накопиченого приросту (Gains 

Chart), а також аналізу стабільності моделей при зміні параметрів навчання. 

Загальна точність класифікації для всіх розглянутих методів МН 

перевищує 90%, що показує високу інформативність обраних ознак та 

адекватність сформованого набору даних. Найкращі результати 

продемонстрували ансамблеві методи, а саме, випадкові ліси (Random Forest) та 

підсилені дерева (Boosted Trees), для яких точність класифікації чотирьох станів 

підшипникового вузла є максимальною або близькою до максимальної для всіх 

класів. Це пояснюється здатністю ансамблевих алгоритмів ефективно працювати 
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з нелінійними залежностями та зменшувати вплив шумів за рахунок усереднення 

рішень окремих дерев. 

Аналіз матриць невідповідностей показав, що помилки класифікації мають 

поодинокий характер або повністю відсутні для більшості моделей. В усіх 

експериментах чітко простежується правильне розпізнавання нормального стану 

підшипникового вузла, що є особливо важливим з точки зору практичної 

експлуатації, оскільки мінімізує ризик хибних тривог. Класи дефектів 

внутрішнього кільця (IRF), зовнішнього кільця (ORF) та тіла кочення (BF) також 

розпізнаються з високою достовірністю, що підтверджує наявність характерних 

діагностичних ознак у вібраційних сигналах для кожного типу пошкодження. 

Узагальнюючи результати, розроблена автоматизована система 

класифікації станів обладнання на основі методів машинного навчання 

характеризується високою точністю, низьким рівнем похибок та стійкістю до 

зміни параметрів навчання. Це підтверджує доцільність застосування 

ансамблевих методів і нейронних мереж для задач технічної діагностики 

підшипникових вузлів. 

 

4.4 Порівняння результатів із експериментальними даними та вибір 

оптимального підходу машинного навчання 

  

Завершальним етапом науково-дослідної частини є порівняння 

результатів, отриманих за допомогою розроблених моделей машинного 

навчання, з експериментальними даними та обґрунтування вибору оптимального 

підходу для автоматизованої класифікації стану підшипникового вузла. У якості 

експериментальної бази використовувалися вібраційні сигнали, отримані з 

відкритого набору даних Case Western Reserve University (CWRU), який широко 

застосовується в наукових дослідженнях для валідації методів діагностики 

підшипників кочення. 
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Експериментальні дані CWRU характеризуються чітко маркованими 

станами підшипникового вузла, що дозволяє об’єктивно оцінити достовірність 

класифікації та ступінь узгодженості модельних результатів з реальними 

фізичними процесами. Порівняння показало, що всі розглянуті моделі 

машинного навчання коректно відтворюють характерні ознаки нормального 

стану, а також дефектів внутрішнього та зовнішнього кілець і тіл кочення, що 

підтверджується високими значеннями точності та мінімальними похибками 

класифікації. 

Результати ансамблевих методів (Random Forest та Boosted Trees) 

продемонстрували найбільшу відповідність експериментальним даним. Для цих 

моделей спостерігається майже повна відсутність помилкових класифікацій між 

дефектними станами, а криві накопиченого приросту (Gains Chart) істотно 

перевищують базову лінію для всіх класів. Це свідчить про високу чутливість 

моделей до змін у вібраційних характеристиках та здатність стабільно 

відокремлювати експериментально зафіксовані дефекти. 

Метод опорно-векторних машин також показав добру узгодженість із 

експериментальними даними, особливо для чітко виражених дефектів 

внутрішнього та зовнішнього кільця. Проте у порівнянні з ансамблевими 

методами SVM виявився більш чутливим до вибору параметрів та 

масштабування ознак, що може ускладнювати його застосування в 

автоматизованих системах без додаткового налаштування. 

Штучна нейронна мережа з вихідною функцією активації Softmax 

продемонструвала високу точність і стабільність результатів, що 

підтверджується формою кривих Gains Chart та показниками класифікації для 

всіх чотирьох класів. Нейронна мережа добре узгоджується з 

експериментальними даними та ефективно узагальнює інформацію про складні 

нелінійні залежності між ознаками вібраційних сигналів і технічним станом 

підшипникового вузла. Разом з тим, процес навчання нейронних мереж потребує 

більших обчислювальних ресурсів та ретельного вибору архітектури. 
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Порівняльний аналіз дозволив встановити, що оптимальним підходом для 

задачі автоматизованої класифікації стану підшипникового вузла є ансамблеві 

методи машинного навчання, зокрема випадкові ліси та підсилені дерева. Вони 

забезпечують найкращий компроміс між точністю класифікації, стабільністю 

результатів та простотою інтеграції у комп’ютерно-інтегровані системи 

моніторингу. Водночас НМ ефективно використовують як альтернативний або 

доповнювальний інструмент для задач з більш складною структурою даних. 

Таким чином, отримані результати узгоджуються з експериментальними 

даними та сучасними науковими публікаціями, що підтверджує коректність 

обраних методів і доцільність їх застосування для розроблення автоматизованих 

систем класифікації технічного стану обладнання на основі методів машинного 

навчання. 
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РОЗДІЛ 5. СПЕЦІАЛЬНА ЧАСТИНА 

  

5.1 Оцінка ефективності запропонованої автоматизованої системи 

  

Оцінка ефективності запропонованої автоматизованої системи 

класифікації стану обладнання є важливим етапом спеціальної частини роботи, 

оскільки дозволяє комплексно проаналізувати доцільність її використання в 

реальних умовах експлуатації. Ефективність системи в даному дослідженні 

розглядається з позицій точності діагностики, стабільності роботи алгоритмів, 

швидкодії обробки даних, масштабованості та можливості інтеграції в 

комп’ютерно-інтегровані виробничі системи. 

Окремо слід відзначити ефективність реалізації автоматизованої системи 

на основі штучних нейронних мереж. Хід побудови та налаштування нейронної 

мережі детально проілюстровано на рис. 5.1–5.9, де послідовно показано основні 

етапи формування моделі в середовищі STATISTICA. На рис. 5.1 наведено 

приклад табличного представлення вхідних ознак і цільової змінної, що 

формують навчальний набір даних для задачі класифікації стану 

підшипникового вузла. 

 

Рисунок 5.1 − Сформований набір даних для навчання моделей МН 
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На рис. 5.2 показано етап ініціалізації нейромережевого аналізу в 

середовищі STATISTICA, де здійснюється вибір типу задачі МН. Зокрема, для 

розв’язання задачі автоматизованої класифікації технічного стану 

підшипникового вузла обрано режим Classification, що дозволяє формувати 

модель нейронної мережі для віднесення вхідних даних до одного з визначених 

класів стану обладнання. 

 

Рисунок 5.2 − Вибір типу аналізу при створенні нейронної мережі 

 

На рис. 5.3 показано етап формування набору змінних для аналізу в модулі 

STATISTICA. 

 

Рисунок 5.3 − Вибір вхідних та вихідної змінних для задачі класифікації 

 

На рис. 5.4 представлено етап вибору змінних та налаштування стратегії 

побудови нейронної мережі в середовищі STATISTICA. Для створення 

прогнозної моделі обрано режим автоматизованого пошуку архітектури 

нейронної мережі (Automated Network Search, ANS), що дозволяє системі 
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самостійно підбирати оптимальну структуру та параметри навчання. Обробка 

пропущених значень реалізується у режимі casewise, що забезпечує коректність 

формування навчальної та тестової вибірок. 

 

 

Рисунок 5.4 − Налаштування вибору даних та стратегії формування 

нейронної мережі в модулі SANN 

 

На рисунку 5.5 показано параметри випадкового розподілу даних, за якими 

70% вибірки використовується для навчання НМ, тоді як 30% для тестування, що 

забезпечує коректну оцінку узагальнювальної здатності моделі. 
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Рисунок 5.5 − Налаштування розбиття вибірки на навчальну та тестову 

підмножини 

 

На рисунку 5.6 представлено налаштування автоматизованого пошуку 

архітектури багатошарової нейронної мережі, де задається діапазон кількості 

прихованих нейронів, тип мережі (MLP), функція помилки та кількість мереж 

для навчання і відбору найкращих моделей.  

 

Рисунок 5.6 − Вікно автоматизованого пошуку нейронних мереж 
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На рисунку 5.7 наведено перелік відібраних нейронних мереж типу MLP із 

зазначенням їхньої точності на навчальній та тестовій вибірках, алгоритму 

навчання (BFGS) і функції помилки (cross-entropy), що дозволяє обрати 

оптимальну модель для класифікації станів обладнання. 

 

Рисунок 5.7 − Результати навчання та тестування нейронних мереж 

 

На рисунку 5.8 показано інтерфейс аналізу результатів роботи навченої 

нейронної мережі, де відображаються вихідні значення, точність класифікації та 

довірчі оцінки (confidence) для кожного класу стану підшипникового вузла, що 

дозволяє візуально оцінити якість та стабільність моделі. 
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Рисунок 5.8 − Вікно аналізу результатів класифікації нейронною мережею  

 

На рисунку 5.9 показано приклад роботи нейронної мережі на тестових 

даних, де наведено цільовий клас, передбачений клас, правильність класифікації 

та рівень довіри (confidence level). Отримані значення свідчать про високу 

впевненість моделі у прийнятті рішень та коректне розпізнавання нормального 

стану обладнання. 

 

Рисунок 5.9 − Фрагмент таблиці прогнозів результатів класифікації стану 

обладнання нейронною мережею 
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Завершальні етапи побудови моделі відображають результати тестування 

нейронної мережі, включаючи оцінку точності класифікації, криві накопиченого 

приросту (Gains Chart) та матриці помилок. Аналіз цих результатів підтверджує 

високу ефективність нейронної мережі при розпізнаванні чотирьох станів 

підшипникового вузла та її доцільність використання в складі автоматизованої 

системи технічної діагностики. 

 

5.2 Рекомендації щодо впровадження системи в промислові процеси 

 

Впровадження автоматизованої системи класифікації технічного стану 

обладнання на основі методів машинного навчання доцільно здійснювати 

поетапно з урахуванням особливостей конкретного виробництва, типу 

обладнання та рівня автоматизації підприємства. Розроблена система 

орієнтована на інтеграцію в сучасні промислові середовища та може бути 

використана як у складі існуючих систем моніторингу, так і як окремий 

діагностичний модуль. 

Запропонована автоматизована система класифікації стану обладнання є 

придатною для практичного впровадження в умовах сучасних промислових 

підприємств. Її використання дозволяє підвищити інформативність моніторингу, 

автоматизувати процес оцінювання технічного стану та забезпечити більш 

обґрунтовані управлінські рішення щодо експлуатації обладнання. 
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РОЗДІЛ 6. ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ 

СИТУАЦІЯХ 

  

6.1 Характеристика негативних факторів виробничого середовищ 

  

Під час роботи на виробництві на людину можуть впливати один або низка 

небезпечних та шкідливих виробничих факторів. Безпека того чи іншого 

технологічного процесу може бути визначена за їх кількістю і за ступенем 

небезпеки кожного з них зокрема. Безпека праці на виробництві визначається 

ступенем безпеки окремих технологічних процесів.  

Небезпечні й шкідливі виробничі фактори стандартом ГОСТ 12.0.003-74 

поділяються на фізичні, хімічні, біологічні й психофізіологічні. Останні за 

характером впливу на людину підрозділяються на фізичні й нервово-психічні 

перевантаження, а інші – на конкретні небезпечні й шкідливі виробничі фактори. 

В процесі роботи на підприємстві на працівника можуть впливати такі 

небезпечні й шкідливі виробничі фактори:  

– машини, що рухаються, автотранспорт і механізми;  

– рухомі незахищені елементи механізмів, машин і виробничого 

обладнання;  

– падаючі вироби техніки, інструмент і матеріали під час роботи;  

– ударна хвиля (вибух посудини, що працює під тиском пари рідини);  

– струмені газів і рідин, що стікають із посудин і трубопроводів під 

тиском;  

– підвищене ковзання (через зледеніння, зволоження й замаслювання 

поверхонь, по яких переміщується робочий персонал);  

– підвищені запорошеність й загазованість повітря;  

– підвищена чи знижена температура поверхонь техніки, обладнання й 

матеріалів;  

– підвищена чи знижена температура, вологість і рухомість повітря;  
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– підвищений рівень шуму, вібрації, ультра та інфразвуку;  

– підвищена напруга в електричному ланцюзі, замикання якого може 

відбутися через тіло людини;  

– підвищений рівень статичної електрики;  

– гострі кромки, задирки й шорсткість на поверхнях обладнання й 

інструментів;  

– відсутність чи нестача природного світла;  

– недостатня освітленість робочої зони;  

– знижена контрастність об’єктів в порівнянні з фоном;  

– пряма блискість (прожекторне освітлення територій виробництв, 

світло фар автотранспорту) і відбита блискість (від розлитої води й інших рідин 

на поверхні територій виробництв);  

– підвищена пульсація світлового потоку;  

– підвищений рівень ультрафіолетової й інфрачервоної радіації;  

– хімічні речовини (токсичні, подразнюючі, сенсибілізуючі, 

канцерогенні, мутагенні, що впливають на репродуктивну функцію людина);  

– хімічні речовини, що проникають в організм через органи дихання, 

шлунково-кишковий тракт, шкірні покриви і слизові оболонки;  

– патогенні мікроорганізми (бактерії, віруси, гриби, найпростіші) і 

продукти їхньої життєдіяльності;  

– перевантаження (статичні й динамічні) і нервово-психічні чинники 

(емоційні перевантаження, перенапруга аналізаторів, розумова перенапруга, 

монотонність праці).  

Рівні небезпечних і шкідливих виробничих факторів не повинні 

перевищувати граничнодопустимих значень, встановлених у санітарних нормах, 

правилах і нормативно-технічній документації.  

 

  



 

88 

 

6.2 Організація безпечних умов праці користувачів персональних 

комп’ютерів 

  

Під час роботи на комп’ютерах можуть діяти такі небезпечні та шкідливі 

фактори, як:  

– фізичні;  

– психофізіологічні.  

Електробезпека при роботі.  

Заходи щодо усунення небезпеки ураження електричним струмом 

зводяться до правильного розміщення устаткування та електричних кабелів. Інші 

заходи щодо забезпечення електробезпеки, збігаються з загальними заходами 

пожежо- та електробезпеки.  

В якості профілактичних заходів для забезпечення пожежної безпеки слід 

використовувати скриту електромережу, надійні розетки з пожежобезпечних 

матеріалів, силові мережі живлення устаткування виконувати кабелями, 

розрахованими на підключення в 3-5 разів більшого навантаження, включати й 

виключати живлення обладнання за допомогою штатних вимикачів. Треба 

регулярно робити очистку внутрішніх частин комп’ютерів, іншого устаткування 

від пилу, розташовувати комп’ютери на окремих неспалюваних столах. Для 

запобігання іскріння необхідно рідше встромляти і виймати штепсельні вилки з 

розеток.  

Освітлення.  

Система освітлення повинна відповідати таким вимогам:  

– освітленість на робочому місці повинна відповідати характеру 

зорової роботи, який визначається трьома параметрами: об’єктом розрізнення – 

найменшим розміром об’єкта, що розглядається на моніторі ПК; фоном, який 

характеризується коефіцієнтом відбиття; контрастом об’єкта і фону;  
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– необхідно забезпечити достатньо рівномірне розподілення 

яскравості на робочій поверхні монітора, а також в межах навколишнього 

простору;  

– на робочій поверхні повинні бути відсутні різкі тіні;  

– в полі зору не повинно бути відблискі (підвищеної яскравості 

поверхонь, які світяться та викликають осліплення);  

– величина освітленості повинна бути постійною під час роботи;  

– слід обирати оптимальну спрямованість світлового потоку і 

необхідний склад світла.  

Вимоги до монітору.  

Основним обладнанням робочого місця користувача комп’ютера є 

монітор, системний блок та клавіатура.  

Робочі місця мають бути розташовані на відстані не менше 1,5 м від стіни 

з вікнами, від інших стін на відстані 1 м, між собою на відстані не менше 1,5 м. 

Відносно вікон робоче місце доцільно розташовувати таким чином, щоб 

природне світло падало на нього збоку, переважно зліва.  

Робочі місця слід розташовувати так, щоб уникнути попадання в очі 

прямого світла. Джерела освітлення рекомендується розташовувати з обох боків 

екрану паралельно напрямку погляду. Для уникнення світлових відблисків 

екрану, клавіатури в напрямку очей користувача, від світильників загального 

освітлення або сонячних променів, необхідно використовувати антиполискові 

сітки, спеціальні фільтри для екранів, захисні козирки, на вікнах – жалюзі.  

Екран дисплея повинен бути розташованим перпендикулярно до напрямку 

погляду. Якщо він розташований під кутом, то стає причиною сутулості. 

Відстань від дисплея до очей повинна трохи перевищувати звичну відстань між 

книгою та очима. Перед екраном монітора, особливо старих типів, повинен бути 

спеціальний захисний екран. При його відсутності треба сидіти на відстані 

витягнутої руки від монітора.  
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Фільтри з металевої або нейлонової сітки використовувати не 

рекомендується, тому що сітка спотворює зображення через інтерференцію 

світла. Найкращу якість зображення забезпечують скляні поляризаційні фільтри. 

Вони усувають практично усі відблиски, роблять зображення чітким і 

контрастним.  

При роботі з текстовою інформацією (в режимі введення даних та 

редагування тексту, читання з екрану) найбільш фізіологічним правильним є 

зображення чорних знаків на світловому (чорному) фоні.  

Монітор повинен бути розташований на робочому місці так, щоб поверхня 

екрана знаходилася в центрі поля зору на відстані 400-700 мм від очей 

користувача. Рекомендується розміщувати елементи робочого місця так, щоб 

витримувалася однакова відстань очей від екрана, клавіатури, тексту.  

Робоча поза.  

Зручна робоча поза при роботі з комп’ютером забезпечується 

регулюванням висоти робочого столу, крісла та підставки для ніг. Раціональною 

робочою позою може вважатися таке положення, при якому ступні працівника 

розташовані горизонтально на підлозі або підставці для ніш, стегна зорієнтовані 

у горизонтальній площині, верхні частини рук – вертикальній. Кут ліктєвого 

суглоба коливається в межах 70-90º, зап’ястя зігнуті під кутом не більше ніж 20º, 

нахил голови 15-20º.  

Важливою є форма спинки крісла, яка повинна повторювати форму спини. 

Висота крісла повинна бути такою, щоб користувач не почував тиску на куприк 

або стегна. Крісло бажано обладнати бильцями. Його потрібно встановити так, 

щоб не треба було тягтися до клавіатури. Періодично користувачу необхідно 

рухатися, вчасно змінювати положення тіла і робити перерви у роботі.  

При напруженій роботі за комп’ютером щогодини необхідно робити 

перерву на 15 хвилин через кожну годину і треба займатися іншою справою. 

Декілька разів на годину бажано виконувати серію легких вправ для 

розслаблення.  
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Для нейтралізації зарядів статичної електрики в приміщенні, де 

виконується робота на комп’ютерах, в тому числі на лазерних та світлодіодних 

принтерах, рекомендується збільшувати вологість повітря за допомогою 

кімнатних зволожувачів. Не рекомендується носити одяг з синтетичних 

матеріалів.  

Вимоги безпеки перед початком роботи:  

– увімкнути систему кондиціювання в приміщенні;  

– перевірити надійність встановлення апаратури на робочому столі. 

Повернути монітор так, щоб було зручно дивитися на екран – під прямим кутом 

(а не збоку) і трохи зверху вниз, при цьому екран має бути трохи нахиленим, 

нижній його край ближче до оператора;  

– перевірити загальний стан апаратури, перевірити справність 

електропроводки, з’єднувальних шнурів, штепсельних вилок, розеток, 

заземлення захисного екрана;  

– відрегулювати освітленість робочого місця;  

– відрегулювати та зафіксувати висоту крісла, зручний для 

користувача нахил його спинки;  

– приєднати до системного блоку необхідну апаратуру. Усі кабелі, що 

з’єднують системний блок з іншими пристроями, слід вставляти та виймати при 

вимкненому комп’ютері;  

– ввімкнути апаратуру комп’ютера вимикачами на корпусах в 

послідовності: монітор, системний блок, принтер (якщо передбачається 

друкування);  

– відрегулювати яскравість свічення монітора, мінімальний розмір 

світної точки, фокусування, контрастність. Не слід робити зображення надто 

яскравим, щоб не втомлювати очей.  

Вимоги безпеки під час виконання роботи:  
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– необхідно стійко розташовувати клавіатуру на робочому столі, не 

опускати її хитання. Під час роботи на клавіатурі сидіти прямо, не 

напружуватися;  

– для забезпечення несприятливого впливу на користувача пристроїв 

типу «миша» належить забезпечувати вільну велику поверхню столу для 

переміщення «миші» і зручного упору ліктьового суглоба;  

– не дозволяються посторонні розмови, подразнюючі шуми;  

– періодично при вимкненому комп’ютері прибирати ледь змоченою 

мильним розчином бавовняною ганчіркою пил з поверхонь апаратури. Екрани 

ВДТ та захисний екран протирають ганчіркою, змоченою у спирті. Не 

дозволяється використовувати рідинні або аерозольні засоби очищення 

поверхонь комп’ютера.  

Забороняється:  

– класти будь-які предмети на апаратуру комп’ютера;  

– закривати будь-чим вентиляційні отвори апаратури, що може 

призвести до її перегрівання і виходу з ладу.  
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 ВИСНОВКИ  

  

У магістерській роботі розроблено та досліджено автоматизовану систему 

класифікації технічного стану обладнання на основі методів машинного 

навчання на прикладі підшипникового вузла. Актуальність дослідження 

зумовлена високою часткою відмов підшипників у роторному обладнанні та 

необхідністю підвищення ефективності технічної діагностики шляхом 

автоматизації процесів аналізу вимірювальних даних. 

У ході аналітичної частини виконано огляд сучасних підходів до технічної 

діагностики обладнання, зокрема, методів вібраційного аналізу, спектральної 

обробки сигналів та застосування сенсорних систем. Показано, що підшипникові 

вузли є інформативним об’єктом моніторингу, а дефекти внутрішнього та 

зовнішнього кілець, тіл кочення мають характерні діагностичні ознаки, котрі 

застосовують для автоматизованої класифікації. 

У технологічній частині обґрунтовано вибір інформаційних параметрів 

вібраційних сигналів та сформовано набір ознак, що включає статистичні, 

амплітудні та спектральні характеристики. Реалізовано процедури попередньої 

обробки даних, сегментації сигналів і формування навчальної та тестової 

вибірок, що забезпечило коректність подальшого моделювання. 

У конструкторській частині спроєктовано структуру автоматизованої 

системи класифікації стану обладнання, яка включає сенсорний рівень, рівень 

збору та обробки даних, аналітичний рівень із застосуванням методів МН, а 

також рівень візуалізації та формування звітності. Розроблено алгоритми 

обробки вібраційних сигналів і класифікації станів обладнання з використанням 

нейронних мереж, методів опорних векторів, k-найближчих сусідів, випадкових 

лісів і бустингових дерев. 

У науково-дослідній частині проведено експериментальне дослідження 

класифікації чотирьох станів підшипникового вузла: нормального стану, 

дефекту внутрішнього кільця, дефекту зовнішнього кільця та дефекту тіла 
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кочення. Отримані результати показали, що всі розглянуті методи МН 

забезпечують високу точність класифікації, яка перевищує 90%. Найкращі 

показники продемонстрували нейронні мережі та ансамблеві методи, що 

підтверджується аналізом матриць помилок, кривих Gains Chart та важливості 

ознак. 

Проведений аналіз точності, похибок класифікації та стабільності моделей 

показав, що запропонована система є стійкою до варіацій вхідних даних і здатна 

коректно розпізнавати технічний стан обладнання.  

У спеціальній частині виконано оцінку ефективності запропонованої 

автоматизованої системи та сформульовано рекомендації щодо її впровадження 

в промислові процеси. Розроблена система може бути інтегрована у 

комп’ютерно-інтегровані виробництва та використана як інструмент прийняття 

рішень під час експлуатації обладнання. 
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