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Перші підходи до сегментації медичних зображень базувалися на аналізі інтенсивності 

та градієнтів яскравості, що відображало прагнення дослідників до формалізації простих і 

обчислювально ефективних алгоритмів. Застосування порогових методів дозволяло 

здійснювати класифікацію пікселів за їхнім рівнем інтенсивності, що забезпечувало швидке 

виділення областей інтересу. Водночас такі алгоритми характеризувалися високою чутливістю 

до шумів та неоднорідності освітлення, що обмежувало їхню придатність для практичного 

використання у складних медичних даних. 

Ключовим етапом аналізу таких даних є сегментація судин. Помилки сегментації 

(розриви, шум, втрата тонких гілок) призводять до некоректної топології судинного графа і, як  

наслідок, до непридатних для біодруку моделей. Тому актуальною задачею є порівняльний  

аналіз класичних та глибинних методів сегментації судинних структур на даних HiP-CT  нирки 

та визначення вимог до моделей, придатних для подальшої побудови судинної  мережі [1–

3,7,8]. Подальший розвиток сегментаційних технологій був пов’язаний із використанням 

градієнтних характеристик, які дозволяли виявляти межі між різними структурами. Класичні 

оператори, такі як Собеля, Прюітта чи Робертса, забезпечували можливість детектування різких 

змін інтенсивності, що відповідали контурам органів та тканин. Проте надмірна кількість 

виділених контурів та залежність від попереднього згладжування зображення знижували 

точність і стабільність результатів, що вимагало подальшого вдосконалення методів. 

Еволюція сегментаційних алгоритмів поступово привела до появи більш складних та 

адаптивних підходів, зокрема методів локального порогування, кластеризації пікселів, активних 

контурів та статистичних моделей на основі марковських випадкових полів. Ці методи 

дозволяли враховувати просторові залежності, локальні особливості та енергетичні функції, що 

забезпечувало підвищення точності та стійкості сегментації. Таким чином, перехід від простих 

порогових алгоритмів до багаторівневих моделей відображає загальну тенденцію до 

ускладнення методів аналізу медичних зображень та зростання вимог до їхньої діагностичної 

цінності. 

Саме архітектури згорткових нейронних мереж (CNN) стали базовим інструментом у 

сфері медичної сегментації [2, 3]. Їхня здатність до багаторівневої екстракції ознак, врахування 

просторового контексту та ефективної роботи з великими обсягами даних зробила CNN 

ключовим елементом сучасних алгоритмів. Особливе значення мають модифікації архітектур, 

такі як U-Net, які забезпечують високу точність локалізації та відновлення дрібних структур. 

U-Net поєднує енкодер та декодер зі skip-зв’язками, що зберігають просторову 

інформацію [4]; якість сегментації оцінюють за коефіцієнтом Dice та індексом Жаккара, які 

вимірюють ступінь перекриття між предиктованою маскою й еталонною розміткою. 

Модифікації (U-Net++, Attention U-Net, MultiResUNet) покращують точність дрібних структур 

завдяки багатомасштабним блокам та механізмам уваги [2, 3]. Для обробки об’ємних даних 

(КТ, МРТ, HiP-CT) застосовують 3D-U-Net та V-Net, що враховують контекст у тривимірному 

просторі [5, 8]. Окремо використовують генетичні алгоритми для автоматичного синтезу 
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архітектур, оптимізуючи баланс між якістю сегментації та обчислювальною складністю, 

важливий для роботи на обмежених ресурсах [6]. 

Сегментація судинної системи нирки за даними HiP-CT характеризується необхідністю 

відтворення складної тривимірної архітектури мікросудин, що має вирішальне значення для 

коректного моделювання фізіологічних процесів. HiP-CT забезпечує надвисоку просторову 

роздільну здатність, яка дозволяє одночасно аналізувати як великі судини, так і дрібні капіляри, 

проте слабкий контраст окремих зрізів та значний обсяг даних створюють суттєві виклики для 

алгоритмів сегментації. Використання тривимірних згорткових нейронних мереж (3D-U-Net, V-

Net) дає змогу враховувати контекст у глибині об’єму, що особливо важливо для відтворення 

топології судинних мереж та їх розгалужень. 

Отримані сегментовані моделі судинної архітектури нирки безпосередньо 

інтегруються у процеси тривимірного біодруку, де вони слугують цифровими шаблонами 

для побудови CAD-моделей васкуляризації. Точне відтворення судинної геометрії є 

ключовим чинником для забезпечення перфузії та життєздатності біодрукованих тканин, 

оскільки саме судинна мережа визначає ефективність транспорту кисню та поживних 

речовин. Таким чином, сегментація HiP-CT даних виступає фундаментальною передумовою 

для створення персоналізованих біодрукованих трансплантатів, у яких реалістична 

васкулярна структура забезпечує функціональність та практичну придатність органів.  
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