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Кваліфікаційна робота присвячена розробці системи розпізнавання рухів 

людини на основі координат ключових точок тіла з використанням методів 

штучного інтелекту та комп’ютерного зору. 

У першому розділі розглянуто значення задач розпізнавання рухів людини 

та класифікацію сучасних підходів на основі оцінки пози людини. 

У другому розділі описано формування навчального набору даних і 

архітектуру мінімальної робочої програми системи розпізнавання рухів людини 

на основі MediaPipe Pose. 

У третьому розділі наведено методику експериментального дослідження 

системи, результати її практичного застосування та порівняльний аналіз моделей 

класифікацій рухів. 

Об’єкт дослідження: процеси розпізнавання рухів людини за відеоданими. 

Предмет дослідження: методи та алгоритми розпізнавання рухів людини з 

використанням координат ключових точок тіла. 

 

http://tstu.edu.ua/?l=uk&p=structure/faculties/fis
http://tstu.edu.ua/?l=uk&p=structure/faculties/fis
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ANNOTATION 

 

Application of Artificial Intelligence Methods and Tools for Recognition and Analysis 

of Human Body Movements // The educational level "Master" qualification work // 

Kurian Vitalii // Ternopil Ivan Pulyuy National Technical University, Faculty of 

Computer Information Systems and Software Engineering, Department of Computer 

Science, SNm-61 group // Ternopil, 2025 // P. 72, fig. – 8, tables – 9, posters – 16, 

annexes – 4, ref. – 50. 

 

Key words: human motion recognition, artificial intelligence, computer vision, 

human pose estimation, body keypoints, MediaPipe Pose. 

 

The qualification work is devoted to the development of a human movement 

recognition system based on the coordinates of key points of the body using artificial 

intelligence and computer vision methods. 

The first section considers the significance of human movement recognition 

tasks and the classification of modern approaches based on human pose assessment. 

The second section describes the formation of a training dataset and the 

architecture of the minimum working program of the human movement recognition 

system based on MediaPipe Pose. 

The third section presents the methodology for experimental research of the 

system, the results of its practical application and a comparative analysis of movement 

classification models. 

Object of research: processes of human movement recognition based on video 

data. 

Subject of research: methods and algorithms for human movement recognition 

using the coordinates of key points of the body. 
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ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ, СКОРОЧЕНЬ І ТЕРМІНІВ  

 

Accuracy – загальна точність класифікації. 

CV (Computer Vision) – комп’ютерний зір. 

F1-score – узагальнений показник якості класифікації, що враховує 

precision та recall. 

Inference – режим роботи моделі без донавчання. 

k-NN (k-Nearest Neighbors) – алгоритм k найближчих сусідів. 

MediaPipe Pose – програмний модуль для оцінки пози людини за 

координатами ключових точок тіла. 

MWP (Minimum Working Program) – мінімальна робоча програма. 

Precision – показник точності позитивних передбачень. 

Random Forest – ансамблевий алгоритм машинного навчання на основі 

дерев рішень. 

Recall – показник повноти класифікації. 

Skeleton-based approach – підхід до розпізнавання рухів на основі скелетної 

моделі людини. 

ШІ – штучний інтелект. 
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 ВСТУП 

 

Актуальність теми. У сучасних інформаційних технологіях значного 

розвитку набули системи комп’ютерного зору, здатні інтерпретувати поведінку 

людини на основі аналізу рухів та поз. Такі технології використовуються у сфері 

безпеки, медицини, спорту, промислової автоматизації та людино-машинної 

взаємодії. Разом із удосконаленням методів відеозйомки та обчислювальних 

фреймворків з’явилися нові можливості для побудови легких, швидкодійних 

систем, здатних працювати в реальному часі без дорогого обладнання. Одним із 

провідних інструментів у цій сфері є бібліотека MediaPipe, яка забезпечує 

високоточне визначення ключових точок людського тіла. Проте ефективна 

інтерпретація цих даних та перетворення їх у класи рухів залишається 

актуальним науково-практичним завданням. 

У зв’язку з цим розробка інформаційної системи розпізнавання рухів 

людини на основі координат скелетної моделі MediaPipe Pose із подальшим 

навчанням розробленої моделі класифікації є важливим напрямом сучасних 

досліджень у галузі штучного інтелекту та машинного навчання. 

Мета і задачі дослідження. Метою даної кваліфікаційної роботи ступеня 

«Магістр» є розроблення та дослідження методу розпізнавання рухів людини на 

основі ключових точок, отриманих за допомогою MediaPipe Pose, із 

використанням розробленої моделі класифікації рухів. 

Для досягнення поставленої мети необхідно виконати такі завдання: 

– проаналізувати стан сучасних досліджень у галузі комп’ютерного зору та 

розпізнавання рухів людини; 

– дослідити існуючі методи виявлення та інтерпретації поз людини на 

основі бібліотеки MediaPipe; 

– проаналізувати алгоритми класифікації та обробки координат скелетної 

структури; 

– виконати порівняльний аналіз різних моделей класифікації рухів; 

– розробити та навчити власну модель розпізнавання рухів (MWP), 

протестувати її та оцінити точність; 
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– створити програмний модуль для роботи в реальному часі. 

Об’єкт дослідження процеси розпізнавання рухів людини за відеоданими. 

Предмет дослідження методи та алгоритми розпізнавання рухів людини з 

використанням координат ключових точок тіла. 

Наукова новизна одержаних результатів полягає в удосконаленні методу 

розпізнавання рухів шляхом поєднання детермінованого виділення ключових 

точок із MediaPipe Pose та подальшого навчання високоточних класифікаторів 

на основі векторних ознак. У роботі запропоновано структурований підхід до 

побудови індивідуального датасету рухів та оптимізації моделі класифікації для 

роботи в режимі реального часу. 

Практичне значення отриманих результатів полягає у створенні 

робочого прототипу системи, здатної виконувати розпізнавання рухів людини з 

високою точністю на звичайному комп’ютері або ноутбуці. Розроблений модуль 

може бути використаний у навчальних системах, спортивному аналізі, 

реабілітації, жестовому керуванні та інших прикладних задачах. 

Апробація результатів магістерської роботи. Основні результати 

дослідження були представлені та обговорені на:  

– VI Міжнародній науковій конференції «Інноваційна наука: пошук 

відповідей на виклики сучасності» (28 листопада 2025 р., м. Полтава, Україна); 

– XIV Міжнародній науково-практичній конференції молодих учених та 

студентів «Актуальні задачі сучасних технологій» (11–12 грудня 2025 р., м. 

Тернопіль, Україна). 

Публікації. Основні результати кваліфікаційної роботи опубліковано у 

двох працях конференцій (Додаток А). 

Структура й обсяг кваліфікаційної роботи. Кваліфікаційна робота 

складається зі вступу, чотирьох розділів, висновків, списку використаних джерел 

та додатків. Загальний обсяг роботи становить 72 сторінки, з них 58 сторінок 

основного тексту, який містить 8 рисунків та 9 таблиць. 
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1 ОГЛЯД І КЛАСИФІКАЦІЯ МЕТОДІВ ШТУЧНОГО ІНТЕЛЕКТУ В 

ЗАДАЧАХ РОЗПІЗНАВАННЯ РУХІВ ЛЮДИНИ 

 

1.1 Значення задач розпізнавання рухів людини у сучасних 

інформаційних технологіях 

 

Задачі розпізнавання рухів людини посідають важливе місце в сучасних 

інформаційних технологіях, оскільки вони забезпечують можливість 

інтерпретації поведінки користувача, аналізу дій, виявлення аномалій та 

створення природних інтерфейсів взаємодії зі складними програмно-апаратними 

системами. На відміну від класичних методів аналізу зображень, що орієнтовані 

переважно на статичні об’єкти, розпізнавання рухів дозволяє враховувати 

динамічний аспект поведінки, включно з часовими залежностями та 

просторовою координацією частин тіла [49]. 

Інтенсивний розвиток комп’ютерного зору, глибинного навчання та 

систем оцінювання пози людини сприяв тому, що алгоритми аналізу рухів стали 

доступними для широкого спектра прикладних задач – від медицини до 

промислової автоматизації. Зокрема, застосування згорткових і рекурентних 

нейронних мереж, а також спеціалізованих моделей просторово-часового 

аналізу, дозволило суттєво підвищити точність і стійкість таких систем у 

реальних умовах експлуатації [45]. 

Одним із ключових драйверів розвитку цієї галузі є перехід інформаційних 

систем від традиційних засобів введення (клавіатури, миші, сенсорних панелей) 

до безконтактних інтерфейсів, що реагують на жести та пози користувача. Такий 

підхід відповідає сучасній концепції natural user interfaces (NUI), у межах якої 

взаємодія з інформаційною системою здійснюється через інтуїтивно зрозумілі 

рухи людини без використання фізичних контролерів [46, 47]. 

Застосування безконтактних інтерфейсів є особливо актуальним у 

середовищах з підвищеними вимогами до гігієни, безпеки або мобільності 

користувачів, а також у випадках, коли традиційні засоби введення є технічно 

або фізично недоцільними. 
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Такі системи активно застосовуються в технологіях доповненої та 

віртуальної реальності, у сервісах дистанційного навчання, у розумних 

відеоаналітичних комплексах та в робототехніці. За даними міжнародної 

дослідницької компанії MarketsandMarkets, ринок комп’ютерного зору 

демонструє стабільне зростання, а одним із головних напрямів застосування 

визначається аналіз поведінкової активності людини [1]. 

Особливу цінність системи розпізнавання рухів мають у медицині та 

фізичній реабілітації, де вони дозволяють фіксувати амплітуду рухів, 

контролювати техніку виконання вправ та оцінювати динаміку відновлення 

пацієнтів. Аналогічним чином такі системи використовуються у спортивній 

аналітиці, де важливим є точний інструментальний контроль траєкторій рухів, 

швидкості та координації [2]. 

У сфері безпеки та відеоспостереження системи аналізу рухів 

застосовуються для автоматичного виявлення підозрілих дій, аномальної 

поведінки, падінь чи інших ситуацій, що потребують негайного реагування [3]. 

Узагальнені напрями використання систем розпізнавання рухів людини та 

характерні для них типи рухової активності наведено в таблиці 1.1. 

 

Таблиця 1.1 – Основні сфери застосування систем розпізнавання рухів 

людини 

Сфера 

застосування 

Тип рухів Основна мета Приклад використання 

Медицина Реабілітаційні Контроль 

відновлення 

Аналіз вправ ЛФК 

Спорт Динамічні Підвищення 

ефективності 

Аналіз техніки 

Безпека Поведінкові Виявлення 

аномалій 

Детекція падінь 

AR/VR Жести Інтерфейс Керування віртуальними 

об’єктами 

 

Значний прорив у розвитку технологій розпізнавання рухів відбувся 

завдяки появі високопродуктивних моделей оцінювання пози людини (pose 

estimation), які здатні працювати в реальному часі на стандартних 
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обчислювальних пристроях. Зокрема, фреймворк MediaPipe Pose, розроблений 

Google, забезпечує можливість точного визначення ключових точок тіла, що 

створює передумови для побудови ефективних систем класифікації рухів у 

широкому спектрі задач – від освітніх програмових систем до сервісів контролю 

фізичної активності [50]. 

Для наочного подання місця задачі розпізнавання рухів у загальній 

структурі системи використано рисунок 1.1, на якому наведено типову 

архітектуру такої системи: отримання відеопотоку, визначення ключових точок, 

виділення ознак та класифікація рухів. 

 

 

Рисунок 1.1 – Узагальнена схема роботи системи розпізнавання рухів 

людини 

 

Узагальнюючи, задачі розпізнавання рухів людини є одним із ключових 

напрямів розвитку штучного інтелекту та комп’ютерного зору. Вони 

забезпечують створення інтуїтивних інтерфейсів, автоматизують аналіз 

поведінки, підвищують ефективність відеоспостереження та відкривають нові 

можливості для розвитку медичних і спортивних технологій. Поява моделей 

легкого виконання, таких як MediaPipe Pose, значно розширює доступність цих 

рішень, забезпечуючи можливість розробки високоточних систем у реальному 

часі навіть за обмежених обчислювальних ресурсів. 
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1.2 Класифікація методів штучного інтелекту для розпізнавання рухів 

людини 

 

Методи штучного інтелекту, що застосовуються для розпізнавання рухів 

людини, відрізняються за типами вхідних даних, принципами побудови моделей 

та обчислювальними вимогами. Їх класифікація дозволяє систематизувати 

сучасні підходи та визначити доцільність використання того чи іншого методу 

залежно від умов експлуатації та вимог до швидкодії й точності. 

У контексті задач комп’ютерного зору та аналізу поведінки людини така 

класифікація є необхідною, оскільки різні підходи демонструють істотно 

відмінні характеристики щодо точності, стійкості до зовнішніх завад та 

можливості роботи в реальному часі. Це особливо важливо для прикладних 

інформаційних систем, орієнтованих на інтерактивну взаємодію з користувачем. 

Першу групу становлять методи, засновані на безпосередньому аналізі 

зображень і відеопослідовностей. У таких підходах рух описується через зміну 

піксельних характеристик між кадрами, зокрема за допомогою оптичного 

потоку, гістограм орієнтованих градієнтів та локальних візуальних дескрипторів. 

Подальший розвиток цього напряму пов’язаний із використанням 

згорткових нейронних мереж, включаючи 2D- та 3D-CNN, які здатні 

автоматично формувати просторово-часові ознаки руху. Разом з тим такі методи 

є чутливими до змін фону, освітлення та оклюзій, а також потребують значних 

обчислювальних ресурсів, що ускладнює їх застосування в системах реального 

часу та на вбудованих пристроях [4]. 

Альтернативний підхід ґрунтується на використанні скелетних моделей 

людини, де рух описується координатами ключових точок тіла. Такі дані 

формуються за допомогою алгоритмів оцінки пози та є значною мірою 

інваріантними до візуальних характеристик сцени, зокрема фону та освітлення. 

Отримані координати використовуються як вхідні ознаки для класичних 

алгоритмів машинного навчання або нейромережевих моделей. Перевагами 

цього підходу є компактність подання даних, зменшення обчислювального 

навантаження та висока стійкість до зовнішніх завад. Саме методи на основі 
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координат ключових точок широко застосовуються в сучасних легковагових 

системах розпізнавання рухів, зокрема з використанням фреймворку MediaPipe 

Pose [5]. 

Окрему групу складають методи аналізу часових послідовностей, які 

враховують динаміку зміни положень тіла в часі. До них належать рекурентні 

нейронні мережі, зокрема LSTM та GRU, а також сучасні трансформерні 

архітектури. Такі моделі є ефективними для розпізнавання рухів, що мають чітко 

виражену фазову структуру або тривалі часові залежності, проте їх застосування 

часто супроводжується підвищеними вимогами до обсягу навчальних даних і 

обчислювальних ресурсів [6]. 

У сучасних дослідженнях також використовуються комбіновані методи, 

що поєднують декілька типів ознак, наприклад зображення, оптичний потік і 

скелетні дані. Незважаючи на високу точність, такі підходи характеризуються 

значною складністю реалізації та обмеженою придатністю для використання у 

прикладних системах, орієнтованих на роботу в реальному часі. 

У сучасних дослідженнях також використовуються комбіновані методи, 

що поєднують декілька типів ознак, наприклад зображення, оптичний потік і 

скелетні дані. Незважаючи на високу точність, такі підходи характеризуються 

значною складністю реалізації та обмеженою придатністю для роботи на 

стандартних обчислювальних пристроях. 

З огляду на наведені особливості різних підходів до розпізнавання рухів 

людини, доцільним є їх систематизоване порівняння за ключовими практичними 

критеріями. Зокрема, важливими є тип вхідних даних, обчислювальна складність 

алгоритмів, стійкість до змін умов зйомки та придатність до роботи в режимі 

реального часу. Таке порівняння дозволяє наочно оцінити переваги та 

обмеження кожного підходу в контексті прикладного використання. 

Для узагальнення наведених підходів у таблиці 1.2 наведено порівняльну 

характеристику основних методів розпізнавання рухів людини за ключовими 

практичними критеріями. 
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Таблиця 1.2 – Порівняльна характеристика методів розпізнавання рухів 

людини 

Підхід Тип вхідних 

даних 

Обчислювальна 

складність 

Стійкість 

до фону 

Придатність 

для реального 

часу 

Аналіз 

зображень 

та відео 

RGB-кадри, 

відеопотік 

Висока Низька Обмежена 

Скелетні 

методи 

Координати 

ключових 

точок 

Низька–середня Висока Висока 

Часові 

моделі 

Послідовності 

ознак 

Середня Залежить 

від ознак 

Середня 

Комбіновані 

підходи 

Зображення + 

скелет 

Дуже висока Висока Низька 

 

Аналіз даних, наведених у таблиці 1.2, показує, що методи, засновані на 

використанні координат ключових точок тіла, забезпечують оптимальне 

співвідношення між швидкодією, стійкістю до змін умов зйомки та точністю 

розпізнавання. Це робить їх доцільними для реалізації прикладних систем, 

орієнтованих на роботу в реальному часі без використання спеціалізованого 

апаратного забезпечення. Враховуючи ці переваги, у межах даної 

кваліфікаційної роботи обрано підхід, заснований на аналізі скелетних 

координат, як основу для побудови системи розпізнавання рухів людини. 

 

1.3 Методи оцінки пози людини (Pose Estimation) як основа 

розпізнавання рухів 

 

Методи оцінки пози людини (pose estimation) є ключовим компонентом 

сучасних систем розпізнавання рухів, оскільки забезпечують перехід від 

візуальної інформації до формалізованого числового подання рухової 

активності. На відміну від підходів, що працюють безпосередньо з піксельними 

значеннями зображення, методи оцінки пози дозволяють описати рух людини у 

вигляді координат ключових точок тіла, які відображають положення суглобів і 

сегментів скелета . 
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У загальному випадку задача оцінки пози полягає у визначенні 

просторового розташування анатомічно значущих точок тіла людини за одним 

або кількома зображеннями. За типом вихідних даних розрізняють двовимірні та 

тривимірні методи. Двовимірні підходи визначають координати ключових точок 

у площині зображення, що забезпечує їхню високу швидкодію та можливість 

застосування в режимі реального часу. Тривимірні методи дозволяють 

відновлювати просторову конфігурацію тіла, проте потребують або 

використання багатокамерних систем, або складних моделей реконструкції 

глибини, що суттєво підвищує обчислювальну складність. 

Перші підходи до оцінки пози людини ґрунтувалися на класичних методах 

комп’ютерного зору, таких як аналіз контурів, шаблонне співставлення та ручне 

проєктування ознак. Ці методи були чутливими до зміни освітлення, фону та 

часткових перекриттів тіла. З появою глибинного навчання основний акцент 

змістився на нейромережеві моделі, здатні автоматично визначати ключові точки 

тіла з високою точністю та стійкістю до зовнішніх факторів [7]. 

Серед сучасних методів оцінки пози виділяються моделі OpenPose, 

AlphaPose, MoveNet, BlazePose та MediaPipe Pose. Вони відрізняються кількістю 

визначених ключових точок, архітектурою нейронних мереж та вимогами до 

апаратних ресурсів. Високоточні моделі, такі як OpenPose або AlphaPose, 

зазвичай використовуються у середовищах із графічними прискорювачами, тоді 

як легковагові моделі орієнтовані на роботу на центральному процесорі або 

мобільних пристроях [8]. 

Особливу увагу у сучасних прикладних системах привертає фреймворк 

MediaPipe Pose, розроблений компанією Google. Він базується на архітектурі 

BlazePose та оптимізований для роботи в реальному часі навіть на пристроях з 

обмеженими обчислювальними ресурсами. Вбудовані механізми згладжування 

та стабілізації координат зменшують вплив шумів відеопотоку, що є критично 

важливим для задач подальшої класифікації рухів. Отримані координати можуть 

безпосередньо використовуватися як вхідні дані для алгоритмів машинного 

навчання без складної попередньої обробки. 
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На рисунку 1.3 показано приклад роботи алгоритмів, який включає 

послідовні етапи: отримання відеопотоку, виявлення людини у кадрі, визначення 

координат ключових точок та формування скелетної моделі. Саме результати 

цього етапу використовуються надалі для аналізу динаміки рухів та їх 

класифікації. 

 

 

Рисунок 1.3 – Узагальнений принцип роботи алгоритмів оцінки пози 

людини з формуванням скелетної моделі. 

 

Координати ключових точок, отримані в результаті оцінки пози, можуть 

використовуватися як первинні ознаки або слугувати основою для обчислення 

похідних характеристик, зокрема кутів між сегментами тіла, відстаней між 

суглобами, траєкторій та швидкісних параметрів. Такий підхід дозволяє перейти 

від аналізу окремих поз до дослідження повноцінних рухових патернів у часі, що 

є необхідною умовою для розпізнавання складних рухів. 

Отже, методи оцінки пози людини становлять фундамент сучасних систем 

розпізнавання рухів, забезпечуючи компактне, інформативне та стійке подання 

рухової активності. З огляду на баланс між точністю та швидкодією, у межах 

даної кваліфікаційної роботи як базовий інструмент оцінки пози обрано 

фреймворк MediaPipe Pose. 
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1.4 Алгоритми класифікації рухів на основі координат ключових 

точок 

 

Після етапу оцінки пози людини ключовим завданням системи 

розпізнавання рухів є коректна інтерпретація отриманих координат ключових 

точок та віднесення поточної рухової активності до відповідного класу. Для 

цього застосовуються алгоритми класифікації, які аналізують просторові та 

часові закономірності у даних та формують рішення щодо типу руху. Вибір 

конкретного алгоритму залежить від структури ознак, обсягу навчальних даних, 

вимог до швидкодії та складності реалізації. 

Для систематизації основних підходів до класифікації рухів на основі 

координат ключових точок доцільно використати порівняльний аналіз 

алгоритмів за практичними критеріями, наведеними у таблиці 1.3. 

 

Таблиця 1.3 – Порівняльна характеристика алгоритмів класифікації рухів 

Алгоритм Тип 

ознак 

Обчислювальна 

складність 

Вимоги до 

навчальних 

даних 

Придатність 

для 

реального 

часу 

KNN Статичні Середня Низькі Обмежена 

Random Forest Статичні Середня Середні Висока 

LSTM / GRU Часові Висока Високі Середня 

Transformer Часові Дуже висока Дуже високі Низька 

 

У найпростішому випадку для класифікації рухів використовуються 

класичні алгоритми машинного навчання, які працюють із векторними ознаками. 

Як вхідні дані можуть використовуватися безпосередньо координати ключових 

точок або похідні характеристики, такі як відстані між суглобами, кути згинання 

кінцівок, нормалізовані траєкторії руху. 

До поширених алгоритмів цього класу належить метод k-найближчих 

сусідів (KNN), який здійснює класифікацію на основі близькості поточного 

вектора ознак до навчальних прикладів. Перевагою KNN є простота реалізації та 

інтерпретованість результатів, однак зі збільшенням обсягу даних зростають 
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обчислювальні витрати на етапі класифікації, що обмежує його застосування у 

системах реального часу [11]. 

Іншим поширеним підходом є використання дерев рішень та ансамблевих 

методів, зокрема Random Forest. Такі алгоритми добре працюють із нелінійними 

залежностями між ознаками, є стійкими до шумів та дозволяють досягати 

високої точності навіть на відносно невеликих вибірках. 

Крім того, Random Forest забезпечує можливість оцінки важливості 

окремих ознак, що є корисним при аналізі впливу різних параметрів руху на 

результат класифікації. Як показано у таблиці 1.3, ансамблеві методи 

демонструють сприятливий баланс між точністю та швидкодією, що зумовлює 

їх широке застосування у прикладних системах розпізнавання рухів у реальному 

часі [12]. 

Окрему групу становлять нейромережеві методи класифікації, які 

дозволяють моделювати складні нелінійні залежності у даних. Для задач, у яких 

рух має виражену часову структуру, ефективними є рекурентні нейронні мережі, 

зокрема LSTM та GRU [13]. 

У сучасних дослідженнях також застосовуються трансформерні 

архітектури, які демонструють високу ефективність у задачах аналізу часових 

послідовностей. Разом з тим, як узагальнено у таблиці 1.3, високі обчислювальні 

вимоги таких моделей обмежують їх використання у ресурсно обмежених 

системах та в режимі реального часу [14]. 

Для прикладних систем, орієнтованих на роботу в реальному часі, 

доцільним є компромісний підхід, який поєднує використання координат 

ключових точок тіла з класичними або ансамблевими алгоритмами машинного 

навчання. Такий підхід дозволяє досягти високої точності класифікації при 

помірних обчислювальних витратах і забезпечити стабільну роботу системи на 

стандартних обчислювальних платформах. 

У межах даної кваліфікаційної роботи реалізовано власний підхід до 

класифікації рухів, умовно позначений як MWP, який базується на використанні 

координат ключових точок, отриманих за допомогою MediaPipe Pose, та 
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подальшому застосуванні алгоритмів машинного навчання для розпізнавання 

рухів. 

З урахуванням порівняльних характеристик, наведених у таблиці 1.3, 

обраний підхід забезпечує оптимальне співвідношення між точністю 

класифікації, швидкодією та складністю реалізації, що робить його доцільним 

для використання у прикладних системах розпізнавання рухів людини в 

реальному часі. 

 

1.5 Постановка задачі дослідження 

 

На основі аналізу сучасних підходів до розпізнавання рухів людини можна 

зробити висновок, що значна частина існуючих рішень орієнтована на 

використання складних нейромережевих моделей та великих обсягів навчальних 

даних, що ускладнює їх практичне застосування в системах реального часу. 

Водночас зростає актуальність підходів, які забезпечують прийнятну точність 

розпізнавання рухів при помірних обчислювальних витратах та відносній 

простоті реалізації. 

У зв’язку з цим у кваліфікаційній роботі ставиться задача розробки та 

експериментального дослідження системи розпізнавання рухів людини, що 

базується на використанні координат ключових точок тіла та методів машинного 

навчання. Основна увага приділяється створенню мінімальної робочої програми 

(MWP), яка реалізує повний цикл обробки відеоданих – від отримання 

відеопотоку до класифікації рухів у режимі реального часу. 

Для досягнення поставленої мети у роботі необхідно розв’язати такі 

основні задачі: 

• проаналізувати сучасні методи розпізнавання рухів людини та 

обґрунтувати вибір pose-based підходу; 

• розробити архітектуру мінімальної робочої програми системи 

розпізнавання рухів; 

• сформувати навчальний набір даних на основі відеоматеріалів; 



21 

 

• реалізувати алгоритми витягу координат ключових точок тіла та 

формування вектора ознак; 

• виконати навчання моделей класифікації рухів і провести їх 

експериментальне тестування; 

• проаналізувати отримані результати, виявити практичні обмеження 

та окреслити напрями подальшого розвитку системи. 

Таким чином, постановка задачі дослідження визначає загальну логіку 

кваліфікаційної роботи та забезпечує зв’язок між теоретичним аналізом методів 

розпізнавання рухів і практичною реалізацією та експериментальним 

дослідженням розробленої системи. 

 

1.6 Висновки до першого розділу 

 

У першому розділі кваліфікаційної роботи виконано комплексний огляд 

сучасних підходів до розпізнавання рухів людини з використанням методів 

штучного інтелекту. Проаналізовано значення задач розпізнавання рухів у 

сучасних інформаційних технологіях та визначено основні напрями їх 

застосування у сфері комп’ютерного зору, людино-комп’ютерної взаємодії, 

медицини, спорту та безпекових систем. 

У ході дослідження здійснено класифікацію методів розпізнавання рухів 

за типами вхідних даних і алгоритмічними підходами. Показано, що методи, 

засновані на безпосередньому аналізі зображень і відеопослідовностей, 

забезпечують високу точність, однак характеризуються значною 

обчислювальною складністю та чутливістю до зовнішніх умов. Водночас 

підходи, що використовують координати ключових точок тіла, дозволяють 

суттєво зменшити обсяг оброблюваних даних і забезпечити стабільну роботу 

систем у режимі реального часу. 

Окрему увагу приділено методам оцінки пози людини як 

фундаментальному етапу систем розпізнавання рухів. Проаналізовано сучасні 

моделі оцінки пози та визначено, що легковагові рішення, зокрема MediaPipe 

Pose, забезпечують оптимальний баланс між точністю, швидкодією та вимогами 
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до обчислювальних ресурсів, що робить їх доцільними для використання у 

прикладних інформаційних системах. 

Також розглянуто алгоритми класифікації рухів на основі координат 

ключових точок тіла. Показано, що класичні алгоритми машинного навчання та 

ансамблеві методи, зокрема k-Nearest Neighbors і Random Forest, є ефективними 

для задач розпізнавання рухів за умови коректної підготовки ознак. Водночас 

нейромережеві підходи дозволяють враховувати часову динаміку рухів, проте 

потребують більших обчислювальних витрат і об’ємних навчальних вибірок. 

На основі проведеного огляду та аналізу у розділі сформульовано 

постановку задачі дослідження, яка полягає у розробці та експериментальному 

дослідженні системи розпізнавання рухів людини на основі координат ключових 

точок тіла з використанням мінімальної робочої програми. Обґрунтовано вибір 

використання MediaPipe Pose для отримання координат ключових точок тіла та 

підходу MWP для подальшої класифікації рухів, що створює теоретичне 

підґрунтя для переходу до практичної частини роботи, присвяченої 

проєктуванню, реалізації та експериментальному дослідженню розробленої 

системи. 



23 

 

2 ФОРМУВАННЯ НАВЧАЛЬНОГО НАБОРУ ДАНИХ І ПРОГРАМНА 

РЕАЛІЗАЦІЯ СИСТЕМИ MWP НА ОСНОВІ MEDIAPIPE POSE 

 

2.1 Загальні принципи реалізація програмної системи 

 

Реалізація системи розпізнавання рухів людини потребує поєднання 

алгоритмічних рішень із коректною організацією даних та програмних засобів їх 

обробки. Для практичної перевірки обраного підходу використовується 

мінімальна робоча програма MWP (Minimum Working Program), яка реалізує 

базову функціональність системи без надмірного ускладнення програмної 

архітектури. 

Основою розробленої MWP є застосування фреймворку MediaPipe Pose 

для автоматизованого визначення координат ключових точок тіла людини на 

основі відеопослідовностей. Застосування такого підходу дозволяє отримувати 

компактне та інформативне подання рухової активності, придатне для подальшої 

обробки алгоритмами машинного навчання, а також забезпечує можливість 

роботи системи в режимі, наближеному до реального часу [15]. 

Отримані координати ключових точок використовуються для формування 

навчального набору даних і подальшого навчання моделей класифікації рухів. 

Якість та репрезентативність сформованого датасету безпосередньо впливають 

на точність розпізнавання рухів, тому навчальні дані формуються на основі 

відеофрагментів із зафіксованими рухами людини з подальшим 

автоматизованим виділенням ключових точок тіла. 

Програмна реалізація мінімальної робочої програми здійснюється з 

використанням мови програмування Python та відкритих бібліотек 

комп’ютерного зору і машинного навчання, що забезпечує гнучкість реалізації, 

відтворюваність експериментальних результатів та можливість подальшого 

розширення функціональних можливостей системи. 
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2.2 Архітектура мінімальної робочої програми (MWP) 

 

Архітектура мінімальної робочої програми MWP спроєктована з 

урахуванням принципів модульності, логічного розділення функцій та 

можливості поетапного розвитку системи. Такий підхід дозволяє чітко 

відокремити основні етапи обробки даних, спростити аналіз роботи системи та 

забезпечити відтворюваність експериментальних досліджень. 

Використання модульної архітектури є особливо важливим для 

прикладних систем комп’ютерного зору, оскільки дозволяє незалежно 

розробляти, тестувати та модифікувати окремі компоненти без порушення 

загальної логіки функціонування програми. Це створює передумови для 

масштабування системи та адаптації її до нових експериментальних умов. 

Загальна архітектура MWP передбачає послідовний потік даних від 

джерела відеоінформації до модулів аналізу рухів і збереження результатів. На 

концептуальному рівні система складається з окремих функціональних 

компонентів, кожен з яких відповідає за певний етап обробки: зчитування 

відеоданих, оцінку пози людини, формування ознак руху та накопичення 

навчального набору даних. 

Така організація архітектури відповідає сучасним принципам побудови 

систем комп’ютерного зору, у яких кожен етап обробки виконує чітко визначену 

функцію та взаємодіє з іншими модулями через формалізовані інтерфейси [16]. 

Ключовою особливістю архітектури є ізоляція модуля оцінки пози 

людини, реалізованого на основі MediaPipe Pose, від інших компонентів системи. 

Це дозволяє розглядати алгоритм оцінки пози як незалежний функціональний 

блок, результати роботи якого використовуються іншими модулями без 

залежності від внутрішніх механізмів його реалізації. 

Така архітектурна організація спрощує подальшу модернізацію або заміну 

окремих компонентів системи, зокрема можливість використання 

альтернативних алгоритмів оцінки пози без необхідності суттєвих змін у логіці 

класифікації рухів [17]. 
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Архітектура MWP також передбачає розмежування між даними та 

програмною логікою. Навчальні дані, сформовані на основі відеоматеріалів, 

зберігаються у зовнішніх табличних файлах, що забезпечує незалежність 

експериментів від конкретної реалізації алгоритмів класифікації. 

Такий підхід дає змогу повторно використовувати сформований датасет у 

різних експериментальних сценаріях, порівнювати результати роботи різних 

алгоритмів класифікації та забезпечувати коректність експериментальної 

перевірки розробленої системи. 

Основні програмні модулі мінімальної робочої програми MWP та їх 

функціональне призначення узагальнено в таблиці 2.1. 

 

Таблиця 2.1 – Основні модулі архітектури мінімальної робочої програми 

MWP 

Модуль системи Вхідні дані Основні функції Вихідні дані 

Модуль 

зчитування відео 

Відеопотік Захоплення та 

попередня обробка 

кадрів 

Кадри відео 

Модуль оцінки 

пози 

Кадри відео Визначення координат 

ключових точок 

Координати 

точок 

Модуль 

формування 

ознак 

Координати 

точок 

Обчислення похідних 

ознак руху 

Вектори ознак 

Модуль 

збереження даних 

Вектори ознак Накопичення та 

збереження датасету 

Табличні файли 

Модуль 

класифікації 

Ознаки руху Визначення класу руху Результат 

класифікації 

 

На рисунку 2.1 наведено структуру файлів мінімальної робочої програми, 

що відображає поділ системи на логічні модулі та взаємозв’язки між ними. Така 

організація файлів узгоджується з модульною архітектурою системи та 

забезпечує зручність розширення, аналізу й супроводу програмного проєкту. 

Таким чином, обрана архітектура MWP забезпечує структуровану 

організацію програмної системи, чіткий розподіл відповідальності між 

компонентами та створює основу для подальшої програмної реалізації й 

експериментальної перевірки системи розпізнавання рухів людини. 
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Рисунок 2.1 – Структура файлів мінімальної робочої програми MWP. 

 

Перейдемо до вибору програмних засобів і технологій реалізації. 

 

2.3 Вибір програмних засобів і технологій реалізації 

 

Реалізація системи розпізнавання рухів людини в межах мінімальної 

робочої програми MWP потребує використання програмних засобів, які 

забезпечують баланс між точністю обробки, швидкодією та відносною 

простотою впровадження. Особливу увагу при виборі технологій було приділено 

можливості роботи в режимі, близькому до реального часу, а також доступності 

інструментів для експериментального дослідження та подальшого розширення 

функціональних можливостей системи. 

Як базову мову програмування обрано Python, що зумовлено його 

широким застосуванням у задачах комп’ютерного зору та машинного навчання. 

Порівняльну характеристику програмних засобів, які можуть бути використані 

на різних етапах реалізації системи, наведено в таблиці 2.1. 
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Таблиця 2.1 – Порівняльна характеристика програмних засобів, що 

використовуються для реалізації 

Етап системи Альтернативні 

засоби 

Обраний 

засіб 

Характеристика 

застосування 

Мова 

програмування 

C++, Java, Python Python Забезпечує швидке 

прототипування та 

інтеграцію бібліотек 

Оцінка пози 

людини 

OpenPose, PoseNet, 

MediaPipe Pose 

MediaPipe 

Pose 

Оптимізований для 

роботи з відеопотоком у 

режимі реального часу 

Обробка 

відеоданих 

FFmpeg, 

GStreamer, 

OpenCV 

OpenCV Підтримує базові операції 

з відеокадрами 

Обробка 

числових даних 

MATLAB, NumPy NumPy Забезпечує роботу з 

векторними даними 

Класифікація 

рухів 

TensorFlow, 

PyTorch, scikit-

learn 

scikit-learn Реалізує класичні 

алгоритми машинного 

навчання 

 

Для оцінки пози людини та отримання координат ключових точок тіла 

використано бібліотеку MediaPipe Pose, вибір якої здійснено з урахуванням 

вимог до швидкодії та можливості роботи з відеопотоком у реальному часі 

(таблиця 2.1). Використання MediaPipe Pose дає змогу суттєво зменшити 

обчислювальні витрати порівняно з повноцінними нейромережевими рішеннями 

та забезпечує стабільність роботи в умовах змінного освітлення й фону. 

Для роботи з відеоданими та окремими кадрами застосовано бібліотеку 

OpenCV, яка є стандартним інструментом для обробки зображень і 

відеопослідовностей. Вона забезпечує ефективні засоби зчитування відеопотоку, 

перетворення кольорових просторів і попередньої обробки зображень, 

необхідних для подальшого аналізу пози людини. 

Обробка числових даних та формування векторів ознак виконуються з 

використанням бібліотеки NumPy, яка надає оптимізовані структури даних для 

роботи з багатовимірними масивами. Це дозволяє уніфікувати подання 

координат ключових точок тіла та забезпечити зручну передачу даних між 

етапами обробки та класифікації. 



28 

 

Для побудови моделей класифікації рухів використано бібліотеку scikit-

learn, яка реалізує широкий спектр алгоритмів машинного навчання. 

Застосування класичних методів класифікації, зокрема k-Nearest Neighbors та 

Random Forest, обґрунтоване їхньою інтерпретованістю, відносно невисокими 

вимогами до обсягу навчальних даних та можливістю швидкого перенавчання 

при зміні набору ознак або класів рухів. 

Таким чином, обраний набір програмних засобів і технологій відповідає 

поставленим вимогам до реалізації мінімальної робочої програми системи 

розпізнавання рухів людини та створює основу для подальшої програмної 

реалізації й експериментального дослідження системи. 

 

2.4 Формування навчального набору даних 

 

Якість і структура навчального набору даних є визначальними чинниками 

ефективності системи розпізнавання рухів людини. Навчальний датасет має бути 

репрезентативним, містити достатню кількість прикладів для кожного класу та 

відповідати умовам, у яких система застосовуватиметься на практиці. 

У задачах класифікації рухів на основі координат ключових точок 

особливу роль відіграє узгодженість просторового подання рухів, коректність 

анотації класів та стабільність умов зйомки. Порушення цих вимог може 

призводити до накопичення похибок у навчальних даних, що негативно впливає 

на здатність моделей до узагальнення та коректної роботи на нових зразках [48]. 

У межах даної роботи навчальний набір формується на основі 

відеофрагментів із зафіксованими рухами людини. Для кожного відео 

здійснюється покадрове зчитування та автоматизоване визначення координат 

ключових точок тіла за допомогою MediaPipe Pose [16]. 

Отримані координати ключових точок розглядаються як первинні числові 

ознаки, що описують положення сегментів тіла людини у двовимірному 

просторі. Такий спосіб подання дозволяє відокремити аналіз руху від візуальних 

характеристик сцени та зменшити вплив фону, освітлення й текстурних 

особливостей відео. 
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Джерела даних для навчання та обґрунтування вибору 

Матеріали для формування навчального набору даних у задачах 

розпізнавання рухів можуть надходити з кількох типових джерел, зокрема 

публічних відеодатасетів, спеціалізованих наборів даних поз або скелетів, 

синтетично згенерованих прикладів, а також власних відеозаписів, зібраних під 

умови конкретної системи. 

Публічні датасети, такі як Kinetics, містять значну кількість 

відеофрагментів і класів рухів та є корисними для навчання масштабних 

нейромережевих моделей [17]. Водночас такі набори даних, як правило, 

формуються в неконтрольованих умовах, що ускладнює забезпечення 

однорідності експерименту в межах легковагових прикладних систем. 

Окрему категорію становлять датасети, орієнтовані на оцінку пози та 

тривимірний аналіз рухів, зокрема Human3.6M, які забезпечують високий рівень 

деталізації рухової активності людини [18]. Проте такі набори даних потребують 

спеціалізованих умов зйомки та, як правило, орієнтовані на лабораторні сценарії 

використання. 

Аналогічно, RGB-D датасети, наприклад NTU RGB+D, вимагають 

використання сенсорів глибини та не завжди відповідають вимогам простого 

розгортання системи на стандартному персональному комп’ютері [19]. 

З огляду на мету даної кваліфікаційної роботи, яка полягає у створенні 

працездатної мінімальної робочої програми MWP та експериментальній 

перевірці розпізнавання обраних рухів, було обрано підхід формування 

навчального набору даних на основі самостійно знятих відео. 

Такий підхід дозволяє забезпечити відповідність даних реальним умовам 

майбутнього застосування системи, контролювати класи рухів і сценарії їх 

виконання, а також мінімізувати вплив сторонніх факторів, що позитивно 

позначається на відтворюваності експериментальних результатів. 

Це дозволяє: 

• забезпечити відповідність даних реальним умовам майбутнього 

застосування,  

• контролювати класи рухів і сценарії виконання,  



30 

 

• отримати однорідний набір за ракурсом, відстанню до камери та 

освітленням, що підвищує відтворюваність результатів. 

Після обробки відео формується табличний файл у форматі CSV, у якому 

кожен рядок відповідає одному зразку (кадру або кроку часової вибірки), а 

стовпці містять координати ключових точок тіла та мітку класу руху. Така 

структура є універсальною та придатною для використання з різними 

алгоритмами машинного навчання. 

Повний програмний код модуля формування навчального набору даних 

наведено в додатку Б. 

На рисунку 2.2 наведено фрагмент сформованого файлу навчального 

набору даних, відкритого у табличному редакторі, що наочно ілюструє 

структуру збереження координат ключових точок та відповідних міток класів. 

 

 

Рисунок 2.2 – Фрагмент таблиці навчального набору даних (CSV/Excel) 

 

Таким чином, сформований набір даних є відтворюваною основою для 

навчання та тестування моделей класифікації в межах мінімальної робочої 

програми MWP. Використання власних відеоматеріалів у поєднанні з 

автоматизованим витягом координат ключових точок дозволяє зменшити вплив 
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сторонніх факторів та отримати дані, максимально релевантні до умов 

використання системи. 

 

2.5 Програмна реалізація мінімальної робочої програми (MWP) 

 

2.5.1 Загальна характеристика програмної реалізації 

 

Програмна реалізація мінімальної робочої програми MWP спрямована на 

практичне втілення раніше визначеної архітектури системи та забезпечення 

узгодженої роботи її основних компонентів, що відповідає загальноприйнятим 

підходам до реалізації програмних систем із модульною архітектурою та чітким 

розподілом відповідальності між компонентами [20]. 

Під час реалізації особлива увага приділялася збереженню відповідності 

між концептуальною архітектурою системи та її програмним втіленням, що 

дозволяє уникнути прихованих залежностей між модулями та забезпечує 

прозорість програмної логіки. Такий підхід є важливим для експериментальних 

систем, у яких необхідно чітко контролювати вплив окремих компонентів на 

кінцевий результат. 

Реалізація MWP виконана з урахуванням вимог до мінімальної достатності 

функціоналу, відтворюваності експериментів і можливості поетапного 

розширення системи. Програмні компоненти взаємодіють між собою у вигляді 

послідовного конвеєра обробки даних, у межах якого кожен етап реалізує чітко 

визначену функцію. 

Такий конвеєрний підхід дозволяє мінімізувати складність окремих 

програмних модулів, полегшити тестування кожного етапу обробки та 

забезпечити контроль над проходженням даних усередині системи. Крім того, це 

спрощує аналіз продуктивності та ідентифікацію можливих вузьких місць у 

процесі обробки відеоданих. 

Подальший виклад зосереджений на описі програмних механізмів, які 

забезпечують узгоджену роботу компонентів системи та реалізують послідовний 

перехід від відеопотоку до представлення рухів у вигляді векторів ознак. У 
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наступному підрозділі буде розглянуто процес навчання та тестування моделей 

класифікації, а також методи оцінювання ефективності розробленої мінімальної 

робочої програми. 

 

2.5.2 Обробка відеопотоку та вибірка кадрів 

 

У межах програмної реалізації мінімальної робочої програми обробка 

відеопотоку здійснюється шляхом покадрового зчитування відеофайлів із 

використанням стандартних засобів комп’ютерного зору. Відео розглядається як 

впорядкована послідовність кадрів, які у часовому порядку передаються на 

подальші етапи обробки в межах програмного конвеєра. Такий підхід забезпечує 

універсальність реалізації та дозволяє працювати з відеофайлами різної 

тривалості й формату. 

З метою зменшення обчислювального навантаження та забезпечення 

стабільної швидкодії системи в реалізації застосовано вибірку кадрів із 

фіксованим кроком. Програмно це реалізується шляхом пропуску визначеної 

кількості кадрів між оброблюваними зображеннями, що дозволяє обмежити 

кількість вхідних даних без втрати загальної структури руху. Такий підхід 

забезпечує сталість часової дискретизації та стабільність роботи системи 

незалежно від частоти кадрів вихідного відео [21]. 

Принцип відбору кадрів із відеопотоку з фіксованим часовим кроком, а 

також співвідношення між початковою та оброблюваною послідовністю кадрів, 

наочно проілюстровано на рисунку 2.3. 

Використання фіксованого кроку вибірки є доцільним для задач 

розпізнавання рухів, у яких аналізується відносна динаміка положень тіла, а не 

кожен окремий кадр відеопотоку. Це дозволяє зменшити обсяг оброблюваних 

даних та підвищити ефективність подальших етапів аналізу. 
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Рисунок 2.3 – Принцип відбору кадрів із відеопотоку з фіксованим 

кроком 

 

Оброблені після вибірки кадри передаються на наступний етап 

програмного конвеєра, де виконується автоматизований витяг координат 

ключових точок тіла людини. Отримані координати використовуються як основа 

для формування числового представлення рухів та подальшої побудови ознак 

для алгоритмів класифікації. 

 

2.5.3 Програмна реалізація витягу координат ключових точок тіла 

 

Наступним ключовим етапом програмної реалізації мінімальної робочої 

програми є автоматизований витяг координат ключових точок тіла людини з 

відеокадрів. Саме на цьому етапі відбувається перехід від візуального подання 

руху у вигляді зображень до формалізованого числового опису, придатного для 

подальшого аналізу методами машинного навчання. 

Коректність і стабільність визначення ключових точок безпосередньо 

впливають на якість сформованих ознак і, як наслідок, на точність класифікації 

рухів, що зумовлює критичну важливість даного етапу в загальному 

програмному конвеєрі MWP. 

Для реалізації цього етапу використовується фреймворк MediaPipe Pose, 

який дозволяє виконувати оцінку пози людини в режимі обробки окремих 

зображень без необхідності попереднього навчання користувацької моделі. 
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MediaPipe Pose реалізує попередньо натреновану модель оцінки пози, 

оптимізовану для роботи в реальному часі на стандартних обчислювальних 

платформах. 

Такий підхід є доцільним для мінімальної робочої програми, оскільки 

знімає потребу у створенні власної моделі детекції пози та дозволяє зосередитись 

на дослідженні алгоритмів класифікації рухів, забезпечуючи при цьому 

стабільну роботу системи за мінімальних обчислювальних витрат. 

У програмному конвеєрі кожен відібраний кадр передається до модуля 

оцінки пози, де виконується аналіз зображення та визначення просторового 

положення ключових точок тіла. Результатом роботи алгоритму є набір 

орієнтирів, які відповідають основним анатомічним частинам тіла людини, 

таким як голова, плечі, лікті, кисті, таз, коліна та стопи. 

Приклад результату роботи алгоритму MediaPipe Pose із візуалізацією 

визначених ключових точок та їх з’єднань наведено на рисунку 2.4, що наочно 

ілюструє формування скелетного подання руху на основі одного відеокадру. 

 

 

Рисунок 2.4 – Приклад визначення ключових точок тіла людини за 

допомогою MediaPipe Pos 
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Для забезпечення коректності подальшої обробки в реалізації передбачено 

перевірку наявності визначених ключових точок. Це дозволяє автоматично 

відсіювати кадри з частковими перекриттями тіла, втратами детекції або 

некоректним положенням людини в кадрі, що зменшує рівень шуму в 

навчальних даних. 

Результатом роботи алгоритму є набір орієнтирів, які відповідають 

основним анатомічним частинам тіла людини. Для забезпечення коректності 

подальшої обробки у реалізації передбачено перевірку наявності визначених 

ключових точок, що дозволяє автоматично відсіювати кадри з частковими 

перекриттями, втратами детекції або некоректним положенням об’єкта у кадрі. 

Отримані координати ключових точок подаються у нормалізованому 

вигляді та перетворюються у вектор ознак фіксованої довжини. Нормалізація 

координат дозволяє зменшити вплив масштабу зображення, відстані до камери 

та незначних зсувів положення людини у кадрі. 

Сформований вектор ознак містить узагальнену інформацію про 

конфігурацію тіла людини у конкретний момент часу та використовується як 

компактне числове представлення руху. Відповідність між візуальним 

розташуванням ключових точок та елементами вектора ознак дозволяє 

інтерпретувати числові дані з точки зору реальної геометрії руху. 

Використання векторів координат як ознак відповідає сучасним підходам 

до скелетно-орієнтованого аналізу рухів і дозволяє застосовувати класичні 

алгоритми машинного навчання без залучення складних глибоких нейронних 

мереж [21, 22]. 

Формування векторів ознак здійснюється безпосередньо у процесі обробки 

відеопотоку, що забезпечує узгодженість між часовою структурою руху та 

отриманими даними. Сформовані вектори накопичуються у внутрішній 

структурі даних разом із мітками класів рухів, що створює основу для подальшої 

інтеграції результатів у конвеєр класифікації. 

Такий підхід дозволяє розглядати кожен кадр або часовий крок як окремий 

зразок руху та спрощує експериментальний аналіз ефективності моделей, 
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оскільки забезпечує однозначний зв’язок між вхідними даними, вектором ознак 

і результатом класифікації. 

Ключові елементи програмної реалізації етапу витягу координат та 

формування векторів ознак наведено у лістингу 2.1, де показано виклик 

MediaPipe Pose, обробку результатів і накопичення сформованих векторів у 

структурі даних. 

 

Лістинг 2.1 – Витяг координат ключових точок тіла та формування вектора 

ознак 

pose = mp_pose.Pose(static_image_mode=False) 

 

for frame in iter_video_frames(video_path, step=frame_step): 

    results = pose.process(frame) 

 

    if results.pose_landmarks: 

        vector = pose_vector_from_landmarks(results.pose_landmarks) 

        dataset.append(vector + [class_label]) 

 

Повну реалізацію допоміжних функцій для обробки результатів MediaPipe 

Pose та формування вектора ознак наведена в додатку В. 

Застосування такого програмного підходу забезпечує уніфіковане 

представлення рухів незалежно від тривалості відео та створює стабільну основу 

для подальшої класифікації рухів у межах мінімальної робочої програми. 

 

2.5.4 Інтеграція результатів у конвеєр класифікації рухів 

 

Завершальним етапом програмної реалізації мінімальної робочої програми 

є інтеграція сформованих векторів ознак у конвеєр класифікації рухів. На цьому 

етапі результати витягу координат ключових точок тіла використовуються як 

вхідні дані для алгоритмів машинного навчання, що забезпечують автоматичне 

віднесення поточного стану тіла до одного з визначених класів рухів. 

У межах програмного конвеєра сформовані вектори ознак передаються до 

модуля класифікації у стандартизованому числовому форматі. Такий підхід 

забезпечує незалежність алгоритмів класифікації від попередніх етапів обробки 

відеоданих і дозволяє використовувати різні моделі машинного навчання без 
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зміни логіки формування ознак. Інтеграція реалізована таким чином, що кожен 

вектор ознак може використовуватися як для накопичення навчальних 

прикладів, так і для безпосередньої класифікації у режимі тестування або 

демонстрації роботи системи. 

Для забезпечення коректності подальшої обробки у програмній реалізації 

передбачено перевірку розмірності сформованих векторів ознак. Це дозволяє 

відсіювати некоректні або неповні зразки, які можуть виникати внаслідок збоїв 

детекції пози або втрати окремих ключових точок тіла. Такий контроль підвищує 

стабільність роботи системи та зменшує ймовірність помилок під час навчання і 

застосування моделей класифікації. 

Сформовані вектори ознак та відповідні мітки класів накопичуються у 

структурах даних, придатних для подальшого використання бібліотеками 

машинного навчання. Передача даних у модуль класифікації здійснюється у 

вигляді масивів фіксованої розмірності, що забезпечує сумісність із поширеними 

інструментами аналізу та навчання моделей. Такий підхід відповідає 

загальноприйнятій практиці побудови прикладних систем машинного навчання 

та дозволяє проводити порівняльний аналіз різних алгоритмів класифікації в 

межах однієї програмної реалізації [23]. 

Ключові елементи програмної інтеграції сформованих ознак у конвеєр 

класифікації наведено у лістингу 2.2, де показано формування масивів ознак і 

міток класів, перевірку коректності даних та підготовку результатів до 

подальшого навчання моделей. 

 

Лістинг 2.2 – Інтеграція векторів ознак у конвеєр класифікації 

X = [] 

y = [] 

for sample in dataset: 

    pose_vector = sample[:-1]   # координати ключових точок тіла 

    class_label = sample[-1]    # мітка класу руху 

 

    # перевірка коректності розмірності вектора ознак 

    if len(pose_vector) == EXPECTED_VECTOR_SIZE: 

        X.append(pose_vector) 

        y.append(class_label) 

 

X = np.array(X, dtype=np.float32) 

y = np.array(y) 
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Таким чином, реалізований програмний конвеєр забезпечує повний цикл 

інтеграції результатів витягу координат ключових точок тіла у модуль 

класифікації. Це дозволяє використовувати мінімальну робочу програму як 

основу для експериментальної перевірки ефективності різних алгоритмів 

розпізнавання рухів людини та створює передумови для подальшого розширення 

функціональних можливостей системи. 

 

2.6 Висновок до другого розділу 

 

У другому розділі кваліфікаційної роботи розглянуто процес формування 

навчального набору даних та програмну реалізацію мінімальної робочої 

програми для розпізнавання рухів людини на основі MediaPipe Pose. Основну 

увагу приділено побудові цілісного програмного конвеєра, який забезпечує 

послідовну обробку відеоданих, витяг координат ключових точок тіла та їх 

інтеграцію у модуль класифікації рухів. 

У межах розділу обґрунтовано вибір програмних засобів і технологій 

реалізації системи з урахуванням вимог до швидкодії, простоти впровадження та 

можливості роботи в режимі, близькому до реального часу. Показано, що 

використання мови програмування Python у поєднанні з бібліотеками MediaPipe 

Pose, OpenCV, NumPy та scikit-learn є доцільним для реалізації мінімальної 

робочої програми та забезпечує зручність експериментального дослідження і 

подальшого розширення функціональних можливостей системи. 

Також у розділі обґрунтовано підхід до використання самостійно знятих 

відеоматеріалів як джерела навчальних даних, що дозволяє забезпечити 

відповідність набору даних реальним умовам застосування системи та 

підвищити відтворюваність експериментальних досліджень. Показано, що 

автоматизований витяг координат ключових точок тіла дає змогу отримати 

компактне та уніфіковане числове представлення рухів без залучення складних 

нейромережевих моделей. 

Розглянута архітектура та програмна реалізація мінімальної робочої 

програми забезпечують модульність, гнучкість і можливість подальшого 



39 

 

розвитку системи. Запропонований підхід дозволяє змінювати алгоритми 

класифікації, розширювати перелік класів рухів та адаптувати систему до різних 

експериментальних сценаріїв без істотних змін програмного коду. 

Отримані результати підтверджують доцільність використання 

мінімальної робочої програми як ефективного інструмента для 

експериментальної перевірки підходів до розпізнавання рухів людини та 

створюють основу для подальшого аналізу точності й ефективності моделей 

класифікації, що розглядається у наступному розділі. 
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3 ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ТОЧНОСТІ МОДЕЛЕЙ, 

ПОРІВНЯННЯ РЕЗУЛЬТАТІВ ТА ПЕРСПЕКТИВИ РОЗВИТКУ 

СИСТЕМИ 

 

3.1 Загальна характеристика досліджень роботи системи 

 

Експериментальне дослідження спрямоване на перевірку працездатності 

розробленої системи розпізнавання рухів людини та оцінку точності моделей 

класифікації в умовах практичного використання. Основною метою 

експерименту є підтвердження того, що обрані алгоритмічні та програмні 

рішення забезпечують стабільне та коректне розпізнавання рухів у реальному 

часі за умов, наближених до реального сценарію застосування системи. 

У межах дослідження аналізується не лише досягнута точність 

класифікації, але й поведінка системи під час безперервної роботи, що є 

важливим для оцінювання її практичної придатності. 

Для цього використовується програмний модуль, який забезпечує обробку 

відеопотоку в реальному часі, витяг координат ключових точок тіла та миттєву 

класифікацію поточного руху на основі попередньо навченої моделі. Такий 

підхід дозволяє оцінити ефективність роботи системи не лише на статичних 

тестових вибірках, але й у динамічному режимі, коли вхідні дані надходять 

безперервно з камери. 

Реалізація експерименту в онлайн-режимі є важливою з точки зору 

прикладного використання, оскільки саме цей режим є типовим для 

інтерактивних систем аналізу рухів людини. 

Експеримент проводиться у режимі онлайн-обробки, коли вхідним 

джерелом даних є відеопотік з камери. Кожен кадр послідовно обробляється 

програмним конвеєром системи відповідно до визначеної архітектури: спочатку 

виконується оцінка пози людини, далі формується вектор ознак на основі 

координат ключових точок тіла, після чого цей вектор передається до 

класифікатора. 
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Така організація експерименту дозволяє відстежувати вплив кожного 

етапу обробки на кінцевий результат та аналізувати стабільність роботи системи 

в умовах безперервного надходження даних. 

Кожен кадр послідовно обробляється програмним конвеєром системи: 

спочатку виконується оцінка пози людини, далі формується вектор ознак на 

основі координат ключових точок тіла, після чого цей вектор передається до 

класифікатора. Результат класифікації відображається безпосередньо під час 

роботи програми, що дозволяє візуально оцінювати коректність розпізнавання 

рухів у реальному часі. 

Програмна реалізація експерименту передбачає використання навчених 

моделей класифікації без додаткового перенавчання, що дає змогу оцінити їхню 

узагальнювальну здатність на нових даних, які не використовувалися під час 

навчання. Такий підхід є принципово важливим для коректної оцінки 

ефективності моделей, оскільки дозволяє визначити їхню здатність працювати з 

варіативними рухами та індивідуальними особливостями користувачів. 

Аналіз результатів у реальному часі також дає змогу виявляти нестабільні 

сценарії розпізнавання, пов’язані зі швидкими змінами пози, частковими 

перекриттями або нетиповими рухами. 

Виведення результатів класифікації у режимі реального часу дозволяє 

аналізувати стабільність роботи системи, її чутливість до змін пози людини, а 

також виявляти ситуації, у яких можливе хибне розпізнавання рухів. 

Таким чином, експериментальна частина дослідження орієнтована не лише 

на отримання числових показників точності, але й на практичну перевірку 

можливостей розробленої мінімальної робочої програми в умовах, наближених 

до реального застосування. Поєднання кількісної оцінки результатів із 

візуальним та поведінковим аналізом роботи системи дозволяє сформувати 

комплексне уявлення про її ефективність, обмеження та потенціал подальшого 

розвитку. 

Отримані результати створюють основу для порівняльного аналізу 

використаних моделей класифікації та обґрунтування перспектив удосконалення 

розробленої системи розпізнавання рухів людини. 



42 

 

3.2 Методика проведення експериментального дослідження 

 

Експериментальне дослідження точності моделей класифікації рухів 

людини проводиться у форматі онлайн-перевірки в реальному часі з 

використанням відеопотоку з камери. Такий підхід дозволяє оцінити 

працездатність розробленої мінімальної робочої програми в умовах, наближених 

до практичного застосування, а також проаналізувати поведінку моделей під час 

безперервної зміни положення тіла користувача. 

Проведення експерименту в онлайн-режимі є доцільним з огляду на те, що 

саме в таких умовах система розпізнавання рухів має функціонувати під час 

реального використання. Це дає змогу врахувати вплив динамічних факторів, 

зокрема змін швидкості рухів, переходів між різними позами та індивідуальних 

особливостей користувача, що відповідає загальноприйнятій практиці 

експериментальної перевірки систем комп’ютерного зору в реальному часі [26]. 

Під час експерименту відеопотік з камери обробляється покадрово у межах 

програмного конвеєра системи. Для кожного кадру виконується оцінка пози 

людини, формування вектора ознак на основі координат ключових точок тіла та 

прогноз класу руху за допомогою попередньо навченої моделі класифікації. 

Важливою особливістю методики є те, що на етапі експериментальної 

перевірки модель працює виключно в режимі inference, без додаткового 

донавчання або адаптації параметрів. Це дозволяє об’єктивно оцінити 

узагальнювальну здатність моделі та її стійкість до нових вхідних даних, що 

відповідає рекомендаціям з оцінювання моделей машинного навчання [27]. 

Результат класифікації відображається безпосередньо у вікні відеопотоку 

у вигляді текстової мітки, накладеної на зображення. Така форма подання 

результатів забезпечує можливість оперативного візуального контролю 

правильності розпізнавання рухів у реальному часі та дозволяє фіксувати 

моменти нестабільної або помилкової класифікації. 

Приклад вікна перевірки роботи моделі з відображенням прогнозованого 

класу руху наведено на рисунку 3.1, де показано інтеграцію результату 

класифікації безпосередньо у відеопотік. Даний рисунок наочно ілюструє роботу 
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системи в реальному часі та підтверджує її придатність до інтерактивного 

використання. 

 

 

Рисунок 3.1 – Вікно перевірки роботи моделі з відображенням результату 

класифікації руху в реальному часі. 

 

Для забезпечення відтворюваності експерименту використовується 

фіксований програмний конвеєр, у якому кожен етап обробки реалізовано 

послідовно та не залежить від внутрішніх налаштувань інших компонентів. Така 

організація програмної реалізації дозволяє повторювати експеримент за 

однакових умов та порівнювати результати роботи різних моделей класифікації 

без зміни логіки обробки даних. 

Ключові елементи програмної реалізації онлайн-класифікації наведено у 

лістингу 3.1, де продемонстровано обробку результатів оцінки пози, формування 

вектора ознак, виконання прогнозу та візуалізацію результату безпосередньо на 

відеокадрі. 

Отриманий прогноз оновлюється для кожного кадру відеопотоку, що 

дозволяє спостерігати реакцію моделі на зміну положення тіла та динаміку рухів 

у часі. Такий режим роботи є ефективним інструментом якісного аналізу 

системи, оскільки дає змогу оцінювати не лише коректність класифікації у 
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статичних положеннях, але й поведінку моделі під час переходів між різними 

рухами або при наближенні до нейтральної пози. 

 

Лістинг 3.1 – Ключові елементи класифікації рухів у реальному часі 

results = pose.process(frame_rgb) 

 

if results.pose_landmarks: 

    x = pose_vector_from_landmarks(results.pose_landmarks) 

 

    if x.shape[0] == EXPECTED_VECTOR_SIZE: 

        y_pred = clf.predict(x.reshape(1, -1))[0] 

        label = inv_label_map[int(y_pred)] 

 

        cv2.putText( 

            frame, 

            f"Pred: {label}", 

            (20, 40), 

            cv2.FONT_HERSHEY_SIMPLEX, 

            1.0, 

            (0, 255, 0), 

            2 

        ) 

 

Повний програмний код модуля тестування системи в режимі реального 

часу наведено в додатку Д. 

Інтерактивний формат експерименту також дозволяє виявляти характерні 

випадки нестабільної класифікації, зокрема короткочасні помилкові 

спрацьовування або затримки у зміні прогнозованого класу. Застосування 

підходу, заснованого на аналізі координат ключових точок тіла, є поширеним 

рішенням у задачах розпізнавання рухів людини та дозволяє поєднати достатню 

точність класифікації з можливістю обробки даних у реальному часі без значних 

обчислювальних витрат [28]. 

Отримані спостереження використовуються надалі для порівняльного 

аналізу моделей та формування рекомендацій щодо підвищення стабільності й 

точності системи розпізнавання рухів. 
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3.3 Тестування системи розпізнавання рухів та аналіз практичних 

обмежень 

 

Після навчання моделей класифікації було проведено експериментальне 

тестування розробленої системи розпізнавання рухів у режимі реального часу з 

метою оцінювання її поведінки в практичних умовах. Тестування виконувалося 

за участю чотирьох осіб, які відрізнялися за зростом і антропометричними 

характеристиками: низький хлопець, низька дівчина, високий хлопець та висока 

дівчина. 

Такий склад групи тестування дозволив змоделювати базову варіативність 

параметрів тіла користувачів та проаналізувати чутливість системи до змін 

пропорцій тіла, довжини кінцівок і масштабних співвідношень між ключовими 

точками. Обраний підхід є типовим для початкової практичної валідації систем 

розпізнавання рухів, орієнтованих на роботу з однією особою у кадрі. 

Результати тестування показали, що система демонструє стабільні та 

коректні результати для осіб із низьким зростом, які за своїми 

антропометричними параметрами були близькими до тих, що 

використовувалися під час формування навчального набору даних. 

Натомість для високих учасників експерименту спостерігалися окремі 

неточності у визначенні класів рухів, що проявлялися у меншій стабільності 

прогнозів. Це пояснюється тим, що навчання моделей здійснювалося переважно 

на відеоматеріалах із людьми меншого зросту, у яких пропорції тіла, довжина 

кінцівок та відносні координати ключових точок відрізняються від відповідних 

характеристик високих людей.  

Для більш наочного представлення отриманих результатів та їх 

порівняльного аналізу було виконано узагальнення спостережень для кожного 

учасника експерименту. Оцінювання проводилося з урахуванням загальної 

стабільності класифікації та характерних проблем, що виникали під час 

розпізнавання рухів у реальному часі. Такий підхід дозволяє систематизувати 

вплив антропометричних відмінностей користувачів на роботу системи та 

спростити подальший аналіз практичних обмежень. 
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Узагальнені результати тестування для учасників з різними 

антропометричними характеристиками наведено в таблиці 3.1. 

 

Таблиця 3.1 – Результати тестування системи для учасників з різними 

антропометричними характеристиками 

Учасник Зріст Загальна стабільність 

класифікації 

Характерні 

проблеми 

Низький 

хлопець 

Низький Висока Не виявлено 

Низька 

дівчина 

Низький Висока Не виявлено 

Високий 

хлопець 

Високий Середня Коливання 

прогнозу 

Висока 

дівчина 

Високий Середня Помилкові 

переходи 

 

Таким чином, результати тестування підтверджують залежність точності 

класифікації від відповідності антропометричних характеристик тестових 

користувачів параметрам навчального набору даних. 

Окрему групу проблем було виявлено у випадках, коли тіло людини 

знаходилося в кадрі не повністю. Під час тестування встановлено, що якщо 

приблизно 30 % тіла виходить за межі кадру, точність визначення рухів суттєво 

знижується. 

У таких ситуаціях алгоритм MediaPipe Pose не завжди коректно визначає 

всі ключові точки тіла, що призводить до формування неповних або спотворених 

векторів ознак. Це, у свою чергу, негативно впливає на роботу класифікатора, 

який не був навчений на даних із подібними спотвореннями. Виявлене 

обмеження є типовим для систем, що ґрунтуються на скелетному поданні рухів, 

і має враховуватися під час практичного використання системи. 

Також у процесі тестування було підтверджено обмеження системи щодо 

кількості осіб у кадрі. Поточна реалізація мінімальної робочої програми 

орієнтована на аналіз лише однієї людини у відеопотоці. 

За наявності декількох осіб у кадрі система або виконує оцінку пози лише 

для однієї з них, або демонструє нестабільну поведінку через конкуренцію за 
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ключові точки. Це обмежує застосування розробленого рішення сценаріями з 

індивідуальною взаємодією та вимагає подальшого розширення архітектури для 

підтримки багатокористувацького режиму. 

Додатково під час тестування виявлено характерну особливість роботи 

системи у нейтральному положенні. У випадках, коли користувач перебуває у 

стані спокою без активного виконання рухів, система іноді класифікує такий стан 

як рух типу «махання». 

Це пов’язано з відсутністю у навчальному наборі окремого класу, що 

відповідає нейтральному положенню або стоянню. За відсутності такого класу 

модель вимушено відносить отриманий вектор ознак до одного з наявних рухів. 

Для усунення цієї проблеми доцільним є введення додаткового класу руху 

«стоячи», що дозволить підвищити стабільність класифікації та зменшити 

кількість хибних спрацьовувань. 

Таким чином, проведене тестування дозволило виявити низку практичних 

обмежень розробленої системи, пов’язаних із різницею антропометричних 

характеристик користувачів, повнотою видимості тіла у кадрі та складом класів 

рухів. 

Отримані результати та спостереження є важливою емпіричною основою 

для подальшого аналізу ефективності моделей класифікації та формування 

рекомендацій щодо вдосконалення системи розпізнавання рухів людини, які 

розглядаються у наступному підпункті. 

 

3.4 Аналіз факторів, що впливають на точність розпізнавання рухів 

людини 

 

Під час експериментального дослідження розробленої системи 

розпізнавання рухів людини було встановлено, що коректність класифікації 

рухів залежить не лише від використаного алгоритму машинного навчання, а й 

від сукупності зовнішніх і внутрішніх факторів, пов’язаних із користувачем та 

умовами зйомки. Подібні залежності також відзначаються в сучасних 

дослідженнях у галузі комп’ютерного зору та оцінки пози людини [40]. 
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Одним із визначальних факторів є антропометричні характеристики 

користувачів, зокрема зріст і пропорції тіла. Оскільки у pose-based підходах 

вхідними даними є координати ключових точок, відмінності у довжині сегментів 

тіла та їх взаємному розташуванні безпосередньо впливають на геометрію 

сформованих векторів ознак. У дослідженнях з двовимірної оцінки пози людини 

зазначається, що значні відмінності у пропорціях тіла можуть знижувати 

стабільність розпізнавання рухів [40]. 

Для зменшення впливу цього фактора можливим є застосування 

нормалізації координат ключових точок відносно зросту користувача або 

базових сегментів тіла, що дозволяє частково уніфікувати вектори ознак для 

людей з різними антропометричними параметрами. 

Суттєвий вплив на точність розпізнавання має повнота видимості тіла 

людини у кадрі. За умов часткового перекриття або виходу частини тіла за межі 

кадру алгоритм оцінки пози формує неповний або спотворений набір ключових 

точок, що ускладнює подальшу класифікацію рухів. Аналогічні проблеми 

відзначаються у роботах, присвячених аналізу відеопослідовностей для оцінки 

пози людини [41]. 

Підвищення стабільності роботи системи в таких умовах може бути 

досягнуте шляхом контролю положення користувача відносно камери або 

виключення з обробки кадрів, у яких відсутня критична кількість ключових 

точок. 

Важливим фактором є просторове положення користувача відносно 

камери, зокрема відстань до неї та кут зйомки. Зміна цих параметрів впливає на 

масштаб зображення людини у кадрі та точність локалізації ключових точок. У 

класичних дослідженнях з аналізу пози людини підкреслюється залежність 

якості розпізнавання від геометрії сцени та положення камери [42]. 

Зменшення впливу цього фактора можливе за рахунок фіксування 

положення камери та використання єдиних умов зйомки під час формування 

навчального і тестового наборів даних. 

Окремим фактором, що впливає на роботу системи, є кількість осіб у кадрі. 

Розроблена мінімальна робоча програма орієнтована на розпізнавання рухів 
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однієї людини, що відповідає стандартній конфігурації використаного 

інструмента оцінки пози. У разі появи кількох осіб виникає неоднозначність 

вибору об’єкта аналізу, що знижує коректність розпізнавання. Подібні 

обмеження single-person підходів також зазначаються в офіційній документації 

MediaPipe Pose [43]. 

У практичних сценаріях використання це потребує або попереднього 

визначення цільового користувача, або застосування багатокористувацьких 

моделей оцінки пози. 

Ще одним чинником, який впливає на результати класифікації, є характер 

рухової активності користувача. Навіть у стані відносного спокою 

спостерігаються незначні природні коливання положення тіла та кінцівок, які 

можуть інтерпретуватися алгоритмом як рух. У наукових оглядах з аналізу 

активності людини такі мікрорухи розглядаються як шумові компоненти, що 

ускладнюють коректну інтерпретацію дій [44]. 

Зменшення кількості хибних спрацьовувань може бути забезпечене 

шляхом введення окремого класу, що описує стан нерухомості, або 

використання часової агрегації рішень класифікатора на основі декількох 

послідовних кадрів. 

 

3.5 Порівняльний аналіз моделей класифікації рухів 

 

Для оцінювання ефективності розробленої системи розпізнавання рухів 

людини виконано порівняльний аналіз двох алгоритмів машинного навчання – 

Random Forest та k-Nearest Neighbors (k-NN). Обидві моделі навчалися на 

однаковому наборі даних, сформованому на основі координат ключових точок 

тіла, отриманих за допомогою MediaPipe Pose, що забезпечує коректність і 

об’єктивність порівняння результатів. 

Оцінювання якості роботи моделей здійснювалося із застосуванням 

стандартних метрик класифікації, які широко використовуються у задачах 

розпізнавання дій людини, зокрема accuracy, precision, recall та F1-score [29], [30]. 

Крім того, додатково враховувалися такі характеристики, як стабільність 
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прогнозу в режимі реального часу та обчислювальна складність алгоритмів, що 

є важливими для практичного використання системи. 

Результати порівняльного аналізу моделей наведено у таблиці 3.2. 

 

Таблиця 3.2 – Порівняльні характеристики моделей класифікації рухів 

Характеристика Random Forest k-Nearest 

Neighbors 

Accuracy 0,998 0,992 

Precision (середнє) 1,00 0,99 

Recall (середнє) 1,00 0,99 

F1-score (середнє) 1,00 0,99 

Стабільність прогнозу в реальному часі Висока Середня 

Чутливість до шуму в даних Низька Підвищена 

Обчислювальні витрати Помірні Низькі 

Придатність для MWP Висока Достатня 

 

Аналіз наведених результатів показує, що обидві моделі демонструють 

високий рівень точності у задачі розпізнавання рухів на основі координат 

ключових точок тіла. Водночас модель Random Forest характеризується більшою 

стабільністю прогнозу у режимі реального часу та меншою чутливістю до шумів 

і варіацій у вхідних даних. Це пояснюється використанням ансамблю дерев 

рішень, який дозволяє ефективно враховувати нелінійні залежності між 

ознаками та зменшувати вплив поодиноких аномальних значень. 

Модель k-Nearest Neighbors показує дещо нижчі значення точності та 

стабільності, що пов’язано з її залежністю від локальної структури навчального 

набору даних. Проте простота реалізації та низькі обчислювальні витрати 

роблять цей алгоритм придатним для експериментальних досліджень і 

навчальних задач, де не вимагається висока стійкість до змін умов зйомки або 

антропометричних особливостей користувачів. 

Загалом результати порівняльного аналізу підтверджують доцільність 

використання Random Forest як базової моделі класифікації у розробленій 
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мінімальній робочій програмі, водночас залишаючи можливість застосування 

альтернативних алгоритмів залежно від вимог до швидкодії та складності 

системи. 

 

3.6 Порівняння розробленої MWP з іншими  

 

Для визначення місця розробленої мінімальної робочої програми (MWP) 

серед сучасних підходів до розпізнавання рухів людини було виконано 

порівняльний аналіз із поширеними рішеннями, що використовуються у 

наукових дослідженнях і прикладних системах комп’ютерного зору. При цьому 

враховувалося, що розроблена система має прототипний характер і призначена 

насамперед для експериментальної перевірки обраного підходу, а не для 

повнофункціональної промислової експлуатації. 

Основою розробленої MWP є pose-based підхід, у межах якого рухи 

описуються за допомогою координат ключових точок тіла, отриманих із 

використанням MediaPipe Pose. Аналогічні принципи застосовуються в ряді 

відомих систем, зокрема OpenPose-подібних рішень, однак вони, як правило, 

орієнтовані на складніші сценарії використання, включно з 

багатокористувацьким розпізнаванням або аналізом тривимірної пози, що 

супроводжується підвищеними обчислювальними витратами. 

На відміну від RGB-based глибоких нейромережевих систем, які працюють 

безпосередньо з відеопослідовностями, розроблена MWP використовує 

компактне числове представлення рухів. Це дозволяє істотно зменшити обсяг 

вхідних даних і забезпечити стабільну роботу в режимі реального часу навіть за 

відсутності спеціалізованих графічних прискорювачів. Водночас такий підхід 

накладає певні обмеження на складність розпізнаваних рухів і кількість осіб у 

кадрі. 

Для узагальненого зіставлення характеристик розробленої MWP з 

типовими існуючими підходами до розпізнавання рухів людини у таблиці 3.3 

наведено порівняння за ключовими параметрами. 
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Таблиця 3.3 – Порівняння розробленої MWP з поширеними підходами до 

розпізнавання рухів людини 

Критерій Розроблена 

MWP 

OpenPose-

подібні системи 

RGB-based 

нейромережі 

Тип підходу Pose-based (2D) Pose-based (2D/3D) RGB / Hybrid 

Вхідні дані 33×2 

координати 

25–33×2 координати Повні кадри 

(H×W×3) 

Кількість класів 

рухів 

2–5 (обмежена) 5–20 10–50+ 

Середня точність, 

% 

99,8 (RF), 99,2 

(kNN) 

95–98 96–99 

Робота в 

реальному часі 

Так (25–30 

кадр/с) 

Частково (10–15 

кадр/с) 

Обмежено (5–12 

кадр/с) 

Кількість осіб у 

кадрі 

1 1–кілька 1–кілька 

Обчислювальні 

вимоги 

Низькі (CPU) Середні Високі (GPU) 

Стійкість до змін 

умов 

Обмежена Середня Висока 

Призначення Прототип, 

експеримент 

Дослідження Промислові 

системи 

 

Як видно з наведеного порівняння, розроблена мінімальна робоча 

програма демонструє високі показники точності класифікації для обмеженого 

набору рухів за умов контрольованої зйомки. Високі значення метрик якості 

значною мірою зумовлені спрощеною постановкою задачі, обмеженою кількістю 

класів рухів, а також використанням однорідних умов формування навчального 

і тестового наборів даних. 

Додатковим чинником, що пояснює досягнуту точність, є використання 

координат ключових точок тіла як вхідних ознак. Такий підхід дозволяє 

абстрагуватися від впливу фону, освітлення та текстур, які суттєво ускладнюють 

роботу RGB-based моделей, і зосередитися на геометрії руху. У результаті 

класифікатори працюють із компактним і структурованим набором даних, що 

підвищує стабільність прогнозів навіть при використанні класичних алгоритмів 

машинного навчання. 

Разом із тим, аналіз показує, що розроблена MWP має обмежену здатність 

до узагальнення за умов, які істотно відрізняються від навчальних. Зміни 
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антропометричних характеристик користувачів, часткова видимість тіла у кадрі 

або поява складніших комбінованих рухів можуть призводити до зниження 

точності розпізнавання. На відміну від глибоких нейромережевих систем, які 

здатні адаптуватися до ширшого спектра умов, розроблена MWP орієнтована на 

контрольовані сценарії та експериментальні дослідження. 

Таким чином, порівняння з існуючими підходами дозволяє зробити 

висновок, що розроблена мінімальна робоча програма займає проміжне 

положення між навчальними прототипами та повнофункціональними системами 

розпізнавання рухів людини. Вона забезпечує високу швидкодію та точність у 

межах поставленої задачі, водночас зберігаючи обмеження, притаманні 

прототипним рішенням, що визначає напрями її подальшого розвитку. 

 

3.7 Перспективи розвитку системи розпізнавання рухів 

 

Подальший розвиток системи розпізнавання рухів людини на основі 

мінімальної робочої програми MWP може здійснюватися у кількох напрямах, 

пов’язаних із розширенням функціональності, підвищенням точності 

класифікації та адаптацією до складніших умов використання. 

Одним із напрямів розвитку є розширення множини класів рухів, зокрема 

введення окремого класу, що відповідає нейтральному положенню тіла (стану 

стояння або спокою). Наявність такого класу дозволяє більш чітко 

розмежовувати активні рухи та пасивні стани, що є важливим для зменшення 

кількості помилкових спрацьовувань у реальному часі. 

Іншим напрямом є підвищення узагальнювальної здатності моделей 

шляхом розширення навчального набору даних. Залучення відеоматеріалів із 

користувачами різного зросту, статури та індивідуальних особливостей будови 

тіла може зменшити вплив антропометричних відмінностей на результати 

класифікації, що є актуальним для pose-based підходів [31]. 

Перспективним також є покращення стійкості системи до неповної 

видимості тіла у кадрі. За таких умов можливим є використання часових 

моделей, які враховують послідовність кадрів, або застосування механізмів 
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оцінювання надійності прогнозу залежно від кількості доступних ключових 

точок тіла [32]. 

Окремий напрям розвитку пов’язаний із підтримкою багатоперсонного 

аналізу, що передбачає одночасне визначення та класифікацію рухів кількох 

людей у кадрі. Реалізація такого підходу потребує використання алгоритмів 

багатоперсонної оцінки пози та відповідної модифікації архітектури 

системи [31]. 

Можливі напрями розвитку системи розпізнавання рухів людини із 

зазначенням основних шляхів розширення функціональності наведено на 

рисунку 3.2. 

 

 

Рисунок 3.2 – Основні напрями розвитку системи розпізнавання рухів 

людини 

 

Крім того, подальші дослідження можуть бути спрямовані на інтеграцію 

нейромережевих моделей, що поєднують просторову та часову інформацію, 

зокрема рекурентних або трансформерних архітектур. Такі підходи широко 

застосовуються у сучасних системах розпізнавання дій людини та можуть бути 

використані для аналізу складніших рухових патернів [33]. 
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3.8  Висновок до третього розділу 

 

У третьому розділі проведено експериментальне дослідження 

ефективності розробленої системи розпізнавання рухів людини, реалізованої у 

вигляді мінімальної робочої програми MWP. Запропонований підхід було 

перевірено в режимі реального часу з використанням відеопотоку з камери, що 

дозволило оцінити як кількісні показники точності моделей, так і практичну 

придатність системи для інтерактивного застосування. 

Розроблена методика експериментального тестування забезпечила аналіз 

поведінки системи за різних сценаріїв використання, зокрема під час виконання 

рухів різної інтенсивності, зміни положення тіла та переходів між активними й 

нейтральними станами. Застосування режиму inference без додаткового 

донавчання моделей дало змогу об’єктивно оцінити їхню узагальнювальну 

здатність на нових даних. 

У процесі тестування за участю чотирьох користувачів з різними 

антропометричними характеристиками встановлено, що точність і стабільність 

класифікації суттєво залежать від відповідності параметрів користувача 

характеристикам навчального набору даних. Система демонструє вищу 

коректність розпізнавання для осіб із зростом і пропорціями тіла, близькими до 

тих, що були представлені у навчальній вибірці. Для користувачів з істотно 

відмінними антропометричними параметрами спостерігалися окремі неточності, 

що підтверджує чутливість pose-based підходу до варіацій у будові тіла. 

Також встановлено, що повнота видимості тіла у кадрі має суттєвий вплив 

на якість розпізнавання рухів. За умов, коли значна частина тіла (приблизно до 

30 %) знаходиться за межами кадру, точність класифікації знижується внаслідок 

неповного або некоректного визначення ключових точок. Крім того, 

підтверджено обмеження системи щодо обробки лише однієї людини у 

відеопотоці, що зумовлено особливостями використаного інструмента оцінки 

пози та обраної архітектури. 

Порівняльний аналіз моделей класифікації показав, що обидва застосовані 

алгоритми – Random Forest і k-Nearest Neighbors – забезпечують високі значення 
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основних метрик якості. Водночас модель Random Forest продемонструвала 

вищу стабільність прогнозів у режимі реального часу та меншу чутливість до 

шумів і варіацій у вхідних даних. 

Окреме порівняння розробленої мінімальної робочої програми з 

поширеними підходами до розпізнавання рухів людини дозволило визначити її 

місце серед сучасних рішень. Показано, що висока точність класифікації, 

досягнута в межах даного дослідження, значною мірою зумовлена спрощеною 

постановкою задачі, обмеженою кількістю класів рухів, використанням 

структурованого pose-based представлення даних та контрольованими умовами 

експерименту. Водночас розроблена MWP характеризується обмеженою 

здатністю до узагальнення у складніших і менш контрольованих сценаріях. 

Отримані результати підтверджують, що розроблена мінімальна робоча 

програма є ефективним інструментом для експериментального дослідження 

підходів до розпізнавання рухів людини. Вона займає проміжне положення між 

навчальними прототипами та повнофункціональними системами, створюючи 

основу для подальшого розвитку, розширення функціональних можливостей і 

підвищення стійкості системи до різноманітних умов використання. 
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4 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 

 

4.1 Охорона праці 

 

4.1.1 Біомеханічні навантаження та класифікація робочих рухів у 

трудовому процесі 

 

Біомеханічні навантаження є важливим фактором, що визначає рівень 

ризику для здоров’я працівника, оскільки вони прямо впливають на опорно-

рухову, серцево-судинну та нервово-м’язову системи. У практиці охорони праці 

такі навантаження оцінюють за характером робочих рухів, тривалістю 

утримання поз та частотою виконання циклічних дій. Історично ці норми 

деталізувалися у санітарно-гігієнічних документах, однак низка попередніх 

нормативів була скасована, і на сьогодні їх регламент частково інтегровано у 

вимоги НПАОП 0.00-7.15-18 [38], що визначає обов’язок роботодавця 

забезпечувати умови для зміни робочої пози, раціональної організації рухової 

активності та профілактики статичних перенавантажень. 

Для систематизації біомеханічних навантажень виділяють кілька типів 

рухових впливів, які різняться механізмом утворення м’язового напруження. 

Першу групу становлять статичні навантаження, що формуються при тривалому 

утриманні фіксованої пози або предмета. За таких умов м’язові волокна 

працюють в ізометричному режимі, що призводить до зниження кровотоку в 

локальних ділянках та швидкого розвитку втоми. Типовим прикладом є 

довготривале сидіння з фіксованим нахилом голови та плечового пояса. 

Динамічні навантаження виникають при багаторазових повторюваних 

рухах, коли м’язи поперемінно скорочуються і розслабляються. Хоча динамічні 

дії сприяють покращенню кровообігу, надмірна частота рухів (наприклад, при 

швидкому наборі тексту або дрібних маніпуляціях руками) може призводити до 

перенапруження сухожиль та розвитку професійних мікротравм. 

За масштабом залучених м’язових груп навантаження поділяють на 

локальні, що охоплюють невеликі м’язові групи (кисті, передпліччя, плечовий 



58 

 

пояс), та загальні, які включають задіяння понад двох третин м’язової маси. 

Окрема увага у трудовому процесі приділяється позиційним навантаженням, які 

залежать від кутів нахилу тулуба, положення голови та тривалості утримання 

робочої пози. Перевищення допустимих кутів або тривале перебування у 

незручних позах є поширеним чинником виникнення м’язово-скелетних 

розладів. 

Узагальнена класифікація біомеханічних навантажень подана у 

таблиці 4.1, яка демонструє основні групи рухових факторів, їх характеристику 

та можливі наслідки для організму працівника. 

 

Таблиця 4.1 – Класифікація біомеханічних навантажень у трудовому 

процесі 

Тип 

навантаження 

Характеристика Приклади 

прояву 

Можливі 

наслідки 

Статичні Тривале утримання 

фіксованої пози без 

руху. 

Сидіння у 

незмінній позі; 

фіксація голови; 

утримання 

інструмента. 

Локальна ішемія, 

напруга м’язів 

шиї та спини, 

розвиток МСР. 

Динамічні Повторювані рухи з 

циклічним 

напруженням м’язів. 

Швидкий набір 

тексту; часті 

рухи мишею. 

Перенапруження 

сухожиль, 

тунельний 

синдром. 

Локальні Залучення невеликих 

м’язових груп. 

Робота 

пальцями, 

кистями. 

Мікротравми, 

спазми, 

втомлюваність. 

Загальні Робота великих 

м’язових груп. 

Переміщення 

предметів, 

активні рухи 

корпусу. 

Перевтома, ризик 

травм. 

Позиційні Нахили, повороти, 

згинання тіла та 

кінцівок. 

Нахил тулуба, 

згинання 

зап’ясть. 

Порушення 

постави, біль у 

суглобах. 

Частотні Залежні від кількості 

рухів за одиницю часу. 

Високочастотні 

дії руками. 

Мікротравми, 

зниження 

витривалості. 

 

Практичне значення такої класифікації полягає у можливості об’єктивно 

оцінити рівень рухового навантаження та визначити, які елементи робочого 
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процесу потребують ергономічної оптимізації. Згідно з вимогами НПАОП 0.00-

7.15-18 [8], профілактика перевтоми досягається за рахунок раціональної 

організації робочого місця, періодичної зміни пози, чергування статичних та 

динамічних видів діяльності та регламентованих перерв. Це дозволяє 

мінімізувати ризики м’язово-скелетних розладів та підтримувати стабільний 

функціональний стан працівника. 

 

4.1.2 Аналіз системи «людина – комп’ютер – середовище» 

 

Система «людина – комп’ютер – середовище» містить три ключові 

взаємопов’язані елементи, від яких залежить рівень безпеки, працездатності та 

комфортності користувача. У контексті розроблення системи розпізнавання 

рухів людини, що базується на аналізі відеопотоку та застосуванні алгоритмів 

комп’ютерного зору, ці фактори мають особливе значення, оскільки тривала 

робота з екранними пристроями супроводжується значними когнітивними, 

зоровими та статичними навантаженнями. 

Відповідно до НПАОП 0.00-7.15-18 [38], організація робочого місця має 

забезпечувати мінімізацію небезпечних факторів, зниження зорової та статичної 

втоми, а також можливість персонального регулювання параметрів робочої пози. 

У сфері машинного навчання та обробки відео це особливо актуально, оскільки 

робочі сесії можуть тривати годинами, а якість результату залежить від 

концентрації користувача. 

Ергономіка робочого місця визначається вимогами ДСТУ 7299:2013 [39], 

який регламентує параметри правильного розташування елементів робочої зони. 

Для уникнення м’язового перенавантаження та забезпечення нейтральної пози 

тіла користувача важливо дотримуватись таких вимог: 

• можливість регулювання висоти крісла; 

• правильна відстань до монітора (50–70 см); 

• розташування верхнього краю екрана на рівні очей; 

• наявність підлокітників для зниження статичного навантаження на 

плечовий пояс; 
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• забезпечення підтримки поперекового відділу хребта. 

Дотримання цих положень дає змогу уникнути перенапруження шийних і 

плечових м’язів, яке часто виникає у програмістів та аналітиків, що працюють із 

великими масивами відеоданих. 

Рівень освітленості робочого місця суттєво впливає на зоровий комфорт та 

загальну продуктивність. Актуальний стандарт ДСТУ EN 12464-1:2022 [35] 

встановлює вимоги до освітлення внутрішніх робочих приміщень, зокрема для 

роботи з комп’ютером рекомендована освітленість становить 300–500 лк. 

Світлове середовище має бути рівномірним, без різких контрастів і відблисків, 

які можуть з’являтися на поверхні монітора. Порушення вимог до освітленості 

сприяє розвитку синдрому зорової втоми, підвищує ймовірність головного болю 

та знижує швидкість обробки інформації – що є критичним у роботі з 

відеокадрами та алгоритмами машинного навчання. 

Параметри мікроклімату також відіграють важливу роль у підтриманні 

працездатності. Згідно з рекомендаціями Держпраці [36], для роботи з 

комп’ютером оптимальними є: температура повітря 20–24 °C, відносна вологість 

40–60 %, швидкість руху повітря до 0,1 м/с. Відхилення від цих показників 

негативно впливають на самопочуття користувача, викликають втому, 

сонливість або, навпаки, перенапругу, що знижує здатність до виконання 

тривалої інтелектуальної діяльності. 

Важливим аспектом є профілактика психофізіологічного виснаження, 

адже розроблення моделей комп’ютерного зору потребує тривалої концентрації. 

Норматив НПАОП 0.00-7.15-18 [33] передбачає необхідність внутрішніх перерв. 

На практиці ефективним є правило коротких пауз кожні 45–60 хвилин, під час 

яких рекомендовано виконувати вправи для очей, встати з робочого місця та 

здійснити легку розминку. Такі заходи дозволяють зняти статичне навантаження 

та відновити функціональний стан зорового аналізатора. 

Взаємодія трьох елементів системи – людини, комп’ютера і робочого 

середовища – має комплексний характер. Недотримання будь-якого з параметрів 

(освітлення, ергономіки, мікроклімату) створює ланцюговий ефект, який 

призводить до погіршення продуктивності та самопочуття. Наприклад, надто 
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яскраве освітлення у поєднанні з неправильною висотою монітора спричиняє 

зорове перенавантаження, що веде до зниження точності розроблення, помилок 

у кодуванні та зменшення загального рівня ефективності роботи. 

Узгоджена організація системи «людина – комп’ютер – середовище» є 

необхідною умовою для виконання завдань підвищеної складності, таких як 

моделювання та тестування систем розпізнавання рухів людини. Виконання 

вимог НПАОП 0.00-7.15-18, ДСТУ 7299:2013, ДСТУ EN 12464-1:2022 та 

гігієнічних норм Держпраці забезпечує оптимальні умови праці, зменшує ризики 

професійних порушень і сприяє досягненню високої точності програмних 

рішень. 

 

4.2 Фактори, що впливають на функціональний стан користувачів 

комп’ютера 

 

Функціональний стан користувача комп’ютера формується під впливом 

комплексу фізіологічних, психологічних, технічних та зовнішніх чинників, які 

визначають рівень працездатності, якість виконання завдань і стійкість до 

навантажень. У період воєнного стану в Україні значна частина цих факторів діє 

інтенсивніше, що потребує особливого підходу до організації роботи з 

комп’ютером. 

Фізіологічні фактори пов’язані з обмеженою руховою активністю та 

статичним характером роботи. Тривале перебування у сидячому положенні 

спричиняє перенапруження шийно-комірцевої зони та м’язів спини, що 

призводить до локальної втоми та зменшення кровопостачання у працюючих 

групах м’язів. Для користувачів, які працюють з точними або інтелектуально 

складними завданнями, характерна висока напруга зорової системи, що викликає 

швидку втому очей, порушення акомодації та зниження гостроти зору 

наприкінці робочого дня. Такі зміни безпосередньо впливають на швидкість та 

точність роботи. 

Психоемоційні фактори мають не менш значний вплив. Інтенсивна 

взаємодія з інформаційними системами потребує виконання складних 
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когнітивних операцій, таких як аналіз даних, переключення уваги, прийняття 

рішень у режимі обмеженого часу. Розумові навантаження поступово призводять 

до ментальної втоми, що проявляється у вигляді зниження концентрації, 

уповільнення реакції та збільшення кількості помилок. У період воєнного стану 

ці процеси посилюються через постійний зовнішній стрес, відчуття небезпеки та 

необхідність реагувати на непередбачувані ситуації. 

Організація робочого місця є одним із ключових факторів, що визначають 

функціональний стан користувача. Важливу роль відіграє відповідність робочих 

меблів та техніки антропометричним показникам користувача, а саме: 

• можливість регулювання висоти крісла; 

• правильна відстань до монітора (50–70 см); 

• розташування верхньої частини екрана на рівні очей; 

• наявність підлокітників для зменшення статичного навантаження; 

• підтримка поперекового відділу; 

• достатня площа робочої поверхні. 

Застосування цих вимог дає змогу зменшити локальне навантаження на 

опорно-руховий апарат, що позитивно впливає на загальний фізичний стан 

користувача. 

В умовах воєнного стану в Україні зовнішні чинники стали істотним 

компонентом, що визначає функціональний стан. Часті повітряні тривоги, 

необхідність переходити в укриття, робота в умовах нестабільного 

електропостачання створюють значне психоемоційне навантаження, яке 

порушує робочо-відпочинковий цикл. Переривання робочих процесів спричиняє 

втрату концентрації та потребує часу для повернення до попереднього стану 

продуктивності. Нерегулярний режим роботи, викликаний графіками 

відключення електроенергії, також може спричиняти порушення циркадних 

ритмів і хронічну втому. 

Певну роль відіграє також інформаційне середовище. Під час війни велика 

кількість тривожних новин, повідомлень із системи оповіщення та соціальних 

мереж спричиняє постійну емоційну напругу. За рекомендаціями МОЗ України 

[5], надмірне споживання тривожної інформації здатне викликати довготривалу 
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дезорганізацію когнітивних процесів: зниження уваги, погіршення пам’яті та 

підвищену стомлюваність. Держпраця України у своїх матеріалах [37] акцентує 

увагу на необхідності адаптації робочого середовища до умов війни, включаючи 

організацію безпечних місць роботи та дотримання режиму відпочинку. 

Додатковим фактором, що впливає на функціональний стан, є так званий 

ефект «цифрового виснаження», пов’язаний із тривалим перебуванням перед 

екраном, інтенсивним використанням інформаційних технологій, необхідністю 

постійного перемикання між завданнями та швидкою обробкою інформації. Цей 

стан характеризується зменшенням мотивації, труднощами з плануванням 

діяльності та відчуттям інформаційної перенасиченості. У період війни він може 

виникати швидше, оскільки психоемоційні ресурси організму вже частково 

виснажені хронічним стресом. 

У комплексі всі зазначені фактори формують інтегральний 

функціональний стан користувача. В умовах воєнного стану їхній вплив значно 

посилюється, тому важливим завданням є створення адаптивного робочого 

середовища, яке враховує фізіологічні та психологічні потреби користувача, 

підтримує його працездатність у складних зовнішніх умовах і сприяє 

збереженню здоров’я під час роботи з комп’ютерною технікою. 

 

4.3 Висновок до четвертого розділу 

 

У четвертому розділі було проаналізовано комплекс чинників, що 

визначають безпечність, ефективність та фізіологічну стійкість користувачів під 

час роботи з комп’ютером і системами обробки інформації. Розглянута 

класифікація біомеханічних навантажень дала змогу систематизувати основні 

види статичних, динамічних, локальних, загальних, позиційних та частотних 

впливів, які формуються у трудовому процесі та можуть призводити до розвитку 

м’язово-скелетних розладів, перевтоми й зниження працездатності. На основі 

нормативних положень НПАОП 0.00-7.15-18 було визначено, що ключовими 

заходами профілактики є раціональна організація рухової активності, 

регламентовані перерви та ергономічне обладнання робочого місця. 



64 

 

Аналіз системи «людина – комп’ютер – середовище» підтвердив, що на 

працездатність і функціональний стан користувача однаково впливають 

фізіологічні, зорові, когнітивні, мікрокліматичні та організаційні фактори. 

Дотримання вимог ДСТУ 7299:2013 щодо ергономіки, а також ДСТУ EN 12464-

1:2022 щодо освітленості забезпечує оптимальні умови праці та мінімізує зорове 

й статичне навантаження. Важливу роль відіграють і психоемоційні чинники: 

вплив стресу, підвищені когнітивні навантаження та, зокрема, умови воєнного 

стану, які підсилюють тривожність та знижують стійкість до втоми, згідно з 

рекомендаціями МОЗ України та Держпраці. 

Сукупність розглянутих факторів підтверджує, що ефективна та безпечна 

робота користувача за комп’ютером у сучасних умовах вимагає інтегрованого 

підходу, який поєднує ергономічні, організаційні та психофізіологічні заходи. 

Формування правильно організованого робочого середовища, урахування 

індивідуальних особливостей працівника та дотримання вимог чинних 

нормативних документів є необхідними передумовами підтримання високої 

продуктивності та збереження здоров’я під час професійної діяльності у сфері 

інформаційних технологій. 
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 ВИСНОВКИ 

 

У кваліфікаційній роботі освітнього рівня магістр розглянуто та вирішено 

актуальну науково-практичну задачу розпізнавання рухів людини на основі 

координат ключових точок тіла з використанням сучасних методів штучного 

інтелекту та комп’ютерного зору. Актуальність дослідження зумовлена 

зростаючою потребою у системах аналізу рухів для задач людино-комп’ютерної 

взаємодії, інтелектуальних інформаційних систем, моніторингу фізичної 

активності, спортивної аналітики та реабілітаційних технологій. 

У першому розділі виконано огляд і класифікацію сучасних методів 

штучного інтелекту, що застосовуються у задачах розпізнавання рухів людини. 

Проаналізовано підходи, засновані на обробці RGB-відео, глибоких нейронних 

мережах та використанні координат ключових точок тіла. Показано, що методи 

оцінки пози людини є ефективною основою для систем розпізнавання рухів, 

оскільки забезпечують раціональне поєднання точності, швидкодії та відносної 

простоти реалізації. У межах розділу сформульовано постановку задачі 

дослідження, що визначила вимоги до архітектури, навчальних даних та 

алгоритмів класифікації. 

У другому розділі розроблено архітектуру та програмну реалізацію 

мінімальної робочої програми (MWP) системи розпізнавання рухів людини на 

основі MediaPipe Pose. Реалізовано повний програмний конвеєр, який включає 

зчитування відеопотоку, визначення координат ключових точок тіла, 

формування вектора ознак та класифікацію рухів із використанням алгоритмів 

машинного навчання. Обґрунтовано вибір програмних засобів і технологій 

реалізації, а також підхід до формування навчального набору даних на основі 

самостійно знятих відеоматеріалів, що дозволило забезпечити контроль над 

якістю даних і відповідність експериментальним умовам. 

У третьому розділі проведено експериментальне дослідження точності та 

стабільності роботи розробленої системи в режимі реального часу. Виконано 

тестування за участю користувачів з різними антропометричними 

характеристиками, що дало змогу виявити вплив зросту, пропорцій тіла та 
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повноти видимості користувача у кадрі на результати розпізнавання. Показано, 

що використаний pose-based підхід є чутливим до відмінностей у будові тіла та 

умов зйомки, що необхідно враховувати під час практичного застосування 

системи. 

Проведено порівняльний аналіз моделей класифікації рухів, зокрема 

алгоритмів Random Forest і k-Nearest Neighbors. Встановлено, що обидві моделі 

забезпечують високі показники точності для поставленої задачі, однак Random 

Forest характеризується вищою стабільністю прогнозів і меншою чутливістю до 

шумів у вхідних даних. Окремо виконано порівняння розробленої MWP з 

поширеними підходами до розпізнавання рухів людини, що дозволило 

визначити її місце серед сучасних рішень. Показано, що досягнута висока 

точність значною мірою зумовлена спрощеною постановкою задачі, обмеженою 

кількістю класів рухів, використанням структурованого представлення даних та 

контрольованими умовами експерименту. 

У ході дослідження виявлено практичні обмеження розробленої системи, 

зокрема підтримку лише одного користувача у кадрі, обмежену здатність до 

узагальнення у складних умовах та відсутність окремого класу нейтрального 

положення тіла, що може призводити до хибної класифікації у стані спокою. 

Аналіз цих обмежень дозволив обґрунтувати напрями подальшого розвитку 

системи, серед яких розширення набору класів рухів, урізноманітнення 

навчального набору даних, підвищення стійкості до неповної видимості тіла у 

кадрі та впровадження багатоперсонного аналізу. 

Таким чином, у кваліфікаційній роботі освітнього рівня магістр досягнуто 

поставленої мети та виконано всі основні завдання дослідження. Отримані 

результати підтверджують ефективність запропонованого підходу та доцільність 

використання розробленої мінімальної робочої програми як експериментальної 

платформи для дослідження, аналізу та подальшого розвитку систем 

розпізнавання рухів людини на основі координат ключових точок тіла. 
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Додаток А 
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Додаток Б 

 

Програмний код формування навчального набору даних 

 

from __future__ import annotations 

import sys, os 

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__fil

e__), ".."))) 

import argparse 

from pathlib import Path 

import pandas as pd 

from tqdm import tqdm 

import mediapipe as mp 

 

from src.pose_utils import pose_vector_from_frame, 

iter_video_frames 

from src.io_utils import list_classes, list_videos_in_class 

 

 

def build_dataset(videos_root: Path, out_csv: Path, frame_step: 

int = 2) -> None: 

    """ 

    Створює табличний датасет: 

    - один рядок = один кадр; 

    - ознаки = нормалізовані координати лендмарків; 

    - label = назва класу (папки). 

    """ 

    mp_pose = mp.solutions.pose 

    records = [] 

    classes = list_classes(videos_root) 

    if not classes: 

        raise RuntimeError(f"У {videos_root} немає підпапок з 

класами рухів.") 

 

    with mp_pose.Pose(static_image_mode=False, model_complexity=1, 

enable_segmentation=False) as pose: 

        for cls in classes: 

            videos = list_videos_in_class(videos_root, cls) 

            if not videos: 

                print(f"[ПОПЕРЕДЖЕННЯ] Немає відео для класу: 

{cls}") 

                continue 

 

            for vp in tqdm(videos, desc=f"Клас: {cls}"): 

                try: 

                    for frame in iter_video_frames(str(vp), 

step=frame_step): 

                        feat, _ = pose_vector_from_frame(frame, 

pose, draw=False) 

                        if feat is None: 

                            continue  # пропускаємо кадри без 

лендмарків 



 

 

                        row = {f"f{i}": v for i, v in 

enumerate(feat)} 

                        row["label"] = cls 

                        records.append(row) 

                except Exception as e: 

                    print(f"[ПОМИЛКА] {vp}: {e}") 

 

    if not records: 

        raise RuntimeError("Не зібрано жодного кадру. Перевірте 

відео та встановлення mediapipe.") 

 

    df = pd.DataFrame(records) 

    out_csv.parent.mkdir(parents=True, exist_ok=True) 

    df.to_csv(out_csv, index=False) 

    print(f"[OK] Збережено датасет: {out_csv} ({len(df)} рядків)") 

 

 

if __name__ == "__main__": 

    ap = argparse.ArgumentParser() 

    ap.add_argument("--videos_root", type=Path, 

default=Path("data/videos")) 

    ap.add_argument("--out_csv", type=Path, 

default=Path("data/dataset.csv")) 

    ap.add_argument("--frame_step", type=int, default=2) 

    args = ap.parse_args() 

    build_dataset(args.videos_root, args.out_csv, args.frame_step) 



 

 

Додаток В 

 

Програмний код допоміжних функцій обробки пози людини 

 

# src/pose_utils.py 

from __future__ import annotations 

import cv2 

import numpy as np 

from typing import Optional, Tuple 

import mediapipe as mp 

 

mp_pose = mp.solutions.pose 

 

POSE_LM = 33  # кількість лендмарків у MediaPipe Pose 

 

 

def _normalize_landmarks(landmarks: np.ndarray) -> np.ndarray: 

    """ 

    Нормалізуємо лендмарки: 

    - центр: середина тазу 

    - масштаб: відстань між плечима 

    """ 

    xyv = landmarks[:, :3].copy() 

    left_hip = xyv[23] 

    right_hip = xyv[24] 

    center = (left_hip + right_hip) / 2.0 

    xyv -= center 

 

    left_sh = xyv[11] 

    right_sh = xyv[12] 

    torso_size = np.linalg.norm(left_sh - right_sh) 

    if torso_size < 1e-6: 

        torso_size = 1.0 

    xyv /= torso_size 

 

    return xyv.reshape(-1) 

 

 

def pose_vector_from_frame(frame_bgr: np.ndarray, 

                           pose: mp_pose.Pose, 

                           draw: bool = False) -> 

Tuple[Optional[np.ndarray], np.ndarray]: 

    """Повертає (вектор_ознаки, кадр_для_відображення).""" 

    image_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB) 

    results = pose.process(image_rgb) 

 

    if not results.pose_landmarks: 

        return None, frame_bgr 

 

    lm = results.pose_landmarks.landmark 

    arr = np.zeros((POSE_LM, 4), dtype=np.float32) 

    for i, l in enumerate(lm): 



 

 

        arr[i, 0] = l.x 

        arr[i, 1] = l.y 

        arr[i, 2] = l.z 

        arr[i, 3] = l.visibility 

 

    feat = _normalize_landmarks(arr) 

 

    if draw: 

        mp.solutions.drawing_utils.draw_landmarks( 

            frame_bgr, results.pose_landmarks, 

mp_pose.POSE_CONNECTIONS) 

 

    return feat, frame_bgr 

 

 

def iter_video_frames(path: str, step: int = 1): 

    """Ітератор по кадрах відео.""" 

    cap = cv2.VideoCapture(path) 

    if not cap.isOpened(): 

        raise RuntimeError(f"Не вдалося відкрити відео: {path}") 

    idx = 0 

    try: 

        while True: 

            ok, frame = cap.read() 

            if not ok: 

                break 

            if idx % step == 0: 

                yield frame 

            idx += 1 

    finally: 

        cap.release() 



 

 

Додаток Д 

 

Програмний код допоміжних функцій обробки пози людини 

 

# scripts/realtime_demo.py 

from __future__ import annotations 

import sys, os 

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__fil

e__), ".."))) 

 

import argparse 

import cv2 

import numpy as np 

import joblib 

from collections import deque 

import mediapipe as mp 

from src.pose_utils import pose_vector_from_frame 

 

 

def softmax(x): 

    """Проста функція для нормалізації ймовірностей.""" 

    x = x - np.max(x) 

    e = np.exp(x) 

    return e / (np.sum(e) + 1e-9) 

 

 

def main(model_path: str, cam_index: int = 0, smooth: int = 7): 

    """ 

    Реальний час: читає кадри з вебкамери, обчислює ознаки й 

робить прогноз руху. 

    """ 

    # Завантаження моделі 

    pack = joblib.load(model_path) 

    pipeline = pack["pipeline"] 

    label_encoder = pack["label_encoder"] 

 

    # Буфер для згладжування прогнозів 

    preds_buf = deque(maxlen=smooth) 

 

    mp_pose = mp.solutions.pose 

    cap = cv2.VideoCapture(cam_index) 

    if not cap.isOpened(): 

        raise RuntimeError("     Не вдалося відкрити вебкамеру") 

 

    with mp_pose.Pose(static_image_mode=False, model_complexity=1) 

as pose: 

        while True: 

            ok, frame = cap.read() 

            if not ok: 

                break 

 



 

 

            feat, vis = pose_vector_from_frame(frame, pose, 

draw=True) 

            label_text = "No pose" 

            conf_text = "" 

 

            if feat is not None: 

                X = feat.reshape(1, -1) 

                if hasattr(pipeline, "predict_proba"): 

                    proba = pipeline.predict_proba(X)[0] 

                    cls_idx = int(np.argmax(proba)) 

                    preds_buf.append(cls_idx) 

                    # Мажоритарне голосування в буфері 

                    if len(preds_buf) > 0: 

                        cls_idx = max(set(preds_buf), 

key=list(preds_buf).count) 

                    label = 

label_encoder.inverse_transform([cls_idx])[0] 

                    conf = proba[cls_idx] 

                    label_text = str(label) 

                    conf_text = f"{conf:.2f}" 

                else: 

                    cls_idx = int(pipeline.predict(X)[0]) 

                    preds_buf.append(cls_idx) 

                    if len(preds_buf) > 0: 

                        cls_idx = max(set(preds_buf), 

key=list(preds_buf).count) 

                    label = 

label_encoder.inverse_transform([cls_idx])[0] 

                    label_text = str(label) 

            # Малюємо підпис 

            h, w = frame.shape[:2] 

            cv2.rectangle(frame, (0, 0), (w, 40), (0, 0, 0), -1) 

            cv2.putText(frame, f"{label_text} {conf_text}", (10, 

28), 

                        cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 

0), 2) 

 

            cv2.imshow("MWP — Realtime Pose Recognition", frame) 

            key = cv2.waitKey(1) 

            if key == 27 or key == ord('q'): 

                break 

 

    cap.release() 

    cv2.destroyAllWindows() 

 

 

if __name__ == "__main__": 

    ap = argparse.ArgumentParser() 

    ap.add_argument("--model", type=str, 

default="models/model.pkl") 

    ap.add_argument("--cam", type=int, default=0) 

    ap.add_argument("--smooth", type=int, default=7) 

    args = ap.parse_args() 

 

    main(args.model, args.cam, args.smooth) 


