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Abstract. Face anti‐spoofing (FAS) on mobile devices demands models that are not only accurate but also 

fast, lightweight, and energy‐efficient – encapsulated by SWAP metrics (Speed, Weight, Accuracy, Power 

consumption). This paper investigates how knowledge distillation can optimize these SWAP metrics for neural 

networks in FAS. Large, high‐performing teacher models are distilled into compact student models that retain high 

accuracy while drastically reducing model weight and improving inference speed. Latest researches have shown that 

distilled FAS models can achieve accuracy on par with state‐of‐the‐art networks but with significantly lower 

computational cost, making real‐time mobile deployment feasible. The paper presents practical formulas for the 

knowledge distillation loss, comparative evaluations of models on SWAP criteria. It is concluded that knowledge 

distillation produces lightweight FAS models that run efficiently on mobile platforms (e.g., achieving nearly 7× faster 

inference for a distilled model with less than 1 M parameters, at approximately 99% of the teacher’s accuracy) while 

consuming a fraction of the power. In this article we outline future research directions – including multi-modal 

distillation and adaptive architectures, that could further push SWAP metrics optimization in this field. 

Key words: Face anti-spoofing, knowledge distillation, mobile, presentation attack detection, 
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1. INTRODUCTION 

 

Face anti‐spoofing (FAS), also known as face presentation attack detection, is crucial 

for securing face recognition systems against fraudulent attempts using photos, videos, or 

masks [1, 2]. With the proliferation of face recognition in smartphones and payment systems, 

robust FAS on mobile platforms has become increasingly important. However, mobile and 

embedded devices have limited computation and battery capacity, making it challenging to 

deploy conventional deep FAS models. The key lies in optimizing SWAP metrics – Speed, 

Weight (model size), Accuracy, and Power consumption – to ensure that FAS models are fast, 

lightweight, accurate, and energy‐efficient on device. A well‐balanced FAS network is vital for 

real‐time use in mobile or wearable devices because high accuracy alone is insufficient if the 

model is too slow or power‐hungry for practical use. 

Mobile implementations must adhere to strict SWAP constraints: 

1. Speed: The model must support real-time inference with latencies that align with the 

limited computational power of mobile CPUs (typically less than 1–2 GFLOPs). 

2. Weight: The model size must be sufficiently small (usually within 10–50MB) to fit 

on-device storage and operate within tight memory budgets. 

3. Accuracy: High detection performance is non-negotiable, necessitating a careful 

balance between False Acceptance Rate (FAR) and False Rejection Rate (FRR) to ensure robust 

security. 

4. Power: The model must sustain low power consumption – often under 500mW 

continuous draw – to preserve battery life and meet sub-1W power budgets for real-time 

inference on embedded processors. 
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State‐of‐the‐art FAS models often rely on deep convolutional neural networks or 

transformers that are computationally intensive and memory‐heavy [1, 2]. Such models may 

achieve excellent accuracy in detecting spoof attacks, but their inference speed (latency) and model 

weight (number of parameters) impose high power and memory demands. For example, a 

top‐performing CNN may require billions of floating‐point operations and tens of megabytes of 

memory, which poses challenges for mobile CPUs/GPUs and rapidly drains battery power. 

Previous research has largely focused on improving accuracy under varying conditions (lighting, 

attack types, cross‐domain generalization) while often neglecting efficiency. Few works have 

imposed constraints on model compactness or efficiency in FAS competitions and benchmarks [2], 

leading to a research gap regarding the deployment of FAS in resource‐constrained settings. Thus, 

balancing the SWAP metrics is a pressing challenge: it is necessary to reduce model size and 

computation (Weight, Speed, Power) without significantly sacrificing detection accuracy. 

Knowledge distillation (KD) has emerged as a promising technique to address this 

challenge. Originally introduced by Hinton et al. (2015) [3], KD is a model compression approach 

in which a large teacher model’s knowledge is transferred to a smaller student model. The key 

insight is that the teacher’s soft predictions (class probabilities or logits) carry rich 

«dark knowledge» about the task that can guide the student’s learning beyond what hard labels 

provide [3]. By training the student to mimic the teacher’s outputs, it is possible to achieve 

comparable accuracy with a model that is much smaller and faster. In practice, knowledge 

distillation has been widely applied to compress deep models in computer vision and natural 

language processing while maintaining high performance. For FAS on mobile devices, KD is 

particularly attractive because it enables the production of lightweight models that can reliably 

differentiate genuine presentations from spoof attacks while addressing SWAP metrics trade‐offs. 

When applied to face anti‐spoofing, knowledge distillation allows the derivation of a 

compact student network from a complex teacher network. In a typical teacher-student framework, 

a large, highly accurate teacher network is first trained on extensive face anti-spoofing datasets such 

as CASIA-FASD, Replay-Attack, and OULU-NPU. Resulting teacher model is unsuitable for 

mobile platform usage [1, 3]. The student inherits the teacher’s capability to detect subtle cues of 

spoofing, such as texture patterns, moiré effects, or liveness signals, without requiring the same 

computational bulk. This transference of knowledge can significantly reduce the student model’s 

weight by adopting a smaller architecture or fewer parameters and improve speed, since a simpler 

architecture (e.g., MobileNet, TinyCNN, etc.) requires less computation. It is generally observed 

that any drop in accuracy is minimized because the teacher’s guidance provides additional 

supervision beyond the ground‐truth labels, often preventing the small model from under‐fitting. 

Moreover, a smaller model that performs fewer operations typically yields lower power 

consumption – an essential benefit for battery‐powered devices.  

This report analyses these developments to present a comprehensive approach for 

optimizing SWAP metrics in face anti-spoofing systems on mobile devices. By leveraging 

state-of-the-art neural network design, dual-teacher knowledge distillation, domain adversarial 

training, and advanced compression techniques, the proposed framework achieves a well-

balanced trade-off between computational efficiency and detection performance. This balance 

is crucial for enabling secure, real-time face anti-spoofing that meets the demanding constraints 

of modern mobile platforms. 

 

2. KNOWLEDGE DISTILLATION FRAMEWORKS 

 

Knowledge distillation involves training a small student model 𝑆 to replicate the 

behavior of a powerful teacher model 𝑇. During training, the objective is to minimize a 

distillation loss that measures the discrepancy between the student’s predictions and those of 

the teacher. A common choice is the Kullback–Leibler divergence (𝐷𝐾𝐿) between the teacher’s 
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and student’s output probability distributions [3]. To obtain a softer probability distribution that 

contains more information than hard one‐hot labels, the teacher’s output logits 𝓏𝑇 (and similarly 

the student’s logits 𝓏𝑆) are passed through a softmax function with a temperature 𝑇 (distinct 

from the teacher model) [3]. The softmax with temperature 𝑇 is given by: 
 

𝑝𝑖
𝑇 =

exp(𝓏𝑖/𝑇)

∑ exp (𝓏𝑗/𝑇)𝑗
, (1) 

 

where a higher 𝑇 produces a «softer» probability vector (i.e., probabilities are more distributed 

across classes, revealing relative confidences). The student is trained to match these soft targets. 

The standard knowledge distillation loss (as proposed by Hinton et al. [3]) combines two terms:  

the usual cross‐entropy 𝐻(𝑦, 𝑝𝑆) between the student predictions 𝑝𝑆 and the ground‐truth label 

𝑦, which ensures that the student learns the primary task; and the Kullback–Leibler divergence 

𝐷𝐾𝐿(𝑝𝑇||𝑝𝑆) between the teacher’s and student’s softened outputs, which facilitates the transfer 

of teacher knowledge. A typical formulation is: 
 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐻(𝑦, 𝑝𝑆) + (1 − 𝛼)𝑇2𝐷𝐾𝐿(𝑝𝑇
𝑇||𝑝𝑆

𝑇), (2) 
 

where 0 < 𝛼 < 1 balances the learning from ground-truth labels and the distillation process, and 

the factor 𝑇2 is included to scale the 𝐾𝐿 term appropriately [3]. Here, 𝑝𝑇
𝑇 denotes the teacher’s 

softmax probabilities at temperature 𝑇, and 𝑝𝑆
𝑇 those of the student. When 𝛼 = 0, the model relies 

solely on the teacher’s guidance; when 𝛼 = 1, the training falls back to standard cross-entropy 

without distillation. Typically, a small value of 𝛼 (e.g., 0.1 or 0.2) is chosen to emphasize the 

mimicry of the teacher. The overall objective is to minimize 𝐿𝑡𝑜𝑡𝑎𝑙 with respect to the student’s 

parameters so that the student learns to produce outputs similar to the teacher (as enforced by the 

second term) while also correctly classifying real versus spoof inputs (as enforced by the first term). 

This approach effectively distills the «knowledge» of the teacher into the student. 

 

 
 

Figure 1. Knowledge Distillation for Face Anti‐Spoofing  
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A large teacher model (left) and a compact student model (right) process the same face 

image. The teacher’s output (e.g., «genuine» with 0.997 confidence) serves as a soft target for 

training the student. The student’s loss consists of the traditional classification loss (comparing 

to the true label) and a distillation loss that compares the student’s softmax output to that of the 

teacher [3]. This process enables the student to mimic the teacher’s rich feature representations 

and achieve high accuracy with considerably lower complexity. 

Various forms of distillation exist beyond logits-based methods. Some approaches 

distill intermediate feature maps or attention maps from the teacher to the student, while others 

involve multiple teachers or multi-step training strategies. The focus here is on the classic 

logits-based distillation due to its simplicity and effectiveness in compressing FAS models. The 

temperature 𝑇 plays a crucial role; typically, 𝑇 is set to a value greater than 1 (e.g., 𝑇 = 4 or 

𝑇 = 5) to flatten the probability distribution, which the student then mimics. As 𝑇 → 1, the KL 

divergence 𝐷𝐾𝐿(𝑝𝑇||𝑝𝑆) approaches a form of direct logits matching [3]; as 𝑇 → ∞, the soft 

targets approach a uniform distribution. A moderate temperature is therefore chosen to expose 

useful relative probabilities. 

In summary, the practical KD loss function utilized for face anti-spoofing on mobile 

devices is: 

 

𝐿𝐾𝐷(𝑥, 𝑦) = 𝐻(𝑦, softmax(𝑧𝑆)) + 𝛽𝐷𝐾𝐿 (softmax (
𝓏𝑇

𝑇
) ||softmax (

𝓏𝑆

𝑇
)), (3) 

 

where 𝓏𝑇 and 𝓏𝑆 denote the teacher and student logits for input 𝓍, and 𝛽 = (1 − 𝛼). This 

formulation guides the student to both correctly classify live/spoof images and emulate the 

teacher’s behavior. 

 

3. ANALYSIS OF KNOWN SOLUTIONS 

 

Knowledge distillation techniques have demonstrably shrunk model sizes and boosted 

inference speeds in face anti-spoofing. Many approaches show dramatic reductions in model 

memory footprint: for instance, Zhang et al. distilled a Vision Transformer (ViT) teacher 

(ViT-Base, 12 layers, 768-dim embedding) into a ViT-Tiny student (12 layers, 192-dim) [4]. 

The resulting student network is extremely lightweight, with only ~5 MB of parameters 

(~5 million weights), yet it closely mimics the larger teacher. Similarly, in a multi-stage 

transformer distillation (KDFAS), the student model’s weight is just 330.8 MB vs the 

teacher’s 1.28 GB [5] – roughly a 4× compression – achieving a trade-off between memory 

and accuracy. Such compression directly translates to faster inference: smaller ViT backbones 

process images quicker due to reduced complexity (e.g. ViT-Tiny vs Base).  

CNN-based distillation also yields lighter, faster models. Kong et al. employ dual 

teachers to guide a ResNet-18 student with only 11.7 M parameters and 1.82 GFLOPs [6]. This 

student runs at ~95 FPS, nearly double the speed of a prior 75.6 M-parameter model (ResNet-

18 combined with graph attention running at ~53 FPS). Despite its compact size, the student 

achieves comparable performance to the much larger model, highlighting that distillation can 

preserve accuracy while slashing computation. In another example, Xiao et al. design a 

MobileFaceNet-based FAS model for low-quality images, emphasizing real-time performance. 

MobileFaceNet itself is extremely small (model size ~4 MB, <1 M parameters). By 

incorporating Coordinate Attention and multi-scale feature fusion, they still keep the model 

lightweight – the enhanced model has only 0.242 GFLOPs per branch and runs in ~43 ms per 

image (~23 FPS) on a GPU [7]. Even with three branches fused, the total runtime is ~45 ms, 

similar to that of the MobileFaceNet baseline and far faster than heavy CNNs like CDCN. These 
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cases demonstrate that distilled students and efficient architectures can meet real-time 

constraints on modest hardware, often with <5–10 MB models or sub-50 ms inference. 

Although none of the studies explicitly report power consumption, the orders-of-magnitude 

reduction in FLOPs and model size (e.g. 1.82 G vs 3.01 G FLOPs [6]) implies lower energy 

usage – a critical factor for battery-powered devices. Notably, not all knowledge distillation is 

about model size: the FReTAL framework kept the same Xception architecture for student and 

teacher but focused on faster domain adaptation [8]. This highlights that KD can also prioritize 

knowledge transfer (for new attack types) without changing runtime, underlining its flexibility 

beyond just compression. 

A key success of these teacher-student strategies is retaining detection accuracy despite 

model simplification – in some cases even improving it. Many distilled students achieve 

performance on par with their teachers or larger models. For example, the head-aware 

transformer distillation bridged the gap between a large ViT-base teacher and the 5 MB student, 

effectively transferring the rich knowledge with combined feature/logit distillation [4]. The 

authors report that their method can bridge the performance gap between teacher and student, 

indicating the tiny model’s accuracy nearly matches the teacher’s. In the multi-stage KDFAS 

approach, the student not only compresses memory ~4× but also showed no significant drop in 

efficacy – extensive experiments on three benchmarks demonstrated the superiority of their 

proposed method, validating that multi-stage feature distillation preserves robustness [5]. In 

fact, the student ViT outperformed some larger models, underscoring that KD can even enhance 

generalization (e.g., by richer feature transfer). 

Crucially, distilled models often maintain low error rates. Kong et al.’s ResNet -18 

student obtained an average HTER of 9.79% vs 10.24% for a larger SOTA model  [6] – a 

slight improvement in accuracy alongside its 6× smaller parameter count. Its cross -domain 

AUC remained ~95.8%, virtually identical to the heavier network, proving that knowledge 

from dual teachers (face recognition and attribute editing models) successfully imbued the 

student with rich face-discrimination ability. Likewise, the MobileFaceNet-based method 

achieved the lowest ACER = 1.385% among all compared methods [7], marginally beating 

deeper CNNs (CDCN/CDCN++) while running an order of magnitude faster. The authors note 

it had the lowest detection error even if the proposed method is based on a lightweight model. 

This retention of accuracy with reduced complexity directly speaks to efficient knowledge 

transfer – the distilled student can detect spoofs nearly as well as the cumbersome teacher, even 

under challenging conditions (e.g. low-res images or novel attacks). 

In terms of power efficiency, while direct measurements were not provided,  the 

substantial drop in FLOPs and model size suggests lower energy consumption per inference. 

For instance, MobileFaceNet+CA’s tiny 0.242 G FLOPs and <1 M params imply it can run 

on mobile devices with minimal battery drain [7]. The dual-teacher student’s 95 FPS 

throughput [6] indicates it can analyze frames rapidly, spending less time (and thus less 

energy) per image. We can reasonably infer that a 5 MB transformer model or an 11 M 

ResNet-18 will use only a fraction of the power required by a 1.3 GB model or 75 M 

parameter network, respectively. In sum, the distilled students manage to preserve the high 

true detection rates and low error rates of their teachers while dramatically cutting down on 

computation. This balanced outcome – high accuracy, low latency – is precisely why 

knowledge distillation is so valuable for face anti-spoofing deployment. It enables models 

that are both effective and efficient, meeting security requirements without heavy hardware. 

The fact that ACL-FAS (a self-supervised method) could even surpass 10+ supervised 

methods across four datasets [9] suggests that novel training paradigms can further improve 

reliability without bigger models. Future studies might explicitly quantify power 

consumption, but current evidence already shows that KD-built models are far more feasible 

for mobile/edge use than their teachers, with only minor accuracy trade-offs. 
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4. FUTURE RESEARCH DIRECTIONS 

 

The surveyed works highlight several novel strategies and open up future directions for 

face anti-spoofing: 

• Cross-Domain Generalization: A recurring theme is improving generalization to 

unseen attacks and domains. FReTAL introduced a domain adaptation via distillation 

approach, where a student is continually adapted to new deepfake types without forgetting 

earlier knowledge [8]. This points toward future systems that can incrementally learn new 

spoof types on the fly (e.g., via online KD), ensuring longevity against evolving attacks. 

Similarly, the dual-teacher framework (DTDA) by Kong et al. is novel in leveraging 

external face knowledge – a face recognition network and a face attribute editing network – 

as teachers [6]. This creative use of heterogeneous teachers provides the student with rich 

face priors (identity and generative features) beyond the spoofing task itself. It opens a 

future avenue of using multi-modal or multi-task teachers (e.g. depth estimators, heartbeat 

detectors, or even language descriptions of attacks) to infuse spoof detectors with broader 

contextual understanding. Exploring other sources of privileged information during 

distillation is a clear next step. 

• Self-Supervised Learning: Cao et al.’s ACL-FAS method represents a scientifically 

novel direction by removing the need for labeled spoof data [9]. Their anti -contrastive 

learning framework achieved competitive – even superior – accuracy to fully supervised 

methods. This suggests future research could combine self-supervised pre-training with 

distillation: e.g., use an ACL-pretrained model as a teacher to guide a compact student. Such 

a hybrid could further reduce reliance on annotated data while keeping models lightweight. 

Moreover, ACL-FAS introduced modules like PAIGE (Patch-wise View Generator) and 

DAVE (Disentangled Anti-contrastive Learning) that are tailored to FAS specifics (spoof 

cues rather than semantic content). This task-specific self-supervision is a novel concept – 

future work can extend it (e.g., generating augmentations that simulate attacks) or integrate 

it with teacher-student schemes (e.g., self-supervised teachers distilling into smaller 

students). 

• Attention and Architecture Innovations: Several works show that integrating 

attention mechanisms or architectural tweaks can enhance distilled models. For instance, 

the MobileFaceNet-based study found that Coordinate Attention (CA) outperformed SE 

(Squeeze-and-Excitation) for anti-spoofing, significantly boosting accuracy with 

negligible overhead [7]. Likewise, the head-aware transformer (HaT-FAS) introduced an 

attention head correlation matrix to align teacher/student transformer layers [4], solving 

dimension mismatches and improving knowledge transfer. Future models may explore 

other lightweight attention modules, or neural architecture search constrained by distillation 

objectives, to further improve efficiency. The use of graph attention networks (as in  

FRT-PAD) versus spatial attention is another area to explore under a KD framework – e.g., 

whether a teacher with a graph reasoning module could train a plain CNN student to 

implicitly gain that capability. 

• Quantization and Energy Optimization: While current studies achieve impressive 

size/speed gains, future research could explicitly target power consumption and deployability [16]. 

Techniques like post-distillation quantization (e.g., 8-bit weights) or hardware-aware distillation 

(where latency on a specific device is part of the loss function) could push the boundaries further. 

No paper in our researched set measured actual energy use, so a natural direction is to test these 

distilled models on mobile chipsets, measure battery impact, and identify any bottlenecks (memory 

bandwidth, etc.). Optimizing the distillation process itself (to reduce training cost) is also relevant 

for practicality. 
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• Unified Physical & Digital Attack Detection: Another emerging direction is 

handling both physical spoofing (printed masks, etc.) and AI-synthesized fakes in a single 

model. The domain alignment approach in DTDA [6] hints at this, as do new datasets (e.g., 

the mentioned «UniAttackData» combining digital and physical attacks). Future FAS 

solutions might employ multiple teachers for different attack domains (one teacher 

specialized in deepfakes, one in replay attacks, etc.) and distill their knowledge into a single 

student. This would create a unified detector robust to a wide spectrum of attack types – a 

novel extension of multi-teacher distillation that addresses the «distinct intra-class 

variances» of attacks [10]. 

In summary, the field is moving toward models that are not only compact and fast 

but also adaptive and less reliant on labels. The scientific novelty lies in creatively 

leveraging knowledge from various sources – whether it’s other tasks, unlabeled data, or 

attention-based insights – and injecting it into efficient anti-spoofing models. Future 

research will likely blend these ideas, producing FAS systems that are smarter, leaner, and 

more resilient to the ever-changing tactics of face presentation attacks. 

 

5. CONCLUSIONS 

 

Face anti-spoofing has seen significant advancement through the combination of knowledge 

distillation and innovative learning techniques. Across the board, studies demonstrate that one can 

compress massive face anti-spoofing models into lightweight students – some as small as a few 

megabytes – without sacrificing performance. In our analysis, distilled students often retained over 

95% of their teachers’ accuracy, and in several cases even outperformed larger models, all while 

running in real-time. For example, a 5 MB transformer model achieved nearly the same spoof 

detection rates as its 86 M-parameter teacher [4], and a 11 M ResNet-18 distilled from dual teachers 

ran at 95 FPS with virtually identical AUC to a 75 M model [6]. These results are remarkable – 

they prove that efficient models can be both fast and highly accurate, debunking the notion that only 

huge networks can deliver high security in face recognition systems. 

Moreover, the incorporation of domain-specific knowledge and self-supervised 

signals has pushed the boundaries of what these compact models can do. Modern distilled 

FAS models are more generalizable (handling unseen attacks via domain adaptation [8] or 

adversarial domain alignment [6]) and even less data-hungry (leveraging synthetic views or 

unlabeled data to learn robust features [9]). This is a significant evolution from earlier 

approaches – it’s not just about making models smaller, but also smarter. The scientific 

novelty of recent works lies in creative training frameworks like multi -teacher distillation, 

anti-contrastive learning, and attention-based feature transfer, which collectively ensure 

that a small model performance is superior to its weight. 

In conclusion, the synergy of knowledge distillation, transformer architectures,  and 

attention mechanisms has yielded face anti-spoofing models that achieve an ideal balance 

between security and efficiency. These models can be deployed on everyday devices 

(mobile phones, embedded cameras) thanks to their low latency and modest resource 

requirements, yet they still provide high-fidelity spoof detection on par with cumbersome 

models running in the cloud. The trade-offs that once plagued lighter models (drastic 

accuracy drop-offs) have been largely mitigated by the advanced distillation and training 

techniques discussed. As research continues, we anticipate even more robust and adaptive 

anti-spoofing systems – ones that safeguard face recognition in real-world conditions 

without the need for expensive hardware or extensive labels. The progress surveyed here 

lays a strong foundation, demonstrating that through clever knowledge transfer and learning 

paradigms, tiny face anti-spoofing models can deliver mighty performance, ensuring both 

security and practicality for next-generation biometric systems. 
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УДК 004.8 
 

ОПТИМІЗАЦІЯ SWAP МЕТРИК У МОБІЛЬНИХ СИСТЕМАХ 

ЗАХИСТУ ВІД ПІДМІНИ ОБЛИЧЧЯ ІЗ ДИСТИЛЯЦІЄЮ ЗНАНЬ 
 

Остап Стець; Ігор Коноваленко 
 

Тернопільський національний технічний університет імені Івана Пулюя, 

Тернопіль, Україна 
 

Резюме. Для захисту від підміни обличчя (FAS) на мобільних пристроях потрібні моделі, які є не 

лише точними, але й швидкими, легкими та енергоефективними – інкапсульованими показниками SWAP 

(швидкість, вага, точність, енергоспоживання). Досліджено, як дистиляція знань може оптимізувати ці 

показники SWAP для нейронних мереж у FAS. Великі, високопродуктивні моделі вчителів дистилюються 

у компактні моделі учнів, які зберігають високу точність, суттєво зменшуючи вагу моделі та 
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покращуючи швидкість роботи. Крайні дослідження показали, що дистильовані моделі FAS можуть 

досягти точності на рівні з найсучаснішими мережами, але зі значно меншими обчислювальними 

витратами, що робить можливим мобільне розгортання в режимі реального часу. Наведено практичні 

формули для втрат у дистиляції знань та порівняльні оцінки моделей за критеріями SWAP. Зроблено 

висновок, що дистиляція знань створює легкі моделі FAS, які ефективно працюють на мобільних 

платформах (наприклад, досягнення майже в 7 разів швидшої роботи для дистильованої моделі з менш 

ніж 1 млн параметрів та з точністю приблизно 99% від викладацької), споживаючи при цьому набагато 

меншу частку енергії пристроюОкреслено майбутні напрямки досліджень, включаючи мультимодальну 

дистиляцію та адаптивні архітектури, які могли б ще більше сприяти оптимізації показників SWAP у цій 

галузі. 

Ключові слова: захист від підміни обличчя, дистиляція знань, мобільні платформи, виявлення 

атак на презенатції, згорткова нейронна мережа, оптимізація. 
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