/.\ BicHuk TepHONiibChbKOro HALIOHAJIBLHOT0 TEXHIYHOT0 YHIBEPCHTETY
https://doi.org/10.33108/visnyk tntu

W Scientific Journal of the Ternopil National Technical University
\_/ 2025, Ne 2 (118) https://doi.org/10.33108/visnyk _tntu2025.02
ISSN 2522-4433. Web: visnyk.tntu.edu.ua

UDC 004.8

SWAP METRICS OPTIMIZATION IN MOBILE FACE
ANTI-SPOOFING SYSTEMS USING KNOWLEDGE DISTILLATION

Ostap Stets; Thor Konovalenko

Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

Abstract. Face anti-spoofing (FAS) on mobile devices demands models that are not only accurate but also
fast, lightweight, and energy-efficient — encapsulated by SWAP metrics (Speed, Weight, Accuracy, Power
consumption). This paper investigates how knowledge distillation can optimize these SWAP metrics for neural
networks in FAS. Large, high-performing teacher models are distilled into compact student models that retain high
accuracy while drastically reducing model weight and improving inference speed. Latest researches have shown that
distilled FAS models can achieve accuracy on par with state-of-the-art networks but with significantly lower
computational cost, making real-time mobile deployment feasible. The paper presents practical formulas for the
knowledge distillation loss, comparative evaluations of models on SWAP criteria. It is concluded that knowledge
distillation produces lightweight FAS models that run efficiently on mobile platforms (e.g., achieving nearly 7 x faster
inference for a distilled model with less than 1 M parameters, at approximately 99% of the teacher’s accuracy) while
consuming a fraction of the power. In this article we outline future research directions — including multi-modal
distillation and adaptive architectures, that could further push SWAP metrics optimization in this field.
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1. INTRODUCTION

Face anti-spoofing (FAS), also known as face presentation attack detection, is crucial
for securing face recognition systems against fraudulent attempts using photos, videos, or
masks [1, 2]. With the proliferation of face recognition in smartphones and payment systems,
robust FAS on mobile platforms has become increasingly important. However, mobile and
embedded devices have limited computation and battery capacity, making it challenging to
deploy conventional deep FAS models. The key lies in optimizing SWAP metrics — Speed,
Weight (model size), Accuracy, and Power consumption — to ensure that FAS models are fast,
lightweight, accurate, and energy-efficient on device. A well-balanced FAS network is vital for
real-time use in mobile or wearable devices because high accuracy alone is insufficient if the
model is too slow or power-hungry for practical use.

Mobile implementations must adhere to strict SWAP constraints:

1. Speed: The model must support real-time inference with latencies that align with the
limited computational power of mobile CPUs (typically less than 1-2 GFLOPs).

2. Weight: The model size must be sufficiently small (usually within 10-50MB) to fit
on-device storage and operate within tight memory budgets.

3. Accuracy: High detection performance is non-negotiable, necessitating a careful
balance between False Acceptance Rate (FAR) and False Rejection Rate (FRR) to ensure robust
security.

4. Power: The model must sustain low power consumption — often under 500mW
continuous draw — to preserve battery life and meet sub-1W power budgets for real-time
inference on embedded processors.
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State-of-the-art FAS models often rely on deep convolutional neural networks or
transformers that are computationally intensive and memory-heavy [1, 2]. Such models may
achieve excellent accuracy in detecting spoof attacks, but their inference speed (latency) and model
weight (number of parameters) impose high power and memory demands. For example, a
top-performing CNN may require billions of floating-point operations and tens of megabytes of
memory, which poses challenges for mobile CPUs/GPUs and rapidly drains battery power.
Previous research has largely focused on improving accuracy under varying conditions (lighting,
attack types, cross-domain generalization) while often neglecting efficiency. Few works have
imposed constraints on model compactness or efficiency in FAS competitions and benchmarks [2],
leading to a research gap regarding the deployment of FAS in resource-constrained settings. Thus,
balancing the SWAP metrics is a pressing challenge: it is necessary to reduce model size and
computation (Weight, Speed, Power) without significantly sacrificing detection accuracy.

Knowledge distillation (KD) has emerged as a promising technique to address this
challenge. Originally introduced by Hinton et al. (2015) [3], KD is a model compression approach
in which a large teacher model’s knowledge is transferred to a smaller student model. The key
insight is that the teacher’s soft predictions (class probabilities or logits) carry rich
«dark knowledge» about the task that can guide the student’s learning beyond what hard labels
provide [3]. By training the student to mimic the teacher’s outputs, it is possible to achieve
comparable accuracy with a model that is much smaller and faster. In practice, knowledge
distillation has been widely applied to compress deep models in computer vision and natural
language processing while maintaining high performance. For FAS on mobile devices, KD is
particularly attractive because it enables the production of lightweight models that can reliably
differentiate genuine presentations from spoof attacks while addressing SWAP metrics trade-offs.

When applied to face anti-spoofing, knowledge distillation allows the derivation of a
compact student network from a complex teacher network. In a typical teacher-student framework,
alarge, highly accurate teacher network is first trained on extensive face anti-spoofing datasets such
as CASIA-FASD, Replay-Attack, and OULU-NPU. Resulting teacher model is unsuitable for
mobile platform usage [1, 3]. The student inherits the teacher’s capability to detect subtle cues of
spoofing, such as texture patterns, moiré effects, or liveness signals, without requiring the same
computational bulk. This transference of knowledge can significantly reduce the student model’s
weight by adopting a smaller architecture or fewer parameters and improve speed, since a simpler
architecture (e.g., MobileNet, TinyCNN, etc.) requires less computation. It is generally observed
that any drop in accuracy is minimized because the teacher’s guidance provides additional
supervision beyond the ground-truth labels, often preventing the small model from under-fitting.
Moreover, a smaller model that performs fewer operations typically yields lower power
consumption — an essential benefit for battery-powered devices.

This report analyses these developments to present a comprehensive approach for
optimizing SWAP metrics in face anti-spoofing systems on mobile devices. By leveraging
state-of-the-art neural network design, dual-teacher knowledge distillation, domain adversarial
training, and advanced compression techniques, the proposed framework achieves a well-
balanced trade-off between computational efficiency and detection performance. This balance
is crucial for enabling secure, real-time face anti-spoofing that meets the demanding constraints
of modern mobile platforms.

2. KNOWLEDGE DISTILLATION FRAMEWORKS

Knowledge distillation involves training a small student model S to replicate the
behavior of a powerful teacher model T. During training, the objective is to minimize a
distillation loss that measures the discrepancy between the student’s predictions and those of
the teacher. A common choice is the Kullback—Leibler divergence (Dg; ) between the teacher’s
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and student’s output probability distributions [3]. To obtain a softer probability distribution that
contains more information than hard one-hot labels, the teacher’s output logits z” (and similarly
the student’s logits z°) are passed through a softmax function with a temperature T (distinct
from the teacher model) [3]. The softmax with temperature T is given by:

r__exp&/T)
Pi =S exp (5, /T) M

where a higher T produces a «softer» probability vector (i.e., probabilities are more distributed
across classes, revealing relative confidences). The student is trained to match these soft targets.
The standard knowledge distillation loss (as proposed by Hinton et al. [3]) combines two terms:
the usual cross-entropy H(y, p°) between the student predictions p> and the ground-truth label
vy, which ensures that the student learns the primary task; and the Kullback—Leibler divergence
Dy (pT||p®) between the teacher’s and student’s softened outputs, which facilitates the transfer
of teacher knowledge. A typical formulation is:

Liotar = aH(y,pS) +(1- a)TZDKL(P$||P5T)' (2)

where 0 < a < 1 balances the learning from ground-truth labels and the distillation process, and
the factor T2 is included to scale the KL term appropriately [3]. Here, p> denotes the teacher’s
softmax probabilities at temperature T, and pI those of the student. When a = 0, the model relies
solely on the teacher’s guidance; when @ = 1, the training falls back to standard cross-entropy
without distillation. Typically, a small value of a (e.g., 0.1 or 0.2) is chosen to emphasize the
mimicry of the teacher. The overall objective is to minimize L;,q,; With respect to the student’s
parameters so that the student learns to produce outputs similar to the teacher (as enforced by the
second term) while also correctly classifying real versus spoof inputs (as enforced by the first term).
This approach effectively distills the «knowledge» of the teacher into the student.
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Figure 1. Knowledge Distillation for Face Anti-Spoofing
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A large teacher model (left) and a compact student model (right) process the same face
image. The teacher’s output (e.g., «genuine» with 0.997 confidence) serves as a soft target for
training the student. The student’s loss consists of the traditional classification loss (comparing
to the true label) and a distillation loss that compares the student’s softmax output to that of the
teacher [3]. This process enables the student to mimic the teacher’s rich feature representations
and achieve high accuracy with considerably lower complexity.

Various forms of distillation exist beyond logits-based methods. Some approaches
distill intermediate feature maps or attention maps from the teacher to the student, while others
involve multiple teachers or multi-step training strategies. The focus here is on the classic
logits-based distillation due to its simplicity and effectiveness in compressing FAS models. The
temperature T plays a crucial role; typically, T is set to a value greater than 1 (e.g., T = 4 or
T = 5) to flatten the probability distribution, which the student then mimics. As T — 1, the KL
divergence Dy (pT||p°) approaches a form of direct logits matching [3]; as T — oo, the soft
targets approach a uniform distribution. A moderate temperature is therefore chosen to expose
useful relative probabilities.

In summary, the practical KD loss function utilized for face anti-spoofing on mobile
devices is:

T S
Lip(x,y) = H(y,softmax(ZS)) + BDg,, (softmax <Z?> ||softmax <Z?)>, 3)

where 37 and z5 denote the teacher and student logits for input x, and g = (1 — a). This
formulation guides the student to both correctly classify live/spoof images and emulate the
teacher’s behavior.

3. ANALYSIS OF KNOWN SOLUTIONS

Knowledge distillation techniques have demonstrably shrunk model sizes and boosted
inference speeds in face anti-spoofing. Many approaches show dramatic reductions in model
memory footprint: for instance, Zhang et al. distilled a Vision Transformer (ViT) teacher
(ViT-Base, 12 layers, 768-dim embedding) into a ViT-Tiny student (12 layers, 192-dim) [4].
The resulting student network is extremely lightweight, with only ~5 MB of parameters
(~5 million weights), yet it closely mimics the larger teacher. Similarly, in a multi-stage
transformer distillation (KDFAS), the student model’s weight is just 330.8 MB vs the
teacher’s 1.28 GB [5] — roughly a 4x compression — achieving a trade-off between memory
and accuracy. Such compression directly translates to faster inference: smaller ViT backbones
process images quicker due to reduced complexity (e.g. ViT-Tiny vs Base).

CNN-based distillation also yields lighter, faster models. Kong et al. employ dual
teachers to guide a ResNet-18 student with only 11.7 M parameters and 1.82 GFLOPs [6]. This
student runs at ~95 FPS, nearly double the speed of a prior 75.6 M-parameter model (ResNet-
18 combined with graph attention running at ~53 FPS). Despite its compact size, the student
achieves comparable performance to the much larger model, highlighting that distillation can
preserve accuracy while slashing computation. In another example, Xiao et al. design a
MobileFaceNet-based FAS model for low-quality images, emphasizing real-time performance.
MobileFaceNet itself is extremely small (model size ~4 MB, <1 M parameters). By
incorporating Coordinate Attention and multi-scale feature fusion, they still keep the model
lightweight — the enhanced model has only 0.242 GFLOPs per branch and runs in ~43 ms per
image (~23 FPS) on a GPU [7]. Even with three branches fused, the total runtime is ~45 ms,
similar to that of the MobileFaceNet baseline and far faster than heavy CNNs like CDCN. These
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cases demonstrate that distilled students and efficient architectures can meet real-time
constraints on modest hardware, often with <5-10 MB models or sub-50 ms inference.
Although none of the studies explicitly report power consumption, the orders-of-magnitude
reduction in FLOPs and model size (e.g. 1.82 G vs 3.01 G FLOPs [6]) implies lower energy
usage — a critical factor for battery-powered devices. Notably, not all knowledge distillation is
about model size: the FReTAL framework kept the same Xception architecture for student and
teacher but focused on faster domain adaptation [8]. This highlights that KD can also prioritize
knowledge transfer (for new attack types) without changing runtime, underlining its flexibility
beyond just compression.

A key success of these teacher-student strategies is retaining detection accuracy despite
model simplification — in some cases even improving it. Many distilled students achieve
performance on par with their teachers or larger models. For example, the head-aware
transformer distillation bridged the gap between a large ViT-base teacher and the 5 MB student,
effectively transferring the rich knowledge with combined feature/logit distillation [4]. The
authors report that their method can bridge the performance gap between teacher and student,
indicating the tiny model’s accuracy nearly matches the teacher’s. In the multi-stage KDFAS
approach, the student not only compresses memory ~4x but also showed no significant drop in
efficacy — extensive experiments on three benchmarks demonstrated the superiority of their
proposed method, validating that multi-stage feature distillation preserves robustness [5]. In
fact, the student ViT outperformed some larger models, underscoring that KD can even enhance
generalization (e.g., by richer feature transfer).

Crucially, distilled models often maintain low error rates. Kong et al.’s ResNet-18
student obtained an average HTER of 9.79% vs 10.24% for a larger SOTA model [6] — a
slight improvement in accuracy alongside its 6x smaller parameter count. Its cross-domain
AUC remained ~95.8%, virtually identical to the heavier network, proving that knowledge
from dual teachers (face recognition and attribute editing models) success fully imbued the
student with rich face-discrimination ability. Likewise, the MobileFaceNet-based method
achieved the lowest ACER = 1.385% among all compared methods [7], marginally beating
deeper CNNs (CDCN/CDCN++) while running an order of magnitude faster. The authors note
it had the lowest detection error even if the proposed method is based on a lightweight model.
This retention of accuracy with reduced complexity directly speaks to efficient knowledge
transfer — the distilled student can detect spoofs nearly as well as the cumbersome teacher, even
under challenging conditions (e.g. low-res images or novel attacks).

In terms of power efficiency, while direct measurements were not provided, the
substantial drop in FLOPs and model size suggests lower energy consumption per inference.
For instance, MobileFaceNet+CA’s tiny 0.242 G FLOPs and <1 M params imply it can run
on mobile devices with minimal battery drain [7]. The dual-teacher student’s 95 FPS
throughput [6] indicates it can analyze frames rapidly, spending less time (and thus less
energy) per image. We can reasonably infer that a 5 MB transformer model or an 11 M
ResNet-18 will use only a fraction of the power required by a 1.3 GB model or 75 M
parameter network, respectively. In sum, the distilled students manage to preserve the high
true detection rates and low error rates of their teachers while dramatically cutting down on
computation. This balanced outcome — high accuracy, low latency — is precisely why
knowledge distillation is so valuable for face anti-spoofing deployment. It enables models
that are both effective and efficient, meeting security requirements without heavy hardware.
The fact that ACL-FAS (a self-supervised method) could even surpass 10+ supervised
methods across four datasets [9] suggests that novel training paradigms can further improve
reliability without bigger models. Future studies might explicitly quantify power
consumption, but current evidence already shows that KD-built models are far more feasible
for mobile/edge use than their teachers, with only minor accuracy trade-offs.
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4. FUTURE RESEARCH DIRECTIONS

The surveyed works highlight several novel strategies and open up future directions for
face anti-spoofing:

e Cross-Domain Generalization: A recurring theme is improving generalization to
unseen attacks and domains. FReTAL introduced a domain adaptation via distillation
approach, where a student is continually adapted to new deepfake types without forgetting
earlier knowledge [8]. This points toward future systems that can incrementally learn new
spoof types on the fly (e.g., via online KD), ensuring longevity against evolving attacks.
Similarly, the dual-teacher framework (DTDA) by Kong et al. is novel in leveraging
external face knowledge — a face recognition network and a face attribute editing network —
as teachers [6]. This creative use of heterogeneous teachers provides the student with rich
face priors (identity and generative features) beyond the spoofing task itself. It opens a
future avenue of using multi-modal or multi-task teachers (e.g. depth estimators, heartbeat
detectors, or even language descriptions of attacks) to infuse spoof detectors with broader
contextual understanding. Exploring other sources of privileged information during
distillation is a clear next step.

e Self-Supervised Learning: Cao et al.’s ACL-FAS method represents a scientifically
novel direction by removing the need for labeled spoof data [9]. Their anti-contrastive
learning framework achieved competitive — even superior — accuracy to fully supervised
methods. This suggests future research could combine self-supervised pre-training with
distillation: e.g., use an ACL-pretrained model as a teacher to guide a compact student. Such
a hybrid could further reduce reliance on annotated data while keeping models lightweight.
Moreover, ACL-FAS introduced modules like PAIGE (Patch-wise View Generator) and
DAVE (Disentangled Anti-contrastive Learning) that are tailored to FAS specifics (spoof
cues rather than semantic content). This task-specific self-supervision is a novel concept —
future work can extend it (e.g., generating augmentations that simulate attacks) or integrate
it with teacher-student schemes (e.g., self-supervised teachers distilling into smaller
students).

e Attention and Architecture Innovations: Several works show that integrating
attention mechanisms or architectural tweaks can enhance distilled models. For instance,
the MobileFaceNet-based study found that Coordinate Attention (CA) outperformed SE
(Squeeze-and-Excitation) for anti-spoofing, significantly boosting accuracy with
negligible overhead [7]. Likewise, the head-aware transformer (HaT-FAS) introduced an
attention head correlation matrix to align teacher/student transformer layers [4], solving
dimension mismatches and improving knowledge transfer. Future models may explore
other lightweight attention modules, or neural architecture search constrained by distillation
objectives, to further improve efficiency. The use of graph attention networks (as in
FRT-PAD) versus spatial attention is another area to explore under a KD framework —e.g.,
whether a teacher with a graph reasoning module could train a plain CNN student to
implicitly gain that capability.

e Quantization and Energy Optimization: While current studies achieve impressive
size/speed gains, future research could explicitly target power consumption and deployability [16].
Techniques like post-distillation quantization (e.g., 8-bit weights) or hardware-aware distillation
(where latency on a specific device is part of the loss function) could push the boundaries further.
No paper in our researched set measured actual energy use, so a natural direction is to test these
distilled models on mobile chipsets, measure battery impact, and identify any bottlenecks (memory
bandwidth, etc.). Optimizing the distillation process itself (to reduce training cost) is also relevant
for practicality.
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e Unified Physical & Digital Attack Detection: Another emerging direction is
handling both physical spoofing (printed masks, etc.) and Al-synthesized fakes in a single
model. The domain alignment approach in DTDA [6] hints at this, as do new datasets (e.g.,
the mentioned «UniAttackData» combining digital and physical attacks). Future FAS
solutions might employ multiple teachers for different attack domains (one teacher
specialized in deepfakes, one in replay attacks, etc.) and distill their knowledge into a single
student. This would create a unified detector robust to a wide spectrum of attack types — a
novel extension of multi-teacher distillation that addresses the «distinct intra-class
variances» of attacks [10].

In summary, the field is moving toward models that are not only compact and fast
but also adaptive and less reliant on labels. The scientific novelty lies in creatively
leveraging knowledge from various sources — whether it’s other tasks, unlabeled data, or
attention-based insights — and injecting it into efficient anti-spoofing models. Future
research will likely blend these ideas, producing FAS systems that are smarter, leaner, and
more resilient to the ever-changing tactics of face presentation attacks.

5. CONCLUSIONS

Face anti-spoofing has seen significant advancement through the combination of knowledge
distillation and innovative learning techniques. Across the board, studies demonstrate that one can
compress massive face anti-spoofing models into lightweight students — some as small as a few
megabytes — without sacrificing performance. In our analysis, distilled students often retained over
95% of their teachers’ accuracy, and in several cases even outperformed larger models, all while
running in real-time. For example, a 5 MB transformer model achieved nearly the same spoof
detection rates as its 86 M-parameter teacher [4], and a 11 M ResNet-18 distilled from dual teachers
ran at 95 FPS with virtually identical AUC to a 75 M model [6]. These results are remarkable —
they prove that efficient models can be both fast and highly accurate, debunking the notion that only
huge networks can deliver high security in face recognition systems.

Moreover, the incorporation of domain-specific knowledge and self-supervised
signals has pushed the boundaries of what these compact models can do. Modern distilled
FAS models are more generalizable (handling unseen attacks via domain adaptation [8] or
adversarial domain alignment [6]) and even less data-hungry (leveraging synthetic views or
unlabeled data to learn robust features [9]). This is a significant evolution from earlier
approaches — it’s not just about making models smaller, but also smarter. The scientific
novelty of recent works lies in creative training frameworks like multi-teacher distillation,
anti-contrastive learning, and attention-based feature transfer, which collectively ensure
that a small model performance is superior to its weight.

In conclusion, the synergy of knowledge distillation, transformer architectures, and
attention mechanisms has yielded face anti-spoofing models that achieve an ideal balance
between security and efficiency. These models can be deployed on everyday devices
(mobile phones, embedded cameras) thanks to their low latency and modest resource
requirements, yet they still provide high-fidelity spoof detection on par with cumbersome
models running in the cloud. The trade-offs that once plagued lighter models (drastic
accuracy drop-offs) have been largely mitigated by the advanced distillation and training
techniques discussed. As research continues, we anticipate even more robust and adaptive
anti-spoofing systems — ones that safeguard face recognition in real-world conditions
without the need for expensive hardware or extensive labels. The progress surveyed here
lays a strong foundation, demonstrating that through clever knowledge transfer and learning
paradigms, tiny face anti-spoofing models can deliver mighty performance, ensuring both
security and practicality for next-generation biometric systems.
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OIITUMIBALIA SWAP METPUK Y MOBUIBHUX CUCTEMAX

3AXHUCTY BIA IIIIMIHA OBJIMYYA 13 JUCTUJIAIICIO 3HAHD

Ocran Creup; Irop KonoBaJjienko

TepHoninbcokuu HaAYioHAIbHUL MeXHIYHUU YHigepcumem imeHi leana Ilynios,

Jauuie

Tepuonins, Ykpaina

Pe3ztome. Jlns 3axucmy 6io0 niominu ooauuus (FAS) na mobinenux npucmposx nompioni mooeni, sxi € He
MOYHUMU, ane U WEUOKUMU, Ne2KUMU MAd eHepeoe@eKmuGHUMY — IHKANCcy1bo8anumu noxkaswukamu SWAP

(weuokicmo, 6aza, MOYHICMb, HEPEZOCHONCUBAHHS). [{OCTIONCEHO, K OUCMUNAYISL 3HAHb MOJICe ONMUMIZY8amu yi
noxasnuku SWAP ons netiponnux mepeosic y FAS. Benuxi, eucoxonpodykmueHi Mooeni g4uumenie OUCmuioiomscsi
y KOMRAKMHI MOOeni YuHie, SKI 30epiecaiomb GUCOKY MOYHICMb, CYMMEBO 3MEHULYIOUU 6dzy Mooeni ma
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nokpawyroyu weuokicms pobomu. Kpaiini 0ocnioscenns nokasanu, wo oucmunbosani modeni FAS moocymo
oocsemu MOYHOCMI Ha PI6HI 3 HAUCYYACHIWMUMU MEpedlcaMu, ane 3i 3HAYHO MEHUUMU OOUUCTIOBATbHUMU
BUMPAMAMU, WO POOUMb MONCIUBUM MOOITbHE PO32OPMAHHSL 8 pedicumi peaibHo2o dacy. Hasedeno npaxmuuni
Gopmynu 0ns empam y OUCMUIAYIL 3HAHb Ma NOpieHANbLHI oyinKku mooenell 3a kpumepismu SWAP. 3pobaeno
BUCHOBOK, WO OUCMUTAYISA 3HAHL cmeopioe aeeki mooeni FAS, saxi epexmusno npayioiomes Ha MOOITbHUX
naam@opmax (Hanpurnao, 00cseHeHHs matlice 8 7 paszie weuduloi pobomu 0iisi OUCMUTLOBAHOL MO0l 3 MEHU
Hidie 1 man napamempie ma 3 mounicmio npubausno 99% 6i0 uxkIadaybKoi), CROJMCUBAIOYU NPU YbOMY HADA2AMO
MeHuLy yacmky enepeii npucmpoio Okpecieno MauOymHi HanpAMKU 00CTIOHCEHD, BKAIUAIOUU MYTbIMUMOOATbHY
oucmuaayio ma aoanmuseHi apximexkmypu, AKi mozau 6 we dinbuie cnpusmu onmumizayii nokasuuxie SWAP y yiti
2anysi.

Knrwuosi cnosa: 3axucm 8i0 niominu o01uyus, OUCMUIAYIA 3HAHL, MOOIIbHI niampopmu, BuaeLeHHs
amax Ha npeseHamyii, 320pMKO6a HePOHHA Mepexca, ONMUMI3AYiA.
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