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The rapid development of information technologies [1] causes a significant
increase in the load on computer networks. Modern telecommunication systems deal
with traffic that is formed under the influence of cyclical patterns and random
fluctuations. To ensure stable operation of the network, it is necessary not only to
predict its states, but also to automatically detect load levels, which allows for timely
identification of critical modes and make proactive decisions on resource management.

Traditional methods are based [2] on threshold criteria that do not take into
account the stochastic nature of traffic and do not provide control over the probability
of classification errors. In this paper, an approach to automated detection of load levels
is proposed, which is based on the periodically correlated stochastic process (PCSP)
model, in-phase/component signal analysis, and the Neumann—Pearson criterion.

Network load classification methods can be conditionally divided into several
groups:

— Stochastic models (Poisson, Markov, ARIMA) describe randomness, but do not
reproduce cyclicality.

— Fractal models (fBm) take into account self-similarity, but do not take into
account diurnal fluctuations [5].

— Machine learning methods [3] provide high accuracy, but require large
computational resources.

— Hybrid approaches combine different models, but are difficult to implement in
practice [6].

The disadvantage of most of them is the use of simple thresholding schemes,
which reduces the reliability of classification. The proposed automated detection
system overcomes these limitations by integrating in-phase/component analysis and
the Neumann-Pearson criterion.
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Traffic load is considered as a periodically correlated stochastic process:
£e)=5()+X(r), teR (1)

where §(r) — a deterministic periodic component with a daily period 7, reflecting a
repeating cyclicity;

X(¥) — stochastic component.

Thus, the model combines the regular structure of traffic and its random nature.

To move from the model to the processing tools, the random component () is
given in the form of a harmonic expansion:

_J2nk
i)=& T, teR (2)
keZ

where & () — stochastic coefficients that vary with time, and exponential multipliers
describe the periodic structure of the process.

This approach allows us to represent the random part as a superposition of in-
phase harmonic components.

In-phase and component methods use these harmonic components to construct
correlation features.

For centered traffic signals, a spectral-correlation representation is calculated for
harmonic number £:

B ()= &)t —u)e T, (3)

0
where §(t) — centered traffic signal relative to the mathematical expectation,

0
&)= &) E[£0)];
N — sample length; u — time shift;
k — harmonic number (correlation component number); Z — indexing area.

The correlation components ék(u), which are calculated for centered traffic

signals, reflect the time-frequency characteristics of the network load. However, in real
data there are

— noise components (random fluctuations of short duration);

— anomalous peaks (sudden jumps due to local events) [4, 7];

— limited sample size, leading to statistical instability of estimates.

A

If raw correlation components B, (1) are used, the classification results may be

overly sensitive to random fluctuations.
To avoid this, a procedure of averaging over components was introduced:

Clu) =y 2 B, o). @

where B . (1) — estimate of the correlation component on the u-th interval;
K — number of averaging components.
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That 1s, averaging correlation components is a kind of «filter» of statistical
features: it cuts off short-term random fluctuations and leaves long-term patterns that
are truly informative for further classification of load levels.

As a result, a feature vector is formed:

Cu)=(Cln).Cluy s Cla,)), ()
which preserves the temporal dynamics of the load and is the basis for classification.

Automated detection of load levels in computer networks is formulated as a
statistical hypothesis testing problem. In the simplest case, binary classification is
considered:

— Hy: the load is average (normal network operation mode);

— H,: the load is abnormal (minimum or critical).

In order to decide between hypotheses, a likelihood ratio is introduced:

A(C(u))= S(C(u)| Hl),

S (C(”) | H, )
where C(u) — vector of averaged in-phase/component correlation features;
f (C (u)| H, ), f (C (u)| H 0) — probability density of the appearance of these

features when the hypotheses Hy and H, are true.

The decision (classification) rule has the form:
H1

A(C@w) <7, (7)
>

HO
where 77 — threshold value determined from the condition of controlling the probability
of incorrect decisions (determined by the Neumann-Pearson criterion) [8].

This approach allows you to minimize the probability of missing a dangerous
condition while controlling the probability of false alarms.

According to the Neumann—Pearson criterion, the optimal rule is considered to be
one that minimizes the probability of missing an abnormal state (type II error):

L= P(pimeHH}Z H0|H1) = jA(C(M))<U p(x | Hl)dx , (8)

provided that the probability of a false alarm (type I error):
a= P(pimeHHﬂ HI1HO0)= IA(V)»; plx] HO)dx , 9)

does not exceed a pre-set level (threshold) aO:
a<a,, (10)

(6)

where a,— false alarm threshold.
Then the detection reliability (the probability of correctly detecting an abnormal
condition) is defined as:
p.=1-p. (11)
Thus, the detection method controls the risk of false alarms () while minimizing
the probability of missing a dangerous condition (f).
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Since in practical conditions it is necessary to distinguish at least three network states,
the problem is generalized to the multi-class case. The following classes are distinguished:

Ay: minimum load (C(x)< 1) — suitable for preventive work

As: average load (01 < C(u) < 62 ) — normal mode

Aj: critical load (C(u) > 62) — a condition that carries the risk of overload

Interval classification rule:

A:Cu)<61, A,:01<C(u)<02, Ay:C(u)>62. (12)
Maximum likelihood classification for a multidimensional feature vector C(u):
A(C(u))=argmax p(Clu)| 4,). (13)
Threshold values are calculated at the intersection points of the densities:
p(Clu)l 4)=p(Clu)| C;)= 6, (14)
p(C) 4,)= p(Cu)| C)=6,, (15)

The combination of the likelihood ratio and the Neumann-Pearson criterion allows:

— ensure statistical optimality of decision-making;

— control the probability of misclassifications;

— generate automated decisions regarding load levels with high confidence.

As aresult, the method not only detects critical modes, but also does so based on a rigorous
mathematical model, taking into account the balance between first and second type errors.

The proposed method for automated detection of load levels is based on the PCVP
model, centered signal values, estimation of correlation components according to the

formula B k(u), averaging over harmonic components, and application of the

Neumann—Pearson criterion.

The method allows controlling the probability of type I errors, minimizing the
omission of dangerous states, and applying both interval and probabilistic rules of
multi-class classification.
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